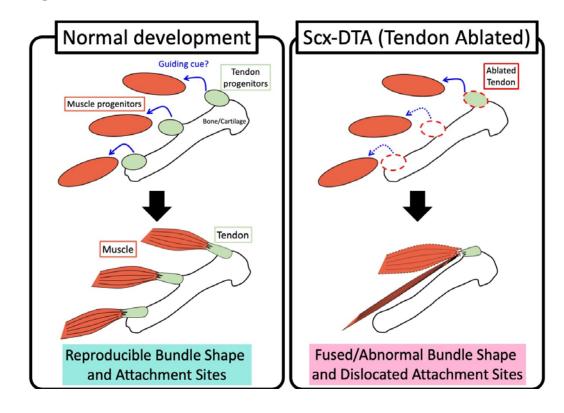
1 Scx-positive tendon cells are required for correct muscle patterning


- 2
- 3 Yudai Ono¹, Tempei Sato^{2,3}, Chisa Shukunami⁴ Hiroshi Asahara^{3,5}, Masafumi Inui^{1,2,6*}
- 4
- 5 1. Laboratory of Animal Regeneration Systemology, Department of Life Science, School
- 6 of Agriculture, Meiji University, Kanagawa, 214-8571, Japan
- 7 2. Department of Systems BioMedicine, National Research Institute for Child Health and
- 8 Development, Tokyo 157-8535, Japan
- 9 3. Department of Systems BioMedicine, Graduate School of Medical and Dental
- 10 Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- 11 4. Department of Molecular Biology and Biochemistry, Graduate School of Biomedical
- 12 and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
- 13 5. Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
 14 92037, USA
- 15 6. Meiji University International Institute for Bio-Resource Research, Kanagawa,
- 16 214-8571, Japan
- 17
- 18
- 19 * Correspondence: inui_m@meiji.ac.jp

21 Summary

22

23	The elaborate movement of the vertebrate body is supported by the precise connection of
24	muscle, tendon and bone. Each of the >600 distinct skeletal muscles in the human body
25	has unique attachment sites; however, the mechanism through which muscles are
26	reproducibly attached to designated partner tendons during embryonic development is
27	incompletely understood. We herein show that Screlaxis-positive tendon cells have an
28	essential role in correct muscle attachment in mouse embryos. Specific ablation of
29	Screlaxis-positive cells resulted in dislocation of muscle attachment sites and abnormal
30	muscle bundle morphology. Step-by-step observation of myogenic cell lineage revealed
31	that post-fusion myofibers, but not migrating myoblasts, require tendon cells for their
32	morphology. Furthermore, muscles could change their attachment site, even after the
33	formation of the insertion. Our study demonstrated an essential role of tendon cells in the
34	reproducibility and plasticity of skeletal muscle patterning, in turn revealing a novel
35	tissue-tissue interaction in musculoskeletal morphogenesis.

- 37 Keywords: skeletal muscle, tendon, insertion, MTJ, limb, deltoid, gluteus, pectoralis,
- 38 Scx,
- 39
- 40 Graphical abstract

43 Introduction

44	The musculoskeletal system is a complex multi-tissue system that consists of muscle,
45	tendon and bone, as well as associating connective tissues. Elaborate body movements of
46	vertebrate are supported by the precise shape, position and functional connections of
47	these components. While the differentiation process of each component has been well
48	studied (Asahara, Inui, & Lotz, 2017; Buckingham & Rigby, 2014; Kozhemyakina,
49	Lassar, & Zelzer, 2015), their tissue integration process remain largely unexplored.
50	Hundreds of skeletal muscles exist in the mammalian body; however, most are derived
51	from the somites. Myogenic progenitor cells migrate long distances to destinations such
52	as the limbs, form a precise bundle shape, and attach with appropriate tendons and bones
53	during embryonic development (Buckingham et al., 2003; Comai & Tajbakhsh, 2014). It
54	is well known that the migration of myogenic progenitor cells from somite to limb bud is
55	guided by secreted cues such as HGF/SF or SDF-1 (Dietrich et al., 1999; Griffin, Apponi,
56	Long, & Pavlath, 2010). However, mechanisms that regulate tissue integration between
57	post-migration muscle cells and tendons and bones are not fully understood (Kardon,
58	2011; Schweitzer, Zelzer, & Volk, 2010). Considering the distinct cellular origin (i.e.,

59	muscles from the somites and tendons from the lateral plate) and large number of
60	integrations to be formed in limited time and space, it is reasonable to assume that the
61	local tissue-tissue interactions take place between myogenic progenitor cells and the
62	surrounding cell/tissue. Indeed, several factors, including transcription factors, ECM,
63	muscle connective tissue cells (MCTs) are reported to regulate the patterning of
64	post-migrating myogenic cells in vertebrate limbs (Besse et al., 2020; Hasson et al., 2010;
65	Helmbacher & Stricker, 2020; Kardon, Harfe, & Tabin, 2003; Kutchuk et al., 2015;
66	Rodriguez-Guzman, Montero, Santesteban, Gañan, Macias, & Hurle, 2007b; Swinehart,
67	Schlientz, Quintanilla, Mortlock, & Wellik, 2013). However, whether tendon cells, the
68	intrinsic partner of skeletal muscles, have any role in instructing the muscle shape and
69	patterning in mammals is unclear. To examine the role of tendon cells in the regulation of
70	muscle patterning, we took a simple approach of linage-specific cell ablation and reduced
71	the tendon cells in embryos. As a result, we found that muscle attachment patterns are
72	significantly altered in the embryo with reduced tendon cells. Our results indicate that
73	Scx-positive tendon cells have an important instructive role in spatially precise muscle
74	attachment patterns, and are in turn essential for reproducible and robust musculoskeletal

75 morphogenesis.

77 Results and Discussion

78 ScxCre mediated tendon ablation

79	To induce tendon cell-specific cell death, we mated a ScxCre-L Tg mouse
80	(Sugimoto, Takimoto, Hiraki, & Shukunami, 2013b) with a Rosa26-LSL-DTA mouse
81	(Voehringer, Liang, & Locksley, 2008) (Fig. 1A). As a result, we observed
82	TUNEL-positive cells in tendon tissue of the tail and limb of Cre+/DTA+ embryo at
83	E15.5, but not in control embryos (Fig. 1C, E arrowheads, Fig. S1 A-D). H&E staining of
84	consecutive sections showed tissue ablation in the tail tendon tissue of Cre+/DTA+
85	embryo (Fig. 1B, D arrowheads). Cre and DTA dependent TUNEL-positive cells were
86	observed as early as E12.5 in the forelimb, shoulder, intervertebral mesenchyme, or tail
87	(Fig. S1 E-P). These results suggest that we could successfully induce cell death
88	specifically in the tendon cells, from their early stage of differentiation. Hereafter, in this
89	manuscript, we designate the mice with ScxCre-L Tg and Rosa26-LSL-DTA alleles as
90	"Scx-DTA" mice.

91 Next, we examined the tendon tissue of *Scx-DTA* embryo with the *Mkx-Venus*92 knock-in allele (Ito et al., 2010). As shown in Fig. 1F and J, the long tendons in the

93	zeugopod were reduced in E17.5 Scx-DTA embryo. The limb sections showed that the
94	flexor digitorium profundus (FDP) tendon (Fig. 1G, K) and flexor digitorium sublimis
95	(FDS) tendon (Fig. 1H, L) in the autopod, extensor carpi radialis tendons, extensor
96	digitorium communis (EDC) tendons, or the palmaris longus tendon (Fig. 1I, M) in the
97	zeugopod were greatly reduced in Scx-DTA embryos. The reduction of tendon tissue in
98	other parts of the body, such as the Achilles tendon (Fig. 1N, R) or tail tendon (Fig. 1O, S)
99	was also apparent. Furthermore, ligamentous tissue, such as the cruciate and patella
100	ligaments were diminished (Fig. 1P, T) and the outer annulus fibrosus of the
101	intervertebral disc was also reduced (Fig. 1Q, U). In sum, these results illustrated that our
102	approach reduced the tendon and ligament tissues from the developing embryo, albeit not
103	completely. The reductions of tendon tissue have been reported in mice with the knockout
104	of tendon transcription factors (TFs), such as Scleraxis (Scx), Mohawk (Mkx) or Egrl
105	(Guerquin et al., 2013; Ito et al., 2010; Murchison et al., 2007). The degree of
106	tendon/ligament reduction in Scx-DTA mice was as severe as or even more severe than
107	those observed in these TF mutants. Namely, the cell death was observed as early as
108	E12.5 in Scx-DTA embryo, which is earlier than the reported tendon reduction in TF

109	mutants. In addition, while the tendon reduction was seen mainly in the long tendons in
110	TF mutants, most of tendon and ligament tissues were reduced in Scx-DTA embryos. The
111	Incomplete loss of tendon tissue was probably due to the penetrance of Cre
112	activity(Comai, Sambasivan, Gopalakrishnan, & Tajbakhsh, 2014), or continuous
113	recruitment of Scx-positive tendon cells from limb mesenchyme population (Huang et al.,
114	2019; Shwartz, Viukov, Krief, & Zelzer, 2016). As tendon cell death occurs in a period
115	that overlaps the individuation of tendon from anlage (Huang et al., 2015), this could also
116	have an impact on tendon patterning. Indeed, the numbers of FDS or EDC tendons were
117	reduced and outline of each of the tendons were indistinct in the Scx-DTA embryo (Fig.
118	1H, I, L, M)
119	We found that Scx-DTA pups died soon after birth (Fig. 1V, W). Scx-DTA
120	embryo showed a defect in diaphragm (described below), which could cause an
121	insufficient respiratory function in newborn Scx -DTA pups. In addition, as Scx is
122	expressed also in non-tendon/ligament tissues such as the patella, rib cage, and bone
123	ridges (Blitz, Sharir, Akiyama, & Zelzer, 2013; Sugimoto, Takimoto, Akiyama, Kist,
124	Scherer, et al., 2013a), these Scx-positive skeletal elements are also reduced or lost in

125 Scx-DTA embryos (Fig. 1X, Fig. S2). The loss of rib cage could also cause respiratory

126 problems. Thus, in the present study, we only focused on embryonic development. The

127 effects of skeletal abnormality are also discussed (see below).

128

129 Muscle patterning was altered in tendon-ablated embryos

130	Next, we examined whether the patterning (i.e., shape or attachment) of
131	skeletal muscles was altered in Scx-DTA embryos. First, we applied whole-mount
132	immunohistochemistry with a myosin heavy chain (MHC) antibody for the analysis of
133	the forelimb of P0 pups. In control limbs, the muscles were located between their regular
134	attachment sites (origin and insertion); for example, the deltoid muscle originates from
135	spine of the scapula and inserts into deltoid tuberosity (Fig. 2B, C blue arrowhead). In
136	contrast, muscles in Scx-DTA mice showed changes in their attachment sites; for example,
137	the insertion site of the deltoid muscle changed to the shoulder joint (Fig. 2F, G red
138	arrowhead). The shapes/attachments of muscles in the zeugopod also changed, for
139	example the extensor carpi ulnaris (ECU) and extensor digiti quarti/quinti (EDQ)
140	muscles were clearly separated in the control limb (Fig. 2D arrowheads), but they were

141	fused into a single muscle bundle in the <i>Scx-DTA</i> limb (Fig. 2H arrowhead). The extensor
142	pollicis muscles, which are normally covered by superficial muscles, became visible (Fig.
143	2D, H arrows). Of note, despite their morphological change, most of the muscles in the
144	zeugopod attached with tendons at their distal end.
145	In sections of E18.5 forelimbs, muscles in the metacarpal position were grossly normal
146	(Fig. 2I, L, O). However, FDS muscles were found in the wrist position of the Scx-DTA
147	limb, where muscle was not observed in control embryos (Fig. 2J, M, O). Conversely,
148	FDS muscles were missing from their normal position in the zeugopod of Scx-DTA mice
149	(Fig. 2K, N, O arrowheads). Interestingly, similar distal dislocation of FDS muscle has
150	been reported in Scx-knockout mice (Huang et al., 2013), indicating that this change in
151	muscle position is due to the reduction of FDS and FDP tendons. In addition, the
152	arrangement of the extensor carpi (longus/Brevis) and FDP muscles was changed (Fig.
153	2K, N arrows). On the other hand, muscles in the hindlimb generally showed a normal
154	attachment pattern (Fig. S3).
155	Altered attachment sites were also observed in other muscles, especially in

156 muscles connecting to the body trunk and limbs. For example, the pectoral muscles

157	originate from the sternum and insert into the deltoid tuberosity in control embryos (Fig.
158	2P, P' arrowhead); however, the insertion sites of these muscles were distally dislocated
159	toward the elbow joint in Scx-DTA mice (Fig. 2R, R' arrowhead). In a severe case, the
160	pectoral minor muscle separated into two bundles (Fig. 2R, R' arrows). Similarly, in
161	Scx-DTA mice, the insertion site of the gluteus maximus muscle, which normally
162	originates from the ilium and inserts into the gluteus tuberosity (Fig. 2Q, Q' arrowheads)
163	changed distally, toward the knee joint (Fig. 2S, S'). The organization of muscles in the
164	trunk, such as the rectus abdominis, was also changed in Scx-DTA mice (Fig. 2T, V). In
165	the diaphragm, the width of the central tendon was greatly reduced (Fig. 2U, W arrows)
166	and the orientation of associated muscle fibers was changed (Fig. 2U, W arrowheads). In
167	sum, the organization of skeletal muscles of many body parts was changed in Scx-DTA
168	mice, suggesting that tendon cells are necessary for skeletal muscle to form a precise
169	shape and attachment in the correct position. The role of tendon tissue in muscle
170	patterning has been shown indirectly in other vertebrate species; for example, the surgical
171	removal of the tendon primordia resulted in ectopic extension of the muscle into the knee
172	joint in chicken embryos (Kardon, 1998). Scx-knockout zebrafish embryos showed

173	abnormal muscle patterning (Kague et al., 2019). In mammals, muscle-tendon interaction
174	has been studied in the opposite direction and the requirement of muscle cells for tendon
175	formation has been reported (Brent, Braun, & Tabin, 2005; Pryce et al., 2009). Our results
176	represent the first evidence that directly points to the importance of tendon cells in muscle
177	patterning in mammalian embryos. Muscle patterning in limbs also depends on
178	LPM-derived mesenchyme cells or muscle connective tissue (MCT) cells that are closely
179	associated with the myogenic lineage (Hasson et al., 2010; Kardon et al., 2003;
180	Vallecillo-García et al., 2017). As such, we considered whether MCT is affected in
181	Scx-DTA mice. As shown in Fig. S4, the expression levels of MCT marker genes were
182	unaltered in Scx-DTA mice, while tendon marker genes were clearly reduced. Also, Cre
183	expression in ScxCre-L Tg is restricted in tendon cells and not detected in MCTs
184	(Sugimoto, Takimoto, Hiraki, & Shukunami, 2013b). We concluded that the phenotype
185	seen in <i>Scx-DTA</i> mice is primarily due to the loss of tendon cells.
196	

186

187 Myofibers but not myoblasts require tendon cells for patterning

188 Next, to elucidate the stage at which tendon-muscle interaction takes place, we

189	monitored the location and shape of the myogenic cell lineage in a step-by-step manner,
190	along with their migration and differentiation. First, we found that pax3-positive
191	myogenic progenitor cells were induced in the somite and migrated normally into the
192	limb buds at E11.5 (Fig.3A, D arrowheads). Myogenin-positive myoblast positions were
193	grossly normal at E12.5 or E13.5 (Fig.3B, C, E, F), suggesting that myoblast segregation
194	occurred in similar manner in control and Scx-DTA mice. Furthermore, myh3-positive
195	myofibers were observed in same position in <i>Scx-DTA</i> and control embryos at E12.5 (Fig.
196	3G, J), indicating that myofiber differentiation is not dependent on tendon cells. Of note,
197	we found that the myh3 signal became significantly high at the distal/proximal ends of
198	myofibers from E13.5 (Fig. 3H, I arrowheads). By comparing the expression of <i>myh3</i> and
199	a mature tendon marker, tenomodulin (Tnmd) (Shukunami, Oshima, & Hiraki, 2001;
200	Shukunami et al., 2018), we noted that this high <i>myh3</i> expression marks the boundary of
201	muscle and tendon (Fig. S3). We therefore interpreted the myh3 high region as surrogate
202	of the muscle-tendon boundary. The shape of myh3-positive muscle bundles clearly
203	differed between Scx-DTA and control embryos at E13.5 (Fig.3H, K). While the EDC
204	muscle in the control embryo formed a sharp boundary at its distal tip (Fig. 3H), the distal

205	tip of EDC in Scx-DTA embryo remained loose shape without the clear boundary
206	formation (Fig. 3K). Moreover, while the ECU and EDQ muscle bundles in control
207	embryos were clearly separated and formed two distal boundaries (Fig. 3H blue
208	arrowheads), those muscles did not separate or form normal distal boundaries in Scx-DTA
209	embryos (Fig. 3K red arrowheads). The muscle patterning defects became more apparent
210	in E14.5, where EDC/EDQ/ECU muscles could not be distinguished (Fig. 3I, L).
211	Immunohistochemistry with MHC antibodies confirmed that the shapes of MHC-positive
212	muscle bundles became loose in Scx-DTA embryos (Fig. 3M-P) and the insertion sites of
213	several muscles, including the triceps (Fig. 3 M, O) and deltoid muscles (Fig. 3N, P),
214	were dislocated. These results indicate that tendon cells are dispensable for the migration,
215	initial segregation, or differentiation of myofibers, but are required for the formation of
216	proper muscle bundle morphologies and the precise location of the attachment site.
217	Previous studies showed that tendon anlages are induced in muscles-less limbs normally;
218	however the maturation of tendons requires muscles (Brent et al., 2005; Huang et al.,
219	2015; Pryce et al., 2009). Our results together with those studies, indicate that muscle and
220	tendon anlage are induced independently, but their connection and maturation is mutually

221	dependent. The patterning of limb muscle is regulated by surrounding tissues at various
222	time point (Helmbacher & Stricker, 2020). While the loss of the Tbx5 in Prx1-positive
223	mesenchyme altered the patterning of tendon and muscle from E12.5 (Hasson et al.,
224	2010), Osr2Cre dependent MCT ablation affected the patterning of MyoD-positive
225	muscle clusters at E13.0 (Besse et al., 2020). Our results implied that the role of tendon
226	cells, which is to finalize the muscle bundle position and attachment, is played later in
227	comparison to other connective tissues. It is likely that multiple inputs from surrounding
228	cells regulate limb muscle patterning sequentially and in an overlapping manner.
229	
229 230	Skeletal malformation or cell death are not the cause of muscle patterning defects
	Skeletal malformation or cell death are not the cause of muscle patterning defects As <i>Scx</i> is also expressed in some skeletal elements, such as the rib and patella
230	
230 231	As <i>Scx</i> is also expressed in some skeletal elements, such as the rib and patella
230 231 232	As <i>Scx</i> is also expressed in some skeletal elements, such as the rib and patella (Sugimoto, Takimoto, Hiraki, & Shukunami, 2013b), <i>Scx-DTA</i> mice showed several
230231232233	As <i>Scx</i> is also expressed in some skeletal elements, such as the rib and patella (Sugimoto, Takimoto, Hiraki, & Shukunami, 2013b), <i>Scx-DTA</i> mice showed several skeletal malformations, including loss of the rib cage or deltoid tuberosity (Fig. 1X, Fig.

237	Jaenisch, 1992; Kist et al., 2002). Sox9 heterozygous (Sox9 ^{fl/-}) embryos which lack the
238	deltoid tuberosity were generated by mating Sox9 ^{flox/flox} and Meox2-Cre mice (Fig. S6B,
239	D). Heterozygous $Myf5^{Cre/+}$ knock-in mice were intercrossed to generate homozygous
240	Myf5 ^{Cre/Cre} embryos, which resulted in rib cage malformation due to the loss of the Myf5
241	protein (Fig. S5F, H). In both cases the insertion sites of the pectoralis major muscles
242	were not altered, despite the skeletal defects (Fig. S6 A, C, E, G). These results imply that
243	the loss of skeletal elements is not the major cause of the muscle patterning defect seen in
244	Scx-DTA mice. A previous study on the role of transcription factor Lmx1b also showed
245	that the change of skeletal elements alone does not cause the muscle patterning change.
246	Deletion of Lmx1b in a Prx1-positive lineage altered the dorso-ventral polarity of the
247	whole limb, including the bone, tendon and muscle; however the loss of Lmx1b in the
248	Sox9-positive lineage resulted in the change of bone, but not tendon or muscle polarity
249	(Li, Qiu, Watson, Schweitzer, & Johnson, 2010).
250	Programmed cell death is one of the important driving forces of morphogenesis,
251	such as digit formation or muscle belly segregation (Guha, Gomes, Kobayashi, Pestell, &
252	Kessler, 2002; Rodriguez-Guzman, Montero, Santesteban, Gañan, Macias, & Hurle,

253	2007a). As such, the cell death induced in <i>Scx-DTA</i> mice could directly or indirectly
254	affect the muscle attachment pattern. To explore this possibility, we examined the muscle
255	patterning of the embryo where cell death is induced in muscle tissue by the Myf5-Cre
256	dependent expression of DTA (<i>Myf5^{Cre/+}:Rosa26-LSL-DTA</i> , hereafter " <i>Myf5-DTA</i> "). In
257	<i>Myf5-DTA</i> embryos, despite a severe reduction of muscle mass, the remaining pectoralis
258	major muscle was correctly inserted into the deltoid tuberosity (Fig. S6I, J). This result
259	indicated that excess cell death in the tissue does not necessarily cause muscle patterning
260	defects.
261	

262 **Dynamic change in muscle patterning after myofiber formation**

263	The results shown above implied that the skeletal muscles define their
264	attachment sites after myofiber formation (e.g., Fig. 3 G-L). We then asked if the position
265	of muscle could be altered after the formation of insertion, which may provide skeletal
266	muscle patterning further plasticity and robustness. To examine this point, we observed
267	the position and insertion of gluteus maximus muscle at two time points E14.5 and E17.5.
268	As shown in Fig. 4A and D, the distal tips of the gluteus maximus are located at the

269	middle of the femur (i.e., the gluteus tuberosity) at E14.5 in both WT and Scx-DTA mice
270	(Fig. 4A, D). A detailed section analysis confirmed that the gluteus maximus muscles
271	formed insertions with gluteus tuberosity through tendon cells at this stage, although the
272	tendon cells were reduced in Scx-DTA mice (Fig. 4B, C, E, F). As embryonic
273	development proceeds, the junction of the gluteus maximus muscle/tendon matured and
274	was firmly inserted into the gluteus tuberosity at E17.5 (Fig. 4G-I). On the other hand, the
275	tip of gluteus maximus muscle of Scx-DTA mice was distally dislocated while most of the
276	tendon and insertion into the gluteus tuberosity was lost by this stage (Fig. 4J-L). These
277	results imply that the skeletal muscle is able to reposition its attachment site according to
278	environmental changes, even after myofiber differentiation or the formation of initial
279	attachment. Recent studies also reported the post-natal elongation or post-fusion
280	repositioning of muscles (Gu et al., 2016; Huang et al., 2013), indicating that the
281	plasticity of muscle positioning is higher than generally considered. We assume that this
282	interaction between skeletal muscle and tendon provides musculoskeletal morphogenesis
283	reproducibility and robustness to resist environmental or genetic perturbations.
284	The molecular mechanism underlying this muscle-tendon interaction remains

285	to be explored. In Scx-DTA mice, muscles in the zeugopod (i.e., the EDC/EDQ/ECU
286	muscles) fused and attached to the remaining tendons at their distal end (Fig. 2H). The
287	insertion sites of the muscles in the girdle (i.e., the pectoral and gluteus muscles)
288	dislocated toward the joint regions, such as the shoulder, elbow or knee (Fig. 2, Fig. S7B).
289	The remaining tendon cells were relatively abundant in the joint area of Scx-DTA
290	embryos (Fig. 1F, J, Fig. S7A), probably due to the initial amount and continuous cell
291	recruitment/differentiation from the Scx-negative cell population (Huang et al., 2019;
292	Shwartz et al., 2016). The fact that muscle did not attach randomly to nearby bone but
293	changed its morphology toward the distal tendon tissue implied a hypothesis that
294	diffusible molecule(s) secreted from tendon cells could attract myofibers. Indeed, recent
295	studies reported the involvement of retinoic acid in the formation of the extraocular
296	functional unit (Comai et al., 2020), and FGF or BMP signaling were active at the
297	interface of the embryonic tendon and muscle (Eloy-Trinquet, Wang, Edom-Vovard, &
298	Duprez, 2009; Wang et al., 2010). However, cell adhesion molecule (Hasson et al., 2010)
299	or ECM (Kutchuk et al., 2015) can also play parallel roles. Moreover, LPM-derived cells
300	were recently suggested to convert their cell fate to the myogenic lineage at the tip of

301	muscles and to regulate muscle patterning (de Lima et al., 2020). Clearly more studies are
302	required to fully understand the molecular and cellular mechanisms of precise skeletal
303	muscle patterning. We believe that revealing the molecular mechanism behind this
304	process would shed light on broad areas of biology, such as the diversity of muscle
305	patterning among species or regenerative medicine.

308	Acknowledgements
309	We thank Drs. Scherer, Kist and Ohteki (TMDU) for providing the Sox9 flox and
310	Rosa26-LSL-DTA mice. This Research is supported by AMED-CREST from AMED
311	(JP20gm0810008), MEXT KAKENHI (19K06697), the Nakatomi Foundation, the
312	Nakajima Foundation and the Takeda Science Foundation for M.I.
313	
314	
315	Author Contributions
316	Y.O., T.S., C. S., and M.I. performed the experiments. H.A. and M.I. planned the study
317	and wrote the manuscript.
318	
319	
320	Declaration of Interests
321	The authors declare no conflicts of interest in association with the present study.
322	

323 Methods

324 Mice

325	A ScxCre-L transgenic (Tg) mouse strain has been described previously (Sugimoto,
326	Takimoto, Hiraki, & Shukunami, 2013b). A Rosa26-LSL-DTA mouse strain was kindly
327	provide by Dr. Ohteki. The mouse was originally purchased from Jackson Laboratory
328	(B6.129P2-Gt(ROSA)26Sortm1(DTA)Lky/J, strain#009669) by Dr. Ohteki and
329	transferred under the permission of Jackson Lab. A Mohawk-Venus knock-in mouse was
330	generated and described in our previous study (Ito et al., 2010). Myf5Cre
331	(B6.129S4-Myf5 ^{tm3(cre)Sor} /J, strain#007893) (Tallquist, Weismann, Hellström, & Soriano,
332	2000) and Meox2Cre mice (B6.129S4-Meox2 ^{tm1(cre)Sor} /J, strain#003755) (Tallquist &
333	Soriano, 2000) were purchased from Jackson Laboratory. A Sox9-flox mouse strain was
334	kindly provided by Dr. Scherer and Dr. Kist (Kist, Schrewe, Balling, & Scherer, 2002).
335	ICR mice were purchased from Sankyo lab-service (Tokyo, Japan). All animal
336	experiments were approved by the animal experiment committees of Meiji University
337	(approval No. IACUC17-0007) and the National Research Institute for Child Health and
338	Development (approval No. A2004-003).

339

340 Histological analyses

341	For paraffin sections, embryos were fixed with 4% paraformal dehyde (PFA) for $4^\circ C$
342	overnight, dehydrated with methanol, cleared with xylene and embedded in paraffin
343	For cryosection, embryos were fixed with 4% PFA for 4°C overnight, washed with PBS
344	and embedded with OCT compound (Sakura Finetek, Osaka, Japan). The embryos were
345	sectioned at 7 μm for hematoxylin and eosin (H&E) staining, and TUNEL and
346	immunofluorescence analyses. The TUNEL analysis was performed using an In situ
347	Death Detection Kit (Roche, Basel, Switzerland) according to the manufacturer's
348	instruction. The names of muscles and tendons appeared in sections were judged
349	according to Watson et al. (Watson, Riordan, Pryce, & Schweitzer, 2009).
350	

351 Immunohistochemistry

The embryos were fixed with 4% PFA at 4°C overnight, dehydrated with methanol and
rehydrated with PBS supplemented with 0.1% triton-X100 (PBSTx). The embryos were
digested with 10 μg/ml Protease K at 37°C for 60 min, re-fixed with 4% PFA, blocked

355	with 2% BSA/PBSTx and incubated with α -MHC antibody (Sigma-Aldrich, St. Louis,
356	USA, My-32, 1:1000 in 2% BSA/PBSTx) at 4°C overnight. Then the embryos were
357	washed 10 times with PBSTx, incubated with α -mouse IgG-AP conjugated (1:2000 in
358	2% BSA/PBSTx) (ab5880 Abcam, Cambridge, UK) at 4°C overnight, washed 10 times
359	with PBSTx and the signal was developed in NBT/BCIP solution (Roche).
360	
361	Immunofluorescence
362	Paraffin or cryosections were prepared as described in the histology section, boiled in
363	citric acid (pH 2.0) for antigen retrieval and stained with an α -MHC antibody (Sigma
364	My-32, 1:1000) or a-GFP antibody (Abcam ab13970, 1:1000). a-mouse IgG-Cy3

- 365 (Jackson ImmunoResearch, West Grove, USA, 1:1000) or α-chicken IgG-Alexa488
- 366 (Thermo Fisher, Waltham, USA, 1:1000) were used as secondary antibodies.
- 367

368 Whole mount *in situ* hybridization

- 369 Whole mount in situ hybridization (WISH) was performed according to the methods of
- 370 Yokoyama et al. (Yokoyama et al., 2009). Briefly, the embryos were fixed with 4% PFA

371	at 4°C overnight, dehydrated with methanol and rehydrated with PBS supplemented
372	with 0.1% tween20 (PBST). The embryos were digested with 10 μ g/ml Protease K at
373	37°C for 20-60 min (depending on the stage), re-fixed with 4% PFA, and hybridized
374	with an anti-sense probe labeled with digoxigenin (DIG) or fluorescein in hybridization
375	buffer at 65°C overnight. The embryos were washed with wash buffer at 65°C, blocked
376	with 10% FBS/PBST for 2 hours, and incubated with α -DIG or α -fluorescein antibody
377	conjugated with alkaline phosphatase (Roche, 1:2000 in 10% FBS/PBST) at 4°C
378	overnight. Then the embryos were washed 10 times with PBST and the signal was
379	developed in NBT/BCIP solution (Roche). For double in situ hybridization,
380	DIG-labeled <i>tnmd</i> probe and fluorescein-labeled <i>myh3</i> probe were simultaneously
381	hybridized. Thmd was stained with α -DIG-AP antibody and NBT/BCIP substrate,
382	post-fixed with 4% PFA, dehydrated with methanol, rehydrated with PBST and myh3
383	was stained with α -fluorescein-AP antibody and INT (Roche)/BCIP (Roche) substrates.
384	The sequences of the primers used for the amplification of probe are as follows:
385	myogenin fw: 5'- ACCTGATGGAGCTGTATGAGACATC -3', myogenin rev: 5'-
386	CATTTAGGTGACACTATAGCAGATGTGCACACTTGTCCAGG -3', myh3 fw: 5'-

387 CGTTTTGGACATTGCGGGTT -3', myh3 rev: 5'- ATGGACTCCCTCTGCAT

388 -3'.

389

390 Skeletal preparation

The embryos were removed with their skin and internal organs, fixed with 100% ethanol, and serially stained with 0.03% alcian blue (Sigma-Aldrich) solution and 0.01% alizarin red (Sigma-Aldrich) solution. When embryos were used after whole-mount IHC, the embryos were post-fixed with 4% PFA, dehydrated with ethanol and stained as described above.

397 References

398	Asahara, H., Inui, M., & Lotz, M. K. (2017). Tendons and Ligaments: Connecting
399	Developmental Biology to Musculoskeletal Disease Pathogenesis. Journal of Bone
400	and Mineral Research : the Official Journal of the American Society for Bone and
401	Mineral Research, 6(2), 181-10. http://doi.org/10.1002/jbmr.3199
402	Besse, L., Sheeba, C. J., Holt, M., Labuhn, M., Wilde, S., Feneck, E., et al. (2020).
403	Individual Limb Muscle Bundles Are Formed through Progressive Steps
404	Orchestrated by Adjacent Connective Tissue Cells during Primary Myogenesis.
405	CellReports, 30(10), 3552-3565.e6. http://doi.org/10.1016/j.celrep.2020.02.037
406	Blitz, E., Sharir, A., Akiyama, H., & Zelzer, E. (2013). Tendon-bone attachment unit is
407	formed modularly by a distinct pool of Scx- and Sox9-positive progenitors.
408	Development (Cambridge, England), 140(13), 2680–2690.
409	http://doi.org/10.1242/dev.093906
410	Braun, T., Rudnicki, M. A., Arnold, H. H., & Jaenisch, R. (1992). Targeted inactivation
411	of the muscle regulatory gene Myf-5 results in abnormal rib development and
412	perinatal death. Cell, 71(3), 369-382.
413	Brent, A. E., Braun, T., & Tabin, C. J. (2005). Genetic analysis of interactions between
414	the somitic muscle, cartilage and tendon cell lineages during mouse development.
415	Development (Cambridge, England), 132(3), 515–528.
416	http://doi.org/10.1242/dev.01605
417	Buckingham, M., & Rigby, P. W. J. (2014). Gene regulatory networks and
418	transcriptional mechanisms that control myogenesis. Developmental Cell, 28(3),
419	225-238. http://doi.org/10.1016/j.devcel.2013.12.020
420	Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., et al.
421	(2003). The formation of skeletal muscle: from somite to limb. Journal of Anatomy,
422	202(1), 59–68.
423	Comai, G., & Tajbakhsh, S. (2014). Molecular and cellular regulation of skeletal
424	myogenesis. Current Topics in Developmental Biology, 110, 1-73.
425	http://doi.org/10.1016/B978-0-12-405943-6.00001-4
426	Comai, G., Sambasivan, R., Gopalakrishnan, S., & Tajbakhsh, S. (2014). Variations in
427	the efficiency of lineage marking and ablation confound distinctions between
428	myogenic cell populations. Developmental Cell, 31(5), 654–667.

429	http://doi.org/10.1016/j.devcel.2014.11.005
430	Comai, G., Tesarova, M., Dupé, V., Rhinn, M., Vallecillo-García, P., da Silva, F., et al.
431	(2020). Local retinoic acid directs emergence of the extraocular muscle functional
432	unit. bioRxiv, 107(Pt 3), 126-48. http://doi.org/10.1101/2020.01.07.897694
433	de Lima, J. E., Blavet, C., Bonnin, MA., Hirsinger, E., Comai, G., Yvernogeau, L., et
434	al. (2020). BMP signalling directs a fibroblast-to-myoblast conversion at the
435	connective tissue/muscle interface to pattern limb muscles. <i>bioRxiv</i> , 41,
436	2020.07.20.211342. http://doi.org/10.1101/2020.07.20.211342
437	Dietrich, S., Abou-Rebyeh, F., Brohmann, H., Bladt, F., Sonnenberg-Riethmacher, E.,
438	Yamaai, T., et al. (1999). The role of SF/HGF and c-Met in the development of
439	skeletal muscle. Development (Cambridge, England), 126(8), 1621-1629.
440	Eloy-Trinquet, S., Wang, H., Edom-Vovard, F., & Duprez, D. (2009). Fgf signaling
441	components are associated with muscles and tendons during limb development.
442	Developmental Dynamics, 238(5), 1195–1206. http://doi.org/10.1002/dvdy.21946
443	Griffin, C. A., Apponi, L. H., Long, K. K., & Pavlath, G. K. (2010). Chemokine
444	expression and control of muscle cell migration during myogenesis. Journal of Cell
445	Science, 123(Pt 18), 3052-3060. http://doi.org/10.1242/jcs.066241
446	Gu, JM., Wang, D. J., Peterson, J. M., Shintaku, J., Liyanarachchi, S., Coppola, V., et
447	al. (2016). An NF-KB - EphrinA5-Dependent Communication between NG2(+)
448	Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates.
449	Developmental Cell, 36(2), 215-224. http://doi.org/10.1016/j.devcel.2015.12.018
450	Guerquin, MJ., Charvet, B., Nourissat, G., Havis, E., Ronsin, O., Bonnin, MA., et al.
451	(2013). Transcription factor EGR1 directs tendon differentiation and promotes
452	tendon repair. Journal of Clinical Investigation, 123(8), 3564-3576.
453	http://doi.org/10.1172/JCI67521
454	Guha, U., Gomes, W. A., Kobayashi, T., Pestell, R. G., & Kessler, J. A. (2002). In vivo
455	evidence that BMP signaling is necessary for apoptosis in the mouse limb.
456	Developmental Biology, 249(1), 108-120. http://doi.org/10.1006/dbio.2002.0752
457	Hasson, P., DeLaurier, A., Bennett, M., Grigorieva, E., Naiche, L. A., Papaioannou, V.
458	E., et al. (2010). Tbx4 and Tbx5 Acting in Connective TissueAre Required for
459	Limb Muscle and Tendon Patterning. Devcel, 18(1), 148–156.
460	http://doi.org/10.1016/j.devcel.2009.11.013

461 Helmbacher, F., & Stricker, S. (2020). Tissue cross talks governing limb muscle

462	development and regeneration. Seminars in Cell & Developmental Biology, 104,
463	14-30. http://doi.org/10.1016/j.semcdb.2020.05.005
464	Huang, A. H., Riordan, T. J., Pryce, B., Weibel, J. L., Watson, S. S., Long, F., et al.
465	(2015). Musculoskeletal integration at the wrist underlies the modular development
466	of limb tendons. Development (Cambridge, England), 142(14), 2431-2441.
467	http://doi.org/10.1242/dev.122374
468	Huang, A. H., Riordan, T. J., Wang, L., Eyal, S., Zelzer, E., Brigande, J. V., &
469	Schweitzer, R. (2013). Repositioning forelimb superficialis muscles: tendon
470	attachment and muscle activity enable active relocation of functional myofibers.
471	Developmental Cell, 26(5), 544-551. http://doi.org/10.1016/j.devcel.2013.08.007
472	Huang, A. H., Watson, S. S., Wang, L., Baker, B. M., Akiyama, H., Brigande, J. V., &
473	Schweitzer, R. (2019). Requirement for scleraxis in the recruitment of
474	mesenchymal progenitors during embryonic tendon elongation. Development
475	(Cambridge, England), 146(20). http://doi.org/10.1242/dev.182782
476	Ito, Y., Toriuchi, N., Yoshitaka, T., Ueno-Kudoh, H., Sato, T., Yokoyama, S., et al.
477	(2010). The Mohawk homeobox gene is a critical regulator of tendon differentiation.
478	Proceedings of the National Academy of Sciences, 107(23), 10538–10542.
479	http://doi.org/10.1073/pnas.1000525107/-/DCSupplemental/pnas.201000525SI.pdf
480	Kague, E., Hughes, S. M., Lawrence, E. A., Cross, S., Martin-Silverstone, E.,
481	Hammond, C. L., & Hinits, Y. (2019). Scleraxis genes are required for normal
482	musculoskeletal development and for rib growth and mineralization in zebrafish.
483	The FASEB Journal : Official Publication of the Federation of American Societies
484	for Experimental Biology, 33(8), 9116–9130.
485	http://doi.org/10.1096/fj.201802654RR
486	Kardon, G. (1998). Muscle and tendon morphogenesis in the avian hind limb.
487	Development (Cambridge, England), 125(20), 4019–4032.
488	Kardon, G. (2011). Development of the musculoskeletal system: meeting the neighbors.
489	Development (Cambridge, England), 138(14), 2855–2859.
490	http://doi.org/10.1242/dev.067181
491	Kardon, G., Harfe, B. D., & Tabin, C. J. (2003). A Tcf4-positive mesodermal
492	population provides a prepattern for vertebrate limb muscle patterning. Devcel, 5(6),
493	937-944. http://doi.org/10.1016/s1534-5807(03)00360-5
494	Kist, R., Schrewe, H., Balling, R., & Scherer, G. (2002). Conditional inactivation of

- 495 Sox9: a mouse model for campomelic dysplasia. *Genesis (New York, NY : 2000)*,
- 496 *32*(2), 121–123. http://doi.org/10.1002/gene.10050
- 497 Kozhemyakina, E., Lassar, A. B., & Zelzer, E. (2015). A pathway to bone: signaling
- 498 molecules and transcription factors involved in chondrocyte development and
- 499 maturation. *Development (Cambridge, England)*, *142*(5), 817–831.
- 500 http://doi.org/10.1242/dev.105536
- 501 Kutchuk, L., Laitala, A., Soueid-Bomgarten, S., Shentzer, P., Rosendahl, A. H., Eilot, S.,
- 502 et al. (2015). Muscle composition is regulated by a Lox-TGF feedback loop.
- 503 Development (Cambridge, England), 142(5), 983–993.
- 504 http://doi.org/10.1242/dev.113449
- 505 Li, Y., Qiu, Q., Watson, S. S., Schweitzer, R., & Johnson, R. L. (2010). Uncoupling
- skeletal and connective tissue patterning: conditional deletion in cartilage
- 507 progenitors reveals cell-autonomous requirements for Lmx1b in dorsal-ventral limb
- 508 patterning. Development (Cambridge, England), 137(7), 1181–1188.
- 509 http://doi.org/10.1242/dev.045237
- 510 Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J.,
- 511 & Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis
- 512 distinguishes force-transmitting tendons from muscle-anchoring tendons.
- 513 *Development (Cambridge, England), 134*(14), 2697–2708.
- 514 http://doi.org/10.1242/dev.001933
- 515 Pryce, B. A., Watson, S. S., Murchison, N. D., Staverosky, J. A., Dunker, N., &
- 516 Schweitzer, R. (2009). Recruitment and maintenance of tendon progenitors by
- 517 TGF signaling are essential for tendon formation. *Development (Cambridge,*

518 England), 136(8), 1351–1361. http://doi.org/10.1242/dev.027342

- 519 Rodriguez-Guzman, M., Montero, J. A., Santesteban, E., Gañan, Y., Macias, D., &
- 520 Hurle, J. M. (2007a). Tendon-muscle crosstalk controls muscle bellies
- 521 morphogenesis, which is mediated by cell death and retinoic acid signaling.
- 522 *Developmental Biology*, *302*(1), 267–280.
- 523 http://doi.org/10.1016/j.ydbio.2006.09.034
- 524 Rodriguez-Guzman, M., Montero, J. A., Santesteban, E., Gañan, Y., Macias, D., &
- 525 Hurle, J. M. (2007b). Tendon-muscle crosstalk controls muscle bellies
- 526 morphogenesis, which is mediated by cell death and retinoic acid signaling.
- 527 *Developmental Biology*, *302*(1), 267–280.

528 http://doi.org/10.1016/j.ydbio.2006.09.034 529 Schweitzer, R., Zelzer, E., & Volk, T. (2010). Connecting muscles to tendons: tendons 530 and musculoskeletal development in flies and vertebrates. Development (Cambridge, 531 England), 137(17), 2807-2817. http://doi.org/10.1242/dev.047498 532 Shukunami, C., Oshima, Y., & Hiraki, Y. (2001). Molecular cloning of tenomodulin, a 533 novel chondromodulin-I related gene. Biochemical and Biophysical Research 534 Communications, 280(5), 1323–1327. http://doi.org/10.1006/bbrc.2001.4271 Shukunami, C., Takimoto, A., Nishizaki, Y., Yoshimoto, Y., Tanaka, S., Miura, S., et al. 535 536 (2018). Scleraxis is a transcriptional activator that regulates the expression of 537 Tenomodulin, a marker of mature tenocytes and ligamentocytes. *Scientific Reports*, 8(1), 3155-17. http://doi.org/10.1038/s41598-018-21194-3 538 539 Shwartz, Y., Viukov, S., Krief, S., & Zelzer, E. (2016). Joint Development Involves a 540 Continuous Influx of Gdf5-Positive Cells. CellReports, 15(12), 2577-2587. 541 http://doi.org/10.1016/j.celrep.2016.05.055 542 Sugimoto, Y., Takimoto, A., Akiyama, H., Kist, R., Scherer, G., Nakamura, T., et al. 543 (2013a). Scx+/Sox9+ progenitors contribute to the establishment of the junction 544 between cartilage and tendon/ligament. Development (Cambridge, England), 545 140(11), 2280-2288. http://doi.org/10.1242/dev.096354 546 Sugimoto, Y., Takimoto, A., Hiraki, Y., & Shukunami, C. (2013b). Generation and 547 characterization of ScxCre transgenic mice. Genesis (New York, NY: 2000), 51(4), 548 275-283. http://doi.org/10.1002/dvg.22372 549 Swinehart, I. T., Schlientz, A. J., Quintanilla, C. A., Mortlock, D. P., & Wellik, D. M. 550 (2013). Hox11 genes are required for regional patterning and integration of muscle, 551 tendon and bone. Development (Cambridge, England), 140(22), 4574–4582. 552 http://doi.org/10.1242/dev.096693 553 Tallquist, M. D., & Soriano, P. (2000). Epiblast-restricted Cre expression in MORE 554 mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 555 (New York, NY: 2000), 26(2), 113-115. 556 Tallquist, M. D., Weismann, K. E., Hellström, M., & Soriano, P. (2000). Early 557 myotome specification regulates PDGFA expression and axial skeleton 558 development. Development (Cambridge, England), 127(23), 5059-5070. 559 Vallecillo-García, P., Orgeur, M., Hofe-Schneider, vom, S., Stumm, J., Kappert, V., 560 Ibrahim, D. M., et al. (2017). Odd skipped-related 1 identifies a population of

- 561 embryonic fibro-adipogenic progenitors regulating myogenesis during limb
- 562 development. *Nature Communications*, 8(1), 1218–18.
- 563 http://doi.org/10.1038/s41467-017-01120-3
- 564 Voehringer, D., Liang, H.-E., & Locksley, R. M. (2008). Homeostasis and effector
- 565 function of lymphopenia-induced "memory-like" T cells in constitutively T
- 566 cell-depleted mice. Journal of Immunology (Baltimore, Md : 1950), 180(7),
- 567 4742–4753.
- 568 Wang, H., Noulet, F., Edom-Vovard, F., Tozer, S., Le Grand, F., & Duprez, D. (2010).
- 569 Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle
- 570 progenitors and satellite cells during development. *Developmental Cell*, 18(4),
- 571 643–654. http://doi.org/10.1016/j.devcel.2010.02.008
- 572 Watson, S. S., Riordan, T. J., Pryce, B. A., & Schweitzer, R. (2009). Tendons and
- 573 muscles of the mouse forelimb during embryonic development. *Developmental*
- 574 *Dynamics*, 238(3), 693–700. http://doi.org/10.1002/dvdy.21866
- 575 Yokoyama, S., Ito, Y., Ueno-Kudoh, H., Shimizu, H., Uchibe, K., Albini, S., et al.
- 576 (2009). A systems approach reveals that the myogenesis genome network is
- 577 regulated by the transcriptional repressor RP58. *Developmental Cell*, 17(6),
- 578 836–848. http://doi.org/10.1016/j.devcel.2009.10.011
- 579

580

582 Figure legends

583	Figure 1 Tendon and ligament tissues are reduced in Scx-DTA mice.
584	(A) A schematic drawing showing the generation of the Scx-DTA mouse. Illustrations
585	are provided by ©2016 DBCLS TogoTV. (B-E) H&E staining (B, D) and the TUNEL
586	analysis (C, E) of the E15.5 embryonic tail. The blue arrowhead indicates the normal
587	tail tendon and the red arrowhead indicates ablated tendon tissue. Scalebar: 100 $\mu m.$
588	(F-M) The fluorescence signal from Mkx-Venus (MkxVen) knock-in reporter visualized
589	the tendon tissue in E17.5 embryos. The blue arrowhead indicates normal limb tendons
590	and the red arrowhead indicates ablated tendon tissue. Scalebar: 100 $\mu m.$ (N-U) H&E
591	staining of E15.5 embryonic tendon/ligament tissues. Ach. tendon, Achilles' tendon;
592	Cruc. Ligament, cruciate ligament; Intervert. Disc., intervertebral disc. Scalebar: 100
593	$\mu m.$ (V) A table summarizing the genotypes of obtained P1 pups from crossing of
594	ScxCre-L Tg and Rosa26-LSL-DTA. (W) The gross appearance of P0 pups. A Scx-DTA

595 pup is shown on the left and a control pup is shown on the right. *Scx-DTA* pups were 596 pale and the milk spot was not observed. (Y) Alcian-blue and alizarin-red staining

597 showing the skeletal elements of P0 pups. An Scx-DTA pup is shown on the left and a

- 598 control pup is shown on the right. The blue arrowhead indicates the normal ribcage and
- 599 the red arrowhead indicates the reduced ribcage. For all the experiments, at least three
- 600 embryos were examined (n>3) and consistent results were obtained. The figures show
- 601 representative results.
- 602
- 603
- 604
- 605

606 Figure 2

The muscle shape and position were altered in the Scx-DTA mouse. 607 608 (A-H) Whole-mount immunohistochemistry of myosin heavy chain (MHC) in forelimbs 609 of P0 pups. Del.: Deltoid muscle. The blue arrowhead in C indicates the normal 610 insertion site of the deltoid muscle (deltoid tuberosity). The red arrowhead in G 611 indicates an altered insertion site of the deltoid (shoulder joint). The arrows in D and H 612 indicate the extensor pollicis muscles. The blue arrowheads in D indicate separated 613 ECU and EDQ muscles. The red arrowhead in H indicates fused ECU/EDQ muscle. 614 (I-O) Immunofluorescence of MHC and MkxVen (using α -EGFP) in the forelimbs of an 615 E18.5 embryo. The blue arrowhead in J' indicates FDS tendons. The red arrowhead in 616 M' indicates distally dislocated FDS muscle. The blue arrowhead in K indicates FDS 617 muscles that are missing in the Scx-DTA mouse (red arrowhead in N). The blue arrow in 618 K indicates normal extensor carpi muscles in a control embryo. The red arrow in N 619 indicates rearranged extensor carpi muscles in an Scx-DTA embryo. The photograph in 620 O shows the position of sections I-N. Scalebar: 100 µm. (P-S) Whole-mount immunohistochemistry of MHC in E17.5 embryos. The blue arrowhead in P' indicates 621

622	the normal insertion site of the pectoralis major muscle (deltoid tuberosity). The red
623	arrowhead in R' indicates a dislocated insertion site of the pectoralis major muscle
624	(elbow joint). The blue arrowhead in Q' indicates the normal insertion site of the gluteus
625	maximus muscle (gluteus tuberosity). The red arrowhead in S' indicates a dislocated
626	insertion site of the gluteus major muscle (knee joint). (T-W) Whole-mount in situ
627	hybridization of myh3 in the rectus abdominus (T, V, Rec. Abdomin.) and diaphragm (U,
628	W). The blue arrowheads in T and U indicate the normal organization of abdominal
629	muscles. The red arrowheads in V and W indicate a disorganized pattern of abdominal
630	muscles. The arrows in U and W indicate the width of the central tendons. For all of the
631	experiments, at least three pups/embryos were examined (n>3) and consistent results
632	were obtained. The figures show representative results.
633	

635 Figure 3

636 Loss of the tendon cells affects the patterning of myofibers. 637 (A-F) A whole-mount in situ hybridization (WISH) analysis visualized the myoblast 638 localization. The blue arrowheads in A and D indicate the normal migration of 639 Pax3-positive myoblasts into the E11.5 limb. The blue arrowheads in B and E indicate 640 the normal segregation of *Myog*-positive myoblasts in the E12.5 limb. The blue 641 arrowheads in C and F indicate normal positioning of Myog-positive myoblasts in the 642 E13.5 limb. (G-L) A WISH analysis visualizes myofiber patterning. The blue 643 arrowheads in G and J indicate the normal location of Myh3-positive myofibers in the 644 E12.5 limb. The blue arrowheads in H and I indicate the normal boundaries of the 645 Myh3-positive FDC muscle bundle in E13.5 and E14.5 limbs. The red arrowheads in K 646 and L indicate obscure or fused boundaries of the Myh3-positive FDC muscle bundle in 647 E13.5 and E14.5 limbs. (M-P) Whole-mount immunohistochemistry visualized myosin 648 heavy chain (MHC)-positive myofibers in E14.5 embryos. The blue arrowheads in M 649 and N indicate the normal insertion site of the deltoid muscle (deltoid tuberosity). The 650 red arrowheads in O and P indicate a dislocated insertion site of the deltoid muscle

- 651 (shoulder joint). At least three embryos were examined in all the experiments (n>3) and
- 652 consistent results were obtained. The figures show representative results

654 Figure 4

655 The attachment site of muscle was repositioned after myofiber differentiation.

656	(A, D) Whole-mount immunohistochemistry visualized myosin heavy chain
657	(MHC)-positive myofibers in the hind limb of E14.5 embryos. Dotted lines indicate the
658	position of the section shown in B, C, E, and F. Arrowheads indicate the position of the
659	gluteus tuberosities. (B, C, E, F) The immunofluorescence analysis of the E14.5
660	hindlimb. Arrowheads indicate the position of the gluteus tuberosities. Scalebar: 100 μ m.
661	(G, J) Whole-mount immunohistochemistry visualized myosin heavy chain
662	(MHC)-positive myofibers in the hind limb of E17.5 embryos. Dotted lines indicate the
663	position of the section shown in H, I, K, and L. The blue arrowhead in G indicates the
664	normal insertion site of the gluteus maximus muscle (gluteus tuberosity). The red
665	arrowhead in J indicates the dislocated insertion site of the gluteus maximus muscle
666	(knee joint). (H, I, K, L) The immunofluorescence analysis of the E17.5 hindlimb.
667	Arrowheads indicate the position of gluteus tuberosities. Scalebar: 100 μ m. In all of the
668	experiments, at least three embryos were examined (n>3) and consistent results were
669	obtained. The figures show representative results

671 Figure S1

672 Tendon/ligament-specific cell death was observed in the Scx-DTA mouse.

- 673 (A-D) A TUNEL analysis of the E15.5 forelimb. (E-H) A TUNEL analysis of the E12.5
- 674 forelimb and shoulder. (I-P) H&E staining and a TUNEL analysis of the E12.5 vertebrae
- and tail.
- 676
- Figure S2
- 678 The deltoid tuberosity is missing in the *Scx-DTA* mouse.
- 679 (A, B) Alcian-blue and alizarin-red staining of P0 pups. The blue arrowhead indicates
- 680 the normal deltoid tuberosity in a control limb (A), which is missing in the Scx-DTA
- 681 forelimb (B, red arrowhead)
- 682

683 Figure S3

684 Muscle patterning was not affected in the hindlimb of the Scx-DTA mouse.

- 685 (A, C) Whole-mount immunohistochemistry visualized MHC-positive myofibers in the
- 686 P0 hindlimb. (B, D) An immunofluorescence analysis of MHC in an E15.5 hindlimb

687 section. Scale bar: 100 μm

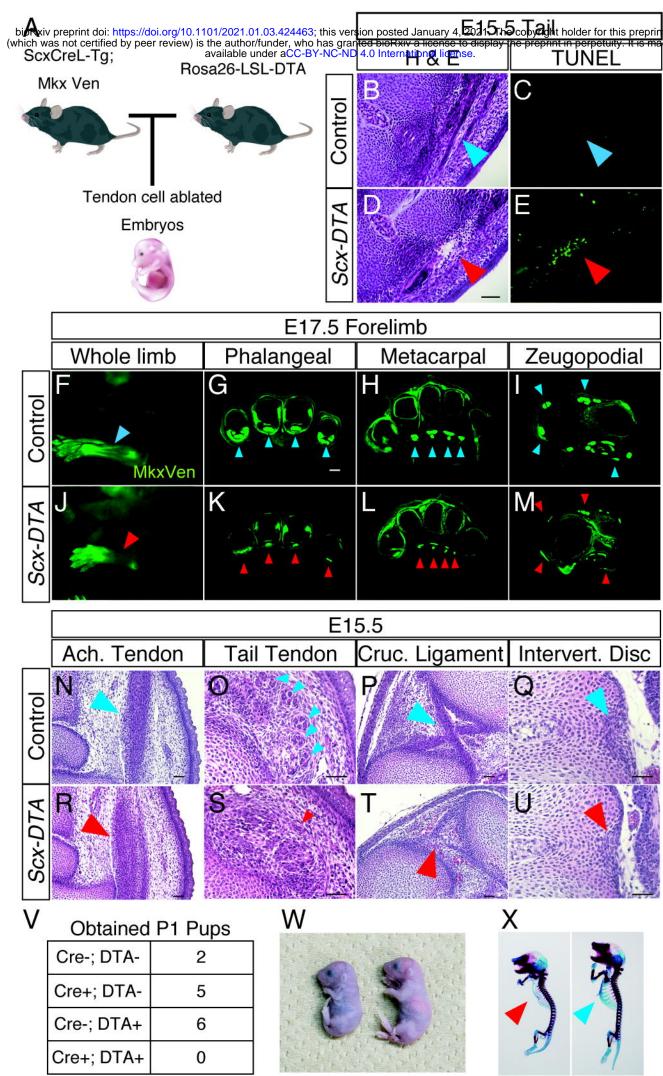
688

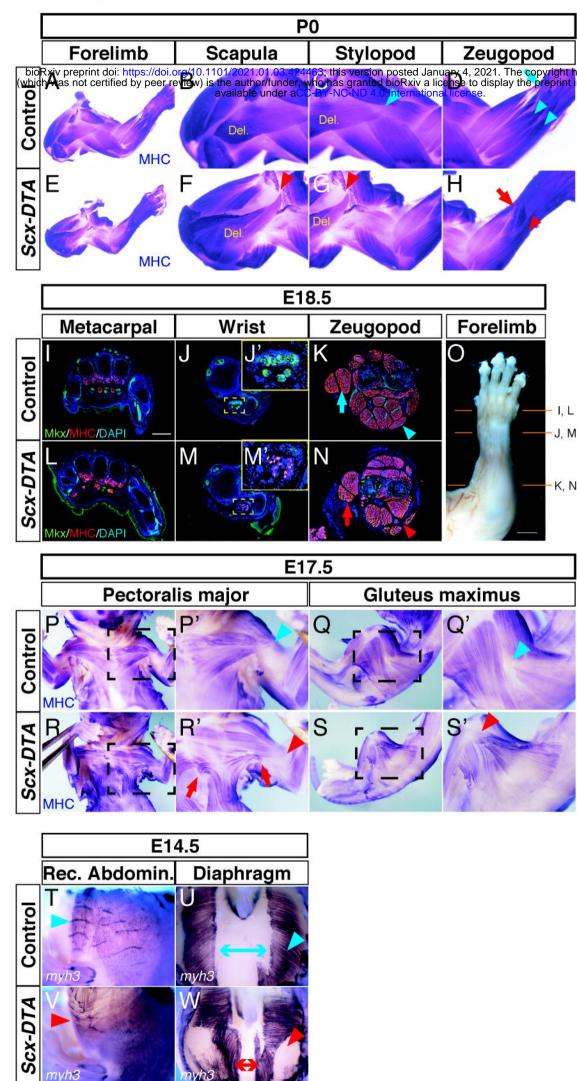
- 689 Figure S4
- 690 The MCT gene expression was not changed in the Scx-DTA mouse.
- 691 Quantitative RT-PCR showed a significant reduction in the expression of tendon genes
- 692 in the E14.5 Scx-DTA forelimb; however, the expression of MCT genes was not
- 693 changed. Student's t-test was performed. *p<0.05, **p<0.01, n.s.: no significant
- 694 difference.
- 695
- 696 Figure S5

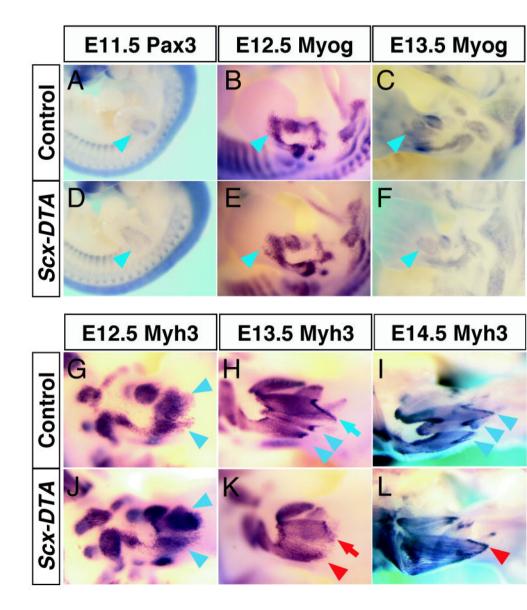
697 The high expression of *Myh3* marks the muscle-tendon junction.

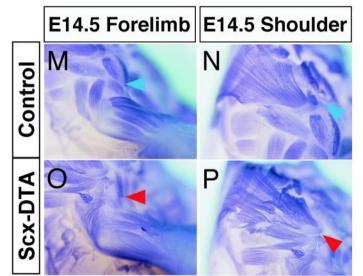
- 698 A whole-mount in situ hybridization (WISH) analysis visualized the Myh3 and Tnmd
- 699 expression in the E14.5 hindlimbs. In A and D, Myh3 was stained with INT/BCIP
- 700 (orange) and Tnmd was stained with NBT/BCIP (blue). Arrowheads indicate the
- 701 putative junction between the EDL muscle and the EDL tendon.
- 702

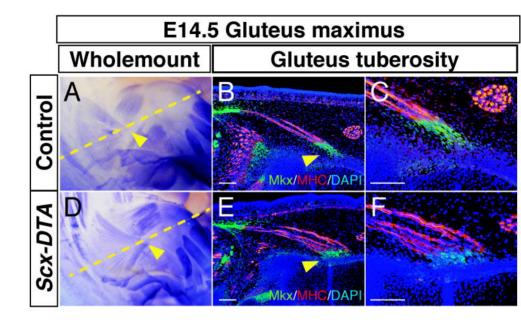
Figure S6

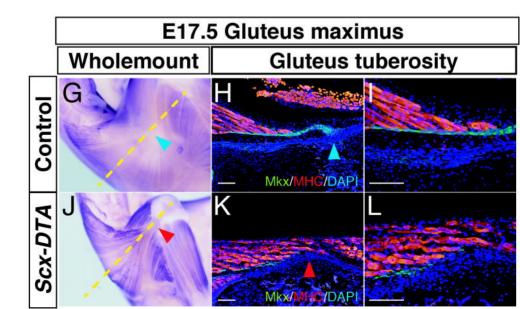

704	Skeletal malformation did not affect muscle patterning.
705	(A, C) Whole-mount immunohistochemistry visualized MHC-positive myofibers in
706	E16.5 pectoral muscles. The blue arrowheads indicate the normal insertion site of the
707	pectoralis major muscles (deltoid tuberosity) in control and Sox9 heterozygous embryos.
708	(B, D) Alcian-blue and alizarin-red staining showing the skeletal elements of embryos
709	shown in A and C. The blue arrowhead indicates the normal deltoid tuberosity in a
710	control limb (B), which is missing in the Sox9 heterozygous forelimb (D, red
711	arrowhead). (E, G) Whole-mount immunohistochemistry visualized MHC-positive
712	myofibers in the E16.5 pectoral muscles. The blue arrowheads indicate the normal
713	insertion site of the pectoralis major muscles (deltoid tuberosity) in control and
714	Myf5 ^{Cre/Cre} embryos. (F, H) Alcian-blue and alizarin-red staining showing the skeletal
715	elements of embryos shown in E and G. The blue arrowhead indicates a normal rib cage
716	in a control embryo (E), which is diminished in $Myf5^{Cre/Cre}$ embryo (H, red arrowhead).
717	(I, J) Whole-mount immunohistochemistry visualized MHC-positive myofibers in the

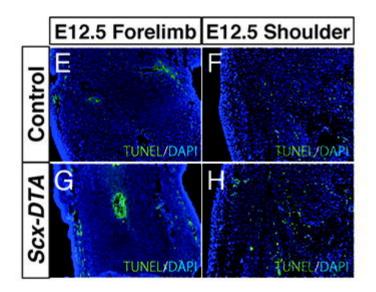

718 E16.5 pectoral muscles. The blue arrowheads indicate the normal insertion site of the

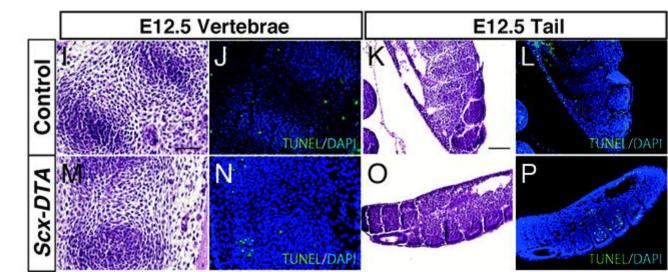

- 719 pectoralis major muscles (deltoid tuberosity) in control and *Myf5-DTA* embryos.
- 720
- 721 Figure S7

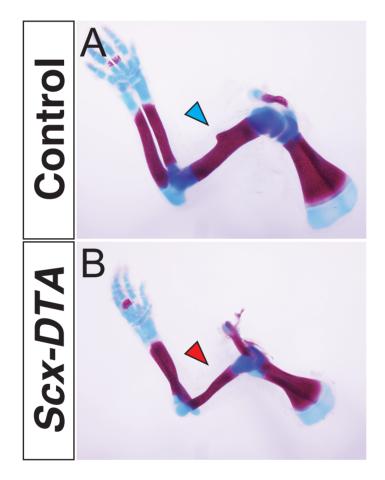

722 Dislocation of the insertion site toward the joint region where tendon cells are723 abundant.

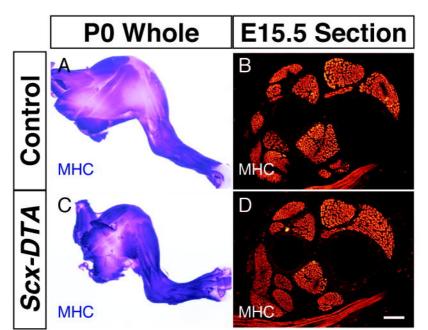

724 (A) The immunofluorescence analysis of MkxVen (using α -EGFP) in the E17.5 femur 725 of control (upper panel) and Scx-DTA (lower panel) embryos. The blue arrowheads 726 indicate the proximal and distal tendons for the gluteus major muscle in the control 727 embryo, which are missing in the Scx-DTA embryo (red arrowhead). Yellow arrowheads 728 indicate a comparable amount of tendon tissue in the knee joint of control and Scx-DTA 729 embryos. (B) Whole-mount in situ hybridization of myh3 in the E14.5 forelimb of 730 control and Scx-DTA embryos. The blue arrowheads indicate the normal attachment 731 sites of limb muscles. The red arrowhead indicates the accumulation of attachment sites 732 to the shoulder joint.

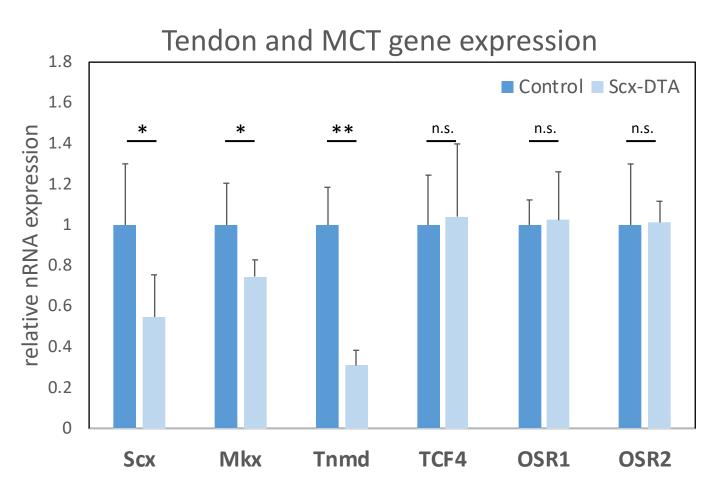


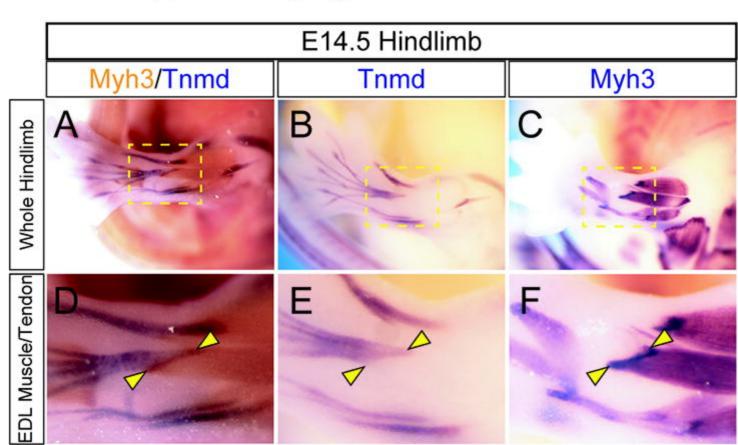


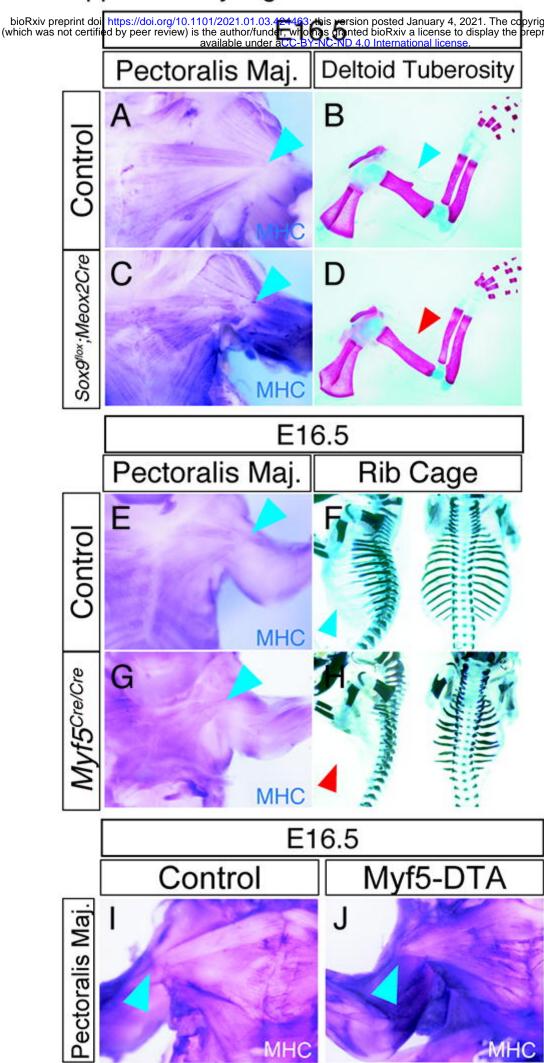


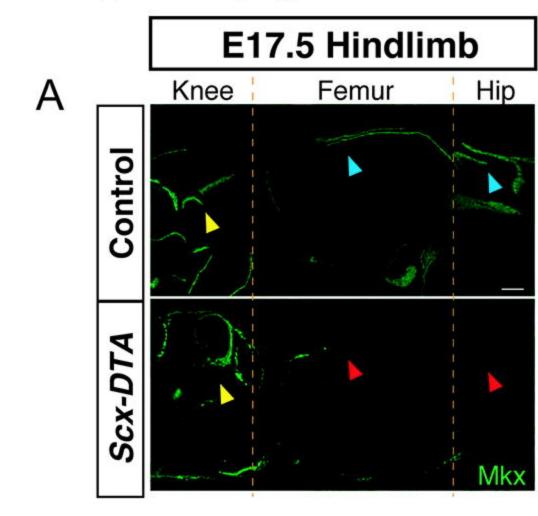


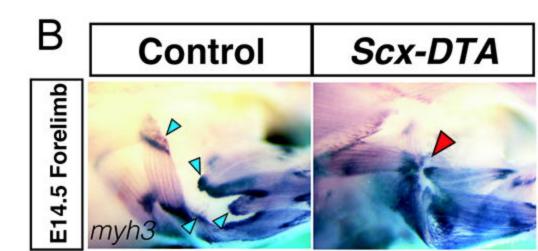











(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is m available under aCC-BY-NC-ND 4.0 International license.

