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Abstract: With promising properties of fast imaging speed, large field-of-view, relative low 

cost and many others, back-illuminated sCMOS cameras have been receiving intensive 

attentions for low-light imaging in the past several years. However, due to the pixel-to-pixel 

difference of camera noises (called noise non-uniformity) in sCMOS cameras, researchers may 

hesitate to use them in some application fields, and sometimes wonder whether they should 

optimize the noise non-uniformity of their sCMOS cameras before using them in a specific 

application scenario. In this paper, we systematically characterize the impact of different types 

of sCMOS noises on image quality and perform corrections to these sCMOS noises. We verify 

that it is possible to use appropriate correction methods to push the non-uniformity of major 

camera noises, including readout noise, offset, and photon response, to a satisfactory level for 

conventional microscopy and single molecule localization microscopy. We further find out that, 

after these corrections, global read noise becomes a major concern that limits the imaging 

performance of back-illuminated sCMOS cameras. We believe this study provides new insights 

into the understanding of camera noises in back-illuminated sCMOS cameras, and also provides 

useful information for future development of this promising camera technology. 

 

1. Introduction 

Low-light cameras are indispensable for various low-light imaging applications, especially 

single molecule fluorescence microscopy [1]. Semiconductor complementary metal oxide 

semiconductors (sCMOS) camera is a new type of low-light cameras with high imaging speed 

and large field-of-view, and thus is well-suited to be used in high-speed fluorescence 

microscopy of biological samples. 

However, the detectability of sCMOS cameras is limited by their relatively low signal-

noise-ratio (SNR), especially in comparison with another popular type of low-light cameras: 

electron multiplier charge-coupled device (EMCCD) cameras [2]. It is well-known that SNR 

could be improved by either increasing quantum efficiency (QE) or decreasing camera noises. 

Recently, with the invention and mature of back-illuminated sCMOS sensors, the QE of 

sCMOS cameras has been increased to ~ 95%, and the SNR of some commercial back-

illuminated sCMOS cameras is even better than that of many EMCCD cameras when the 

incident signal is > 4 photon/pixel [3]. Clearly, decreasing camera noises becomes the next step 

for further pushing the detectability of back-illuminated sCMOS cameras into single-photon 

detection regime. 

Compared with EMCCD cameras, sCMOS cameras suffer from not only higher global 

readout noise, but also larger pixel-to-pixel difference in camera noises (that is, noise non-
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uniformity). The latter is mainly originated from the individual readout structure in sCMOS 

cameras [4]. Various efforts were developed to characterize and correct the noise non-

uniformity. The camera noises in sCMOS cameras (abbreviated as sCMOS noises hereafter) 

were characterized [5-8] and their impacts on some applications, such as single molecule 

localization microscopy (SMLM), were studied [9-14]. Noise correction algorithms were 

integrated into some commercial sCMOS cameras by their manufactories, or developed for 

several specific imaging scenarios by researchers [11, 13, 15-17].  

Since the noise correction algorithms developed by researchers were usually designed to 

correct several types of sCMOS noises simultaneously, it is difficult to obtain quantitative 

information on what level a specific type of sCMOS noises has been corrected to. Besides, 

some noise correction algorithms (for example, defect pixel correction) have been integrated 

into commercial sCMOS cameras, and are routinely used by many users without any pre-

cautions. However, it is not clear whether these noise correction algorithms should be used in 

some special application scenarios. Moreover, it is generally believed that the characteristic of 

sCMOS noises under long exposure time is different from that under short exposure time, but 

the performance of the noise correction algorithms under different exposure times has not been 

well studied. In a word, although many noise correction algorithms have been developed and 

used to improve the noise non-uniformity of sCMOS cameras, researchers are still confused 

about when and how to select appropriate noise correction algorithms in their specific 

applications. They may even have no confidence on which technical specifications in a camera 

datasheet are more important for choosing an appropriate camera, and whether the noise 

correction algorithms used by their colleagues should be modified before being used in their 

specific experiments.  

In this paper, we systematically analyze the impact of different types of camera noises on 

image quality, and evaluate whether a specific camera noise can be properly corrected. Firstly 

we characterize individual camera noises in two popular back-illuminated sCMOS cameras and 

a popular EMCCD camera. Then, we investigate the impact of different types of camera noises 

on SMLM and conventional microscopy. We take special efforts on analyzing the global read 

noise and read noise non-uniformity. Finally, we quantify some commonly-used noise 

correction algorithms. We confirm that the impact of noise non-uniformity on image quality 

could be minimized to a negligible level. After applying these noise corrections, we find out 

that global read noise becomes the major camera noise that limits the imaging performance of 

back-illuminated sCMOS cameras. 

2. Theory and Methods 

2.1 The background of sCMOS noises 

There are mainly three types of noises in an sCMOS camera: fixed pattern noise (FPN), read 

noise, and shot noise [9]. FPN represents the pixel-to-pixel difference of time-independent 

fixed bias, and can be further divided into offset FPN and gain FPN, which account for pixel-

dependent variations in dark signal and photon response, respectively [18]. Read noise usually 

represents all of the camera noises that are independent on signal intensity [19]. To distinguish 

read noise from offset FPN, here we only consider the signal-independent temporal noise as 

read noise. Shot noise is originated from quantum fluctuation, and is always equal to the square 

root of input signal. Since shot noise is from incident light itself instead of the associated camera, 

we would not consider it as camera noise in this work. 

In an sCMOS camera, light hitting the sensor is converted into photoelectrons, and then into 

voltage by the individual voltage converter in each pixel. Moreover, each column has its own 

Analog to Digital Converter (ADC). This kind of readout structure increases the pixel-to-pixel 

difference of offset, photon response and read noise, and thus resulting in a more severe noise 

non-uniformity. Camera manufactories usually provide dark-signal non-uniformity (DSNU), 

photon response non-uniformity (PRNU), and root-mean-square (RMS) value of read noise to 

characterize the amplitude of offset FPN, gain FPN, and read noise, respectively. However, the 
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RMS of read noise can only characterize the amplitude of global read noise, and there is no 

parameters to characterize the read noise amplitude variation from pixel to pixel. In this work, 

to keep consistent with DSNU and PRNU, we propose to use read noise non-uniformity 

(RNNU), which is calculated by the ratio of the standard deviation (SD) to the RMS of read 

noise, to describe the read noise amplitude variation from pixel to pixel. We compare the impact 

of global read noise and RNNU on imaging quality. 

For pixel i in an sCMOS camera, when the incident signal is Si, the output digital value is 

modelled as: 

 i i i i i,shot i i,readX = S QE g +R +Off + R    (1) 

where Ri,shot denotes shot noise and Ri,read denotes read noise, and both of them are temporal 

noise; gi and Offi are gain and offset value, respectively. Note the difference of QEi, gi, Offi, 

Ri,read from pixel to pixel are used to characterize the noise non-uniformity in the sCMOS 

camera. Dark current is not included in this model because: 1) most of the experiments in this 

work are performed with short exposure time (≤ 20 ms), where dark current is negligible; 2) 

for any given exposure times, the major impact of dark current on output digital value is already 

included in the amplitude of offset and read noise. 

Defect pixels are pixels with abnormal performance that disturb users or even arouse 

imaging errors. However, the standard for distinguishing abnormal from normal performance 

is usually not clear. Generally, there are two types of defect pixels: high dark noise pixels and 

low gain pixels [20, 21]. High dark noise pixels are pixels with high dark electric signal or dark 

noise variation, including but not limit to high dark current pixels (also called hot pixels). Low 

gain pixels are pixels with relatively low photoelectric conversion ability. Clearly, defect pixels 

result in high noise non-uniformity. Note that the number of defect pixels usually increases 

during the manufacturing process or during the usage of an sCMOS camera [20, 21]. Besides, 

since defect pixels (or high noise pixels) are easily observed in enlarge images, they were often 

used to analyze the impact of noise non-uniformity on imaging quality [11, 13, 16, 17]. 

2.2 Theoretical background for sCMOS noise characterization 

We use three noise maps (including photon response map, read noise map and relative offset 

map) to characterize the sCMOS noises in every pixel. Based on Eq (1), when there is no 

incident light (called dark frame), the output digital value is only determined by the offset and 

read noise. For each pixel, we use the mean and the SD values of continuous N dark frames to 

represent the offset value (Offi) and read noise value (i,read) of a pixel, respectively: 

 , ,

N

i i j dark

j=1

Off = X /N   (2) 

  

   
2 2

,

1 1

( 1).
N N

i,read i,j,read i,j,dark i j

j= j=

= R (N-1)= X -Off N  

  (3) 

Offi and i,read can be further transferred to electron unit by dividing their grey values with the 

camera gain value, and the latter is usually provided by camera manufactory or measured by 

PTC method [5]. To help compare the offset values between different cameras, we use relative 

offset, that is, the offset subtracted with the mean offset value of all pixels. The number of dark 

frames used to calculate the read noise and offset is 5000 for normal exposure time (1s or 

shorter) and 1000 for long exposure time (> 1s).  

We use a uniform-illumination system to measure the photon response map. We assume 

that the photon signal is the same for all pixels in a frame (Si = S), and use the averaged digital 

value iX  from continuous frames to eliminate shot noise and read noise. We calculate the 

relative photon response value (rpi) of each pixel as the ratio between the signal value of a 

single pixel to the mean value of all the pixels:  
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i i i i i

i

rp = X Off / X Off


（ - ） （ - ）     (4) 

where M is the number of all pixels. To calculate the relative photon response from several 

groups of images captured at different signal intensity levels, we use a linear fitting with

1

M

i i

i

X Off


（ - ）as dependent variable and  i iX Off-  as independent variable for each pixel. 

Usually we capture 6 groups of raw images with 1000 frames in each group. The illumination 

intensities are usually controlled to uniformly distribute among 10% ~ 85% of the full signal 

range. If necessary, the illumination intensities can also be adjusted to provide a photon 

response map that matches with experimental conditions. 

We calculate the precision of noise map measurement by [5]:  

  1 2 / 2map = std Map Map  (5) 

where Map1 and Map2 refer to two maps measured independently under the same experimental 

conditions, and std is the SD of all pixels. The two maps are recommended to be measured at 

different days to account for experimental environment changes.  

To assess the noise non-uniformity of sCMOS cameras, we capture continuously a large 

number of dark frames to calculate relative offset map, and bright frames at one signal level 

(typically, half of the signal range) for photon response map. Under the non-uniformity 

nomenclature, the relative offset map and photon response map here are referred as DSNU map 

and PRNU map, respectively.  

DSNU and PRNU are two widely-used parameters for quantitative camera assessment, as 

mentioned in the camera calibration standard EMVA 1288 [22]. DSNU is defined as the SD of 

dark signal and can be calculated by the SD of the relative offset map (DSNU map) in electron 

unit: 

 ) /i cDSNU = std(Off g  (6) 

where gc is the camera gain value, and std is the SD of all the pixels. PRNU is defined as: 

 , ,( ) / ( ) %2 2

i s i i s iPRNU= std ( X )-std Off mean X -Off 100  (7) 

where ,i sX represents the mean digital value of pixel i measured at signal intensity level S, and 

std is the SD of all pixels. PRNU equals to the SD of PRNU map (or photon response map 

measured at one signal intensity level S). In this work, to assess the PRNU of a camera at full 

signal range, we also calculate the SD of the photon response map measured from several 

different signal levels.  

We also use local sensitivity variation (SV) to characterize local photon response non-

uniformity [13], and calculate it as: 

   /i iSV=std gf rg rg  (8) 

where gf  represents Gaussian smoothing filtering with a sigma of 9 pixels, and std is the SD of 

all pixels. Compared with PRNU, SV only characterizes the local photon response non-

uniformity, and thus is suitable for applications with a small number of pixels, such as SMLM.  

     We calculate RNNU as: 

    , ,/i read i readRNNU=std σ rms σ  (9) 

where std and rms are the SD and RMS of all pixels, respectively. 
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2.3 Experimental conditions for sCMOS noise characterization 

A customized system based on an integrating sphere was specially designed for characterizing 

the PRNU of low-light cameras. Three LEDs with peak wavelength around 400 nm (EP-

U4545K-A3, Epileds, China), 600 nm (BN-R3838C-A3, Epileds, China), and 850 nm (ES-

SASFPN35, Epileds, China), respectively, were placed at the input port of an integrating sphere 

(Flight technology, China) as the light source. The LED intensity was controlled by home-built 

electronic circuits. To decrease the irradiance difference between the camera edge and the 

camera center, the tested low-light cameras were placed ~30 cm away from the exit port 

(diameter: ~8 cm) of the integrating sphere. The camera sensor should be aligned to be 

completely vertical to a plane where the longitudinal axis of the exit port lies; however, we 

found it is hard to obtain such a perfect alignment, and the residual angle would degrade the 

effectiveness of PRNU correction. Therefore, we fixed the test camera on the platform for 

several days to guarantee the same illumination angle for PRNU map and photon response map 

measurement. The input port (from the LEDs to the integrating sphere) and the exit port (from 

the integrating sphere to the test camera) of the integrating sphere were covered separately to 

block ambient light, so that the tested camera received photons only from the LEDs. The 

threaded metal adapter on the low-light cameras was removed to minimize illumination 

uniformity deterioration. The time fluctuation of the illumination was measured to be 0.05% 

root-mean-square (RMS) using a Flash 4.0 V3 (SN: 303487, Hamamatsu Photonics, Japan) at 

the intensity of ~15000 photons/pixel.  

Two popular back-illuminated sCMOS cameras were tested in their best modes for low-

light detection: the high gain mode for a Dhyana 95 (SN: KBS4951703002, Tucsen Photonics, 

China), and the 12 bit high sensitivity mode for a Prime 95B (SN: A18A203022, Photometrics, 

USA). The camera gains for these two modes, measured from the PTC method [5], were 1.98 

DN/e- for the Dhyana 95 and 1.64 DN/e- for the Prime 95B, respectively. The maximum signal 

range for these two modes are ~ 2000 e-/pixel for the Dhyana 95 and ~ 2400 e-/pixel for the 

Prime 95B. The exposure times were all set to be 20 ms except otherwise specified. 

2.4 sCMOS noise correction 

In addition to the normal denoising tasks, an sCMOS denoising algorithm should also consider 

noise non-uniformity. Note that FPN correction and defect pixel correction are usually 

performed by CMOS camera manufactories to satisfy their users. For both the FPN and defect 

pixel correction algorithms, we classify them into two types: static correction algorithm and 

dynamic correction algorithm. The only difference between them is on how to calibrate the 

camera noises. In the static correction algorithm, special images (typically under homogeneous 

illumination [20, 23]) are taken and used to calculate the characteristics of the camera noises. 

In the dynamic correction algorithm, the camera noises are characterized from normally images 

[20, 21, 23, 24]. Then, different noise correction strategies are used according to the camera 

noise characteristics. The static correction algorithm is usually used in sCMOS camera, after 

considering the following reasons: 1) sCMOS cameras have a more stable noise characteristic 

than normal CMOS cameras, thus the static noise correction in sCMOS cameras can be valid 

for a long time; 2) Raw data is desirable in many applications using sCMOS cameras, but the 

dynamic correction algorithm usually processes more raw data than the static correction 

algorithm. 

In this paper we adopt two common-used static correction algorithms: a modified two-point 

correction algorithm for FPN correction, and a static local mean filtering algorithm for defect 

pixel correction. The normal two-point correction algorithm assumes a stable and linear photon 

response from each pixel [25]. It first captures images under homogeneous illumination and 

two representative signal levels, then uses them to calculate the offset map and the photon 

response map. In the modified version, the offset map is calculated from dark images, and the 

photon response map is calculated from bright images at one or several signal levels [13, 14]. 
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These two maps are further used to correct the raw images via an inverse operation of Eq. (1), 

and can be expressed as: 

  , /i,cor i raw iX = X Off rp  (10) 

where Xi,cor and Xi,raw are the corrected digital value and the raw digital value for pixel i, 

respectively. When there is no photon response map, Eq. (10) can be simplified as: 

 ,i,cor i raw iX = X Off  (11) 

For defect pixel correction, a common strategy used in both dynamic and static correction 

algorithms is that the raw digital value of a defect pixel is substituted by a mean value calculated 

from the surrounding pixels [21, 26]. In this work, we first determine the defect pixels from 

their statistical noise characteristics, and then substitute their values by the mean values of the 

surrounding 8 pixels. This correction algorithm is thus called static local mean filtering. We 

consider a pixel as defect pixel if the amplitude of any camera noises in this pixel exceeds 10% 

of the maximum signal range of the working camera mode. More specifically, for high gain 

mode in Dhyana 95,  defect pixels include: 1) high read noise pixels and high relative offset 

pixels where the amplitude is > 200 e- under 10 s exposure time, and 2) low gain pixels where 

the relative photon response is < 0.8 under 20 ms exposure time. Because both read noise and 

offset increase with exposure time, here the high read noise pixels and the high relative offset 

pixels are both measured with 10 s exposure time, which is the maximum exposure time of both 

sCMOS cameras for normal users. However, an exposure time of 20 ms is used for 

characterizing the low gain pixels for the following reasons: 1) the relative photon response 

changes only slightly with the exposure time; 2) the offset value is small under short exposure 

time, leaving sufficient capability for the pixel to response to the incident photons. In addition, 

the threshold of the relative photon response is set to be 0.8, because a pixel with photon 

response < 0.8 would lead to a bias that exceeds 10% of the maximum signal range, while the 

relative photon response is usually measured at half signal range.  

Although FPN and defect pixels are usually corrected by sCMOS camera manufactories, 

researchers may perform FPN re-correction or develop some sCMOS specific algorithms for 

conventional microscopy and SMLM. Therefore, we evaluated the noise correction ability of 

two popular sCMOS specific algorithms, including NCS [16] and MLEsCMOS [11]. For 

conventional microscopy, we chose PURE [27] to compare with NCS. PURE is a denoising 

algorithm that considers camera noises, but not the noise difference between pixels. Note that 

NCS uses the noise maps (including offset, read noise, and gain) from every pixel, and 

combines them with a high frequency filter for denoising, while PURE only uses the noise 

values (including offset, read noise, and gain) of an entire camera, and combines them with a 

mixed Poisson-Gaussian model for denoising. For SMLM, a conventional localization 

algorithm is usually used for calculating the center positions of the molecules in raw images, 

and shot noise is generally considered in this localization algorithm. The sCMOS specific 

localization algorithm considers not only shot noise model, but also read noise and FPN. We 

compared a conventional MLE-based localization algorithm, which is embedded in a widely-

used software called ThunderSTORM [28] (referred as MLEnormal below), with an sCMOS 

specific localization algorithm called MLEsCMOS [11].  

We evaluated NCS [16] and MLEsCMOS [11] using the Matlab codes provided in the 

published papers, and tested PURE [27] and ThunderSTORM  [28] with the ImageJ plugins 

provided on the websites. Most parameters were used as the default settings. We replaced the 

camera noise data with our measurement or simulation. The NCS and MLEsCMOS use a gain 

map to correct FPN, which is considered to be not accurate enough [3, 15]. Therefore, instead 

of using the gain map, we used the measured gain value of the camera multiplying by the photon 

response map.  

To compare MLEnormal with MLEsCMOS, we set the parameters in ThunderSTORM based on 

those used in MLEsCMOS. We chose “Difference of averaging filters” as the image filter, “local 
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maximum” as the localization method, and “Maximum likelihood” as the fitting method. The 

rendering method was “Normalized Gaussian” for both MLEnormal and MLEsCMOS. We 

identified the localized molecules from different algorithms as molecule pairs using the 

following criteria: two molecules in the same image frame have a distance of less than three 

pixels (330 nm), but were localized from different localization algorithms. Besides, we adapted 

the “log-likelihood ratio threshold” in MLEsCMOS, which is based on the signal-noise-ratio in 

the single molecule images. Most parameters were kept the same as the default settings. 

2.5 Image simulation 

Camera noise maps were simulated based on the noise maps of the Dhyana 95 with 20 ms 

exposure time. To analyze the impact of different camera noises on image quality, the noise 

maps were scaled to simulate images with different noise amplitudes. To obtain noise maps 

with different non-uniformity, the SD of the standard maps (the photon response map, read 

noise map, or relative offset map of the Dhyana 95) was modified by keeping the mean value 

of the map and scaling the residual of each pixel. To obtain read noise maps with different 

amplitude of global read noise, the RMS of the standard read noise map was directly scaled. 

To investigate the impact of different kinds of camera noises on imaging, we changed only one 

of the three noise maps from the standard map of simulated images. The quantum efficiency 

(QE) was set to be 82%, which mimics the QE of the Dhyana 95 or Prime 95B around 700 nm. 

The pixel size was 110 nm. 

To simulate conventional microscopy images, we first obtained a ground-truth image from 

the following steps: average a group of experimental microtubule images, perform FPN 

correction, and convert the unit from digital number to photon. The mean value of the top 

1%~70% pixels was used as the photon signal value of this ground-truth image. Then, the 

intensity of the image was scaled to provide images with different signal intensities, and a 

background photon of 10 photons/pixel was added to the images. Finally, several groups of 

images with 100 frames in each group were generated based on Eq. (1).  

For SMLM, we simulated several groups of single molecule images with different noise 

maps or signal intensities. Each group contains 400 image frames, and each frame has 400 

emitters. The camera noise maps and the ground-truth positions of the emitters were not 

changed inside the same group. The image size of each frame is 420  420 pixels. The camera 

noise maps were constructed from 400 different areas of 21  21 pixels, which were randomly 

chosen from the scaled noise maps of the Dhyana 95. There was only one emitter in each area 

(21  21 pixels), and the emitter was usually placed randomly in the center pixel (110 nm  

110 nm). For the simulated images with isolated high noise pixels, the center pixel in an area 

of 21  21 pixels was replaced by a high noise pixel in the noise map, and the emitter was set 

to be located randomly in the area, with a fixed distance from the center of the high noise pixel. 

Based on the ground-truth positions of the emitters and the signal intensities, a Gaussian model 

with a sigma of 1.3 pixel was used as the emitter model to present a photon image. A 

background photon of 10 photons/pixel was then added to the photon image. Finally, simulated 

image frames were generated using Eq. (1). 

2.6 Imaging experiments 

We performed conventional microscopy imaging on an inverted microscope system (IX-73, 

Olymplus, Japan) equiped with a 640 nm laser (LWRL640-3W, Laserwave, China), an oil-

immersion objective (100×, NA 1.4, Olympus, Japan), and the Dhyana 95 sCMOS camera. The 

microtubles of U-2 OS cells were labled with Alex Fluor 647 using a typical 

immunofluorecence method. Fluorescent beads (F8807, FluoSpheres, Molecular Probes, USA) 

with peak emission wavelength of ~ 680 nm were fixed on a glass slide. The illumination 

intensity of the laser was controlled to be low, so that the emission from fluorescent beads is 

weak and the impact of camera noises on fluorescence images could be clearly visualized. The 
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exposure time was 20 ms for the microtuble imaging and 10 s for the fluorescent bead imaging. 

The pixel size was 110 nm. 

SMLM imaging was performed on the same optical microscope system. Alexa 647 labeled 

U-2 OS cells were imaged with a standard SMLM buffer as described in our previous work 

[29]. Raw image frames were captured with 1 ms exposure time to enhance the impact of 

camera noises on raw images. 

2.7 Image quality assessment 

We use a temporal pixel fluctuation map and three parameters, including peak signal-noise-

ratio (PSNR), structural similarity (SSIM), and the number of “outlier pixel” (NOP), to assess 

the quality of conventional microscopy images. PSNR and SSIM are two common-used 

parameters for comparing de-noising algorithms [30]. PSNR is defined as the ratio between the 

peak signal value to the noise value: 

 

2

10

1

max
10 log

1 M

i i

i=

g
PSNR=

f -g
M





（ ）
（ ）

（ ）
 (12) 

where M is the total number of pixels, f is the reference image and g is the test image. max(g) 

is the peak signal value of the test image. We use the value of the top 1% pixels in the image 

as the peak signal value to avoid interference from defect pixels. SSIM is calculated as: 

 
   
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2 2
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1 2

2 2 fg
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f g+C +C
SSIM =
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





 
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where σf and σg are the standard deviations and σfg is the cross-covariance for the reference 

image f and test image g; f  and g  are local mean of the image; C1 and C2 are used to avoid a 

null denominator, and are both set to 0.01. For each imaging condition, usually we capture a 

group of 100 image frames to assess the image quality. We use the mean value of PSNR and 

SSIM as the figure of merit. 

To characterize the temporal noise non-uniformity in conventional microscopy, we 

calculate the SD value of each pixel in each group of images to present a temporal pixel 

fluctuation map [16], and use NOP to characterize the impact of RNNU on conventional 

microscopy images. Because the pixel values in the temporal pixel fluctuation maps varies 

gradually, high read noise pixels can be discovered by comparing their pixel values in the 

temporal pixel fluctuation map with their surrounding pixels. We define “outlier pixel” to be 

the pixel with a significantly higher value than the surrounding 8 pixels in the temporal pixel 

fluctuation map: 

     max 1, 1
2

RMS

2

mean RMS

RN
TM X, Y n 1+ TM X Y

S +RN
      (14) 

where TM (X,Y) is the value of pixel (X,Y) in the temporal pixel fluctuation map, RNRMS is the 

RMS of read noise, and Smean is the mean value of the raw image. n is an empirical factor to 

control the dividing line of the outlier pixel, and is set to be 1.25. 

To compare the performance of different localization algorithms, we imported the 

localization results (including but not limit to localization position, background, intensity, 

uncertainty) of MLEsCMOS into ThunderSTORM, and obtained a rendered super-resolution 

image. To assess the impact of camera noises on SMLM images, for each experimental 

conditions, 400 image frames with 400 emitters in each frame were simulated. For each emitter, 

the SD of the localized positions was calculated as localization precision, and the distance 

between the mean value of the localized position and the ground truth position was calculated 

as localization bias. For each group of raw images, we used the RMS of localization precision 
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or localization bias, which was calculated from different emitters, as the final localization 

precision or localization bias.   

 

3. Results 

3.1 Characterization of sCMOS noise  

Since sCMOS noises vary from pixel to pixel, it is necessary to measure these noises in every 

pixels, and thus the characterization of read noise, offset FPN, gain FPN in conventional 

cameras should be replaced by the characterization of read noise map, offset map, photon 

response map, respectively. Here, we use relative offset map instead of offset map to 

compensate the mean offset value difference among cameras. We use photon response map to 

replace gain map and/or QE map, so that the calculation can be easier. Note that this treatment 

is accurate enough for photon signal calculation but would lead to a small bias in electron signal 

calculation [15]. We further analyze these noise maps by: 1) calculate the SD of relative offset 

map and photon response map to obtain DSNU and PRNU, respectively; 2) calculate the RMS 

of read noise map to obtain the amplitude of global read noise of the entire camera; 3) calculate 

the ratio of the SD to the RMS of the read noise to present RNNU. 

We characterized two popular back-illuminated sCMOS cameras, including a Prime 95B 

(SN: A18A203022, Photometrics, USA) and a Dhyana 95 (SN: KBS4951703002, Tucsen 

Photonics, China), and a representative iXon Ultra 897 EMCCD camera (SN: X-4652, Andor, 

England). 5000 dark frames were used to calculate the read noise map and relative offset map, 

and 6 groups of bright images with 1000 frames in each group were used to calculate the photon 

response map. For these two sCMOS cameras, stripped patterns and high dark noise pixels were 

easily found in the enlarged noise maps. Here we show only the results from the Dhyana 95 

(see Fig. 1a). We further found the camera noises in the iXon 897 are much smaller than those 

in the sCMOS cameras: 1) The DSNU of the Dhyana 95, Prime 95B and iXon 897 are 1.31 e-, 

0.52 e-, 0.07 e-, respectively; 2) The PRNU of the Dhyana 95, Prime 95B and iXon 897 are 

1.02 %, 0.65 %, 0.32 %, respectively; 3) the RNNU is ~ 24% for both sCMOS cameras and 

~2% for the iXon Ultra 897, while the RMS of read noise is ~2 e- in both sCMOS cameras and 

0.43 e- in the iXon Ultra 897 (Fig.1b). Additionally, as compared with the Dhyana 95, we found 

a much shorter trail in the read noise probability distribution function (PDF) of the Prime 95B. 

It is probably because some defect pixels (i.e. high read noise pixels) had been corrected by the 

default defect pixel correction in the Prime 95B. 

The dependence of the noise map measurement precision on frame number and group 

number was characterized in an area of 128128 pixels, which was cropped from nearly the 

center of the camera sensor. To measure the precision of the read noise map and relative offset 

map, six groups of dark frames captured at different days were randomly divided into three 

groups of datasets. These datasets were further analyzed to present three independent 

measurements showed in Fig. 1c. Result shows that the Prime 95B has a better repeatability 

than the Dhyana 95, indicating a better dark noise control in the former. To measure the 

precision of the photon response map, two datasets were measured at different days for both 

the Dhyana 95 and the Prime 95B (Fig. 1d, e). Result shows the photon response map precision 

are nearly the same for both sCMOS cameras. We found a total of 5000 dark frames are 

sufficient to provide a precision of < 0.2 e- in the relative offset map and ~ 0.03 e- in the read 

noise map, and 6 groups of 1000 bright frames are enough to provide a precision of 0.05% in 

the photon response map. Note we measured the noise map precision with 20 ms exposure time 

and the precision will change with exposure time. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425025doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.01.425025


10 

 

 

Fig. 1. Camera noise characterization. (a) The relative offset map, read noise map, and photon 

response map of the Dhyana 95. (b) The read noise probability distribution function (PDF) for 
the three cameras.  The dependence of the measurement precision of (c) the relative offset map, 

read noise map, and (d, e) the photon response map on frame number and group number. The 

entire images in (a) are 2000  2000 pixels and the enlarged images in the top-right corners of 

(a) are 50  50 pixels. Note that the read noise PDF of the iXon 897 has a sharpen distribution. 

The exposure time was 20 ms. 

We investigated the defect pixels in the Dhyana 95. We considered a pixel as defect pixel 

if the amplitude of any camera noises in that pixel exceeds 10% of the maximum signal range 

in the working camera mode. Only the center 1800  1800 pixels were used for this 

characterization, because the performace of the pixels in camera edge is genarally worse than 

the pixels in camera center for long exposure time. We found the number of low gain pixels or 

high read noise pixels is much smaller than that of high relative offset pixels. Actually we found 
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18 low gain pixels and 9 high read noise pixels, but 7093 high relative offset pixels. We also 

investigated the dependence of relative offset and read noise on exposure time (Fig. 2b). Since 

dark current increases with exposure time, read noise and offset will also increase accordingly, 

but the increase of offset will be more obvious. As seen in Fig. 2b, when the exposure time in 

pixel 1 increases from 1 ms to 10 s, the relative offset increases from ~ 0 e- to ~ 480 e-, while 

the read noise increases from ~ 2 e- to ~ 18 e-. In some pixels, the offset even reaches the 

maximum signal range, leaving no capability for these pixels to response to any incident 

photons. These findings indicate sCMOS users should pay more attention to offset FPN 

correction rather than read noise correction when long exposure time is necessary. 

It is interesting to further investigate whether high read noise pixels overlap with high offset 

pixels, and whether the indentity of high dark noise pixels changes with exposure time. Using 

PDF, we identified four groups of high dark noise pixels (top 1% of the high read noise pixels 

or high offset pixels, with 20 ms or 10 s exposure time), and compared the overlap pixels of 

any two groups from these four groups. The overlap rate between high read noise pixels and 

high offset pixels is 57% when the exposure time is 10 s (Fig. 2c), and becomes lower (10%) 

when the exposure time is 20 ms. When the exposure time changes from 20 ms to 10 s, the 

location of top 1% high read noise pixels or high relative offset pixels also change (overlap rate 

< 10%), meaning the identity of high dark noise pixels should be characterized separately for 

short exposure time and long exposure time.  

 

Fig. 2. High noise pixel characterization in the Dhyana 95. (a) A fluorescence image of beads (in 

blue circles). The read noise map and the relative offset map of the same imaging area and the 

same exposure time are also shown below. The defect pixel map shows the pixels with > 200 e- 
noise. (b) The dependence of relative offset and read noise on exposure time. Pixel 1-5 were 

marked out in (a). The data points in (b) were calculated from 100 dark frames. (c) The PDF of 

read noise (left) and relative offset (right). The statistics in (c) were from the top 1% pixels with 

highest read noise (high read noise) or offset (high relative offset), or all of the 1800  1800 pixels 

(all). The read noise and the relative offset in (a, c) were calculated from 1000 dark frames. Note 

the zero read noise pixels in (c) are probably defect pixels whose values are close to the maximum 

signal range and never change. The exposure time in (a, c) was 10 s. 

3.2 The impact of different sCMOS noises on conventional microscopy and SMLM 

We analyzed the impact of sCMOS noises using simulated images on two imaging scenarios: 

conventional microscopy and SMLM (Fig. 3). The impact of sCMOS noises on conventional 

microscopy is directly assessed by the imaging quality of raw image frames, including peak 

signal-noise-ratio (PSNR), structural similarity (SSIM), and the number of “outlier pixel” (NOP). 

The impact of sCMOS noises on SMLM is assessed by the localization results calculated from 

raw image frames, including localization precision and localization bias. 
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For conventional microscopy images, we used the measured noise maps (including read 

noise map, relative offset map, and photon response map) of the Dhyana 95 as standard noise 

maps, and enhanced the noise amplitude in these maps to obtain high noise maps. We generated 

high noise images with a high level of camera noise (including global read noise, offset FPN, 

or gain FPN), using a ground-truth image, the standard noise maps and the high noise maps. 

Details can be found in Section 2.5. We calculated PSNR and SSIM using the simulated images 

with standard and high noise maps, and found offset FPN and read noise decrease PSNR when 

the signal is low (< 100 photons), and gain FPN decreases PSNR when the signal is relatively 

high (> 100 photons) (Fig. 3c). Similar results were found for the SSIM assessment. Note that, 

for both the PSNR and SSIM assessment, the common-used reference image is the averaged 

image without FPN correction. But this image could not be used to assess the impact of FPN, 

because averaging images could only eliminate temporal random noise rather than FPN. 

We compared the impact of global read noise and RNNU on the image quality of 

conventional microscopy. To visualize the impact more easily, we simulated images with 

several times higher RMS of the read noise maps, as compared with the standard read noise 

map. We studied three groups of simulated images with different read noise maps and used the 

relative low read noise group (RMS = 5 e-, RNNU= 2%) as the reference. We found the PSNR 

of the high global read noise group (RMS = 10 e-) is the lowest when the signal is moderate or 

low (< 1000 photons), and the PSNR of the high RNNU group (RNNU = 50%) is close to that 

of the reference group in the full signal range under studied (Fig. 3d). However, only the high 

RNNU group has outlier pixels (Fig. 3e). These findings indicate: 1) global read noise decreases 

the image quality of the whole image, while RNNU raises a larger temporal fluctuation in some 

high read noise pixels, including but not limited to the outlier pixels; 2) PSNR is not suitable 

to assess the impact of RNNU on image quality. Because FPN would not change with time, it 

adds only a fixed bias to the digital value of a pixel, and thus would not increase NOP. Therefore, 

for the camera noises under studied, NOP only increases with RNNU. 

For SMLM, FPN was previously found to increase localization bias, while read noise would 

degrade localization precision [11-13]. Here, we compared the impact of RNNU and global 

read noise on localization precision by simulating three groups of single molecule images with 

three different read noise maps. We found the localization precision of the high global read 

noise group (RMS = 10 e-) is the lowest, and the localization precision of the high RNNU group 

(RNNU = 50%) is the same as the reference group (RMS = 5 e-, RNNU = 2%) (Fig. 3f). This 

is probably because the read noise map with high RNNU has not only more relative high read 

noise pixels but also more low read noise pixels, and their impact on localization precision is 

counteracted from a statistical point of view. 

 We also studied the impact of isolated high dark noise pixels on SMLM. We simulated 

single molecule images with high noise maps by replacing a normal pixel with a high read noise 

pixel or a high offset pixel, with a fixed amplitude and varied distance in the standard noise 

maps around each emitter. We found the impact of the isolated high noise pixel changes with 

the distance between the emitter center and the position of the high noise pixel (Fig. 3g-h). A 

high offset pixel with 10 e- relative offset could lead to >1 nm localization bias, while a high 

read noise pixel with 10 e- read noise could lead to ~ 10% degradation in localization precision. 

For the Dhyana 95 with 20 ms exposure time, there are only ~ 60 pixels with read noise > 10 

e- and ~ 20 pixels with relative offset > 10 e- in an area of 2000  2000 pixels, meaning the 

high dark noise pixels bring a negligible degradation to the performance of SMLM. However, 

for some unlikely cases where the exposure time increases to several seconds, the number of 

high dark noise pixels may increase significantly (see Fig. 2b-c) and notable degradation for 

SMLM may be observed.  
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Fig. 3. The impact of camera noises on conventional microscopy and SMLM. (a) Three 

simulated conventional microscopy images with different read noise maps. The corresponding 

temporal pixel fluctuation maps are shown in the bottom. (b) Four simulated single molecule 
images. (c) The impact of different camera noises on PSNR. The dependence of (d) PSNR and 

(e) the number of outlier pixels (NOP) on different signal levels for images with different read 

noise maps. (f) The impact of read noise on localization precision. The dependence of (g) 
localization bias or (h) localization precision on the distance between high noise pixel and the 

emitter center. A normal pixel was replaced by a high offset pixel (Add off.) or a high read noise 

pixel (Add rn.) in the standard noise maps around each emitter in (g) or (h). The simulated noise 
maps in (a-h) were the noise maps of the Dhyana 95 (that is, the standard noise maps, DSNU = 

1.31 e-, PRNU = 1.02 %, RMS of read noise  = 1.83 e-, RNNU = 25%) or changing a noise map 

from the standard noise maps. The changed noise map was shown in the legend. The simulated 
background in (a-h) is 10 photons/pixel. The PSNR and SSIM and the temporal pixel fluctuation 

maps in (a, c-e) were calculated from 100 frames for each group. The signal level in (a) is ~63 

photons/pixel. The signal of the emitters in (b, f-h) is 500 photons/emitter. Pixel size in (a-b): 

110 nm. Scale bar in (b): 1 m. 
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3.3 FPN correction 

We captured 5000 dark images to calculate a DSNU map, and 5000 bright images at ~950 e-

/pixel to calculate a PRNU map, and used the statistic parameters (including DSNU, PRNU, 

and local sensitivity variation (SV)) to assess the performance of FPN correction. For the two 

sCMOS cameras, we directly used the measured relative offset maps and photon response maps 

to perform FPN correction. After correction, the DSNU decreases from 1.31 e- to 0.16 e- for 

the Dhyana 95 and from 0.52 e- to 0.15 e- for the Prime 95B (Fig. 4a), respectively. For both 

sCMOS cameras, the DSNU after correction is already close to quantizing noise (that is, 0.14 

e- for the Dhyana 95 and 0.17 e- for the Prime 95B) [19], which is the minimum noise for 

digital equipment. The DSNU for the iXon 897 was measured to be 0.07 e- before correction 

and < 0.01 e- after correction, when the EMgain is 100. Note the corrected DSNU of the iXon 

897 is mainly limited by quantizing noise (~ 0.03 e-). For gain FPN, the corrected PRNU and 

SV of both sCMOS cameras decrease to < 0.3% and < 0.2%, respectively (Fig. 4 b), which are 

comparable to those of the iXon 897 (before correction: PRNU = 0.32%, SV=0.22%; after 

correction: PRNU = 0.12%, SV = 0.07%). In addition, all of the characterization parameters 

(DSNU, PRNU, SV) of the uncorrected Prime 95B are better than those of the Dhyana 95, and 

the uncorrected SV of the Prime 95B is even close to that of the iXon 897. These findings 

suggest the FPN of the Prime 95B had been partially corrected in the factory, and could be 

further corrected by end-users if necessary. Therefore, we verified that FPN could be corrected 

to a negligible level using a proper method. 

We further analyzed the robustness of FPN correction (DSNU and PRNU) using the Dhyana 

95. Offset FPN correction may not work well when the experimental images are not captured 

with the same exposure time as the relative offset map, because the offset value of a pixel 

increases with exposure time. For example, when a relative offset map with 1 s exposure time 

was used to correct the DSNU map with 20 ms exposure time, the DSNU was found to increase 

from 1.31 e- to 3.46 e-.  

For gain FPN correction, different experimental conditions were analyzed (Table 1). 

Typically, we performed gain FPN correction using photon response maps measured under the 

following conditions: 600 nm illumination wavelength, approximately 150 ~ 1700 e-/pixel 

signal intensity, 20 ms exposure time. We found the performance of gain FPN correction would 

degrade when the raw images are not taken with the same experimental conditions used for the 

photon response map measurement. Specifically, we found the photon response map measured 

under the same illumination wavelength could decrease the PRNU from > 1% to < 0.15%, but 

a photon response map measured under a different illumination wavelength (600 nm) could 

even increase the PRNU (measured under 850 nm) from 1.57% to 1.64%. However, the photon 

response map measured under a mismatched illumination wavelength could still be effective to 

correct SV from ~ 0.69% to ~ 0.12%, which is close to the case using matched experimental 

conditions. We also found the photon response map measured under mismatched intensities 

could partly correct the PRNU and SV, but the photon response map measured under matched 

intensities provides much better correction. These findings prove that, to obtain an optimal FPN 

correction, both the relative offset map and photon response map should be measured under the 

same experiment conditions. 

It is worthy to note that, during the past two years we repeated the FPN correction with the 

Dhyana 95 several times, and found the offset map changes only slightly, while the photon 

response map is kept stable. When the relative offset map and the photon response map were 

measured several months before used, the DSNU after correction changed from  0.2 e- to ~ 0.5 

e-, while the SV after correction was still nearly the same (from 0.11% to 0.13%). So the 

relative offset map should be checked and updated regularly. Besides, because PRNU is 

sensitive to the illumination angle that may changes after a long period (for example, several 

months), the corrected PRNU of the Dhyana 95 may deteriorate from 0.15% to ~ 0.30%, 

depending on the illumination angle repeatability. 
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Fig. 4. FPN correction for the Dhyana 95 and the Prime 95B. (a) DSNU map. (b) PRNU map. 

(c) The corresponding PDF of the relative offset (DSNU map) and the relative photon response 
(PRNU map). The DSNU and PRNU results in (a-c) were averaged from 5000 images. The 

whole images in (a-b) are 2000  2000 pixels for the Dhyana 95, and 1200  1200 pixels for the 

Prime 95B. The exposure time was 20 ms.  

Table 1. Gain FPN correction using different photon response mapsa 

Parameters Correction Typeb Standard 850 nmc  400 nmc  Intensityd Exposure timee 

PRNU 

 

No correction  1.10% 1.57% 1.07% 1.74% 1.16% 

Mismatched  - 1.64% 0.35% 1.10% 0.28% 

Matched  0.14% 0.13% 0.15% 0.27% 0.16% 

SV 

 

No correction  0.69% 0.68% 0.70% 1.35% 0.74% 

Mismatched  - 0.12% 0.12% 0.95% 0.20% 

Matched  0.11% 0.11% 0.11% 0.23% 0.13% 

aThe photon response map measured under typical conditions (600 nm illumination wavelength, appropriate 150 e- 
~1700 e-/pixel intensity level, 20 ms exposure time) was used as the standard map. The PRNU map was measured 

under the typical conditions (standard) or customized conditions where one parameter in the typical conditions was 

changed and others remained the same. bThe PRNU map was corrected by the standard map (mismatched) or the photon 
response map measured under the same conditions as the PRNU map (matched). cPRNU map measured under 400 nm 

or 850 nm illumination. dPRNU map measured under an illumination intensity of ~ 105 e-/pixel, and the matched 
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photon response map was measured under an illumination intensity of appropriate 30 ~ 200 e-/pixel. ePRNU map 

measured under 1 s exposure time.  

3.4 Defect pixel correction 

We corrected the defect pixels in the Dhyana 95 with a 3  3 average filter, and compared the 

results with those from FPN corretion (Table 2). We assessed the performance of these 

corrections under different exposure time: 20 ms or 1 s or 10 s for DSNU, and 20 ms for PRNU. 

The DSNU map with 1 s exposure time was averaged from 5000 dark frames, and the DSNU 

map with 10 s exposure time was averaged from 1000 dark frames. Results show the 

improvement in DSNU and PRNU is negligible when the exposure time is 20 ms. With a longer 

exposure (1 s or 10 s), defect pixel corretion improves DSNU, but FPN correction improves 

DSNU more significantly. Moreover, a combination of FPN correction and defect pixel 

correction brings a better improvement in DSNU than FPN or defect pixel correction itself. 

Note the FPN correction needs to be performed with noise maps under matched experimental 

conditions, while the defect pixel correction doesn’t require a tight experimental control. This 

brings special cautions for the correction under long exposure time. Actually, using a relative 

offset map with 10 s exposure time to correct the DSNU map with 1 s exposure time will 

increase the DSNU from 2.94 e- to 24.24 e-. However, if we use the relative offset map with 

10 s exposure time to determine the defect pixels and then perform defect pixel correction for 

the DSNU map with 1 s exposure time, the DSNU would decrease from 2.94 e- to 1.46 e-. This 

means defect pixel correction is easier to perform than FPN correction for experiments with 

varied exposure time. 

Table 2. Comparing defect pixel correction with FPN correction in the Dhyana 95 

Parameters 

Exposure 

time 

Without 

correction 

Defect pixel 

correction 

 FPN 

correction 

Combined 

correctiona 

PRNU 20 ms  1.04% 1.04% 0.14% 0.14 % 

DSNU 20 ms  1.31 e- 1.30 e- 0.16 e- 0.16 e- 

DSNU 10 s  27.92 e- 9.34 e- 3.94 e- 3.53 e- 

DSNU 1 s  2.94 e- 1.46 e- 0.80 e- 0.76 e- 

aThe combined correction executes firstly FPN correction, then defect pixel correction. 

3.5 Scenario-specific noise correction for conventional microscopy 

We compared the performance of NCS [16] (an sCMOS-specific de-noising algorithm) with 

PURE [27] (a normal de-noising algorithm) by correcting the same group of experimental 

images: 100 frames of fluorescent microtubules in U-2 OS cells. We found both algorithms 

could increase the PSNR and SSIM, but PURE is more effective. Compared with NCS, PURE 

brings more smooth structures in the corrected images (Fig. 5a) and a lower temporal 

fluctuation (Fig. 5b). However, as seen in Fig. 5b, the outlier pixels can be well-corrected by 

NCS, but not PURE. This means that, for conventional microscopy images, NCS is effective 

in minimizing the impact of RNNU.  

We further compared the performance of these two de-noising algorithms using simulated 

images, which are based on the same group of experimental images, but with different noise 

maps. We simulated images with different RMS of read noise, and found both the PSNR and 

SSIM of the corrected images decrease with the increase of RMS of the read noise for both de-

noising algorithms (Fig. 5c-d). This means the image quality of the corrected images is 

negatively correlated with the global read noise. To further improve the image quality, new 

algorithms or better circuit design should be developed to minimize global read noise. On the 

other hand, for both de-noising algorithms, we found the PSNR or SSIM improves even when 

the RMS of read noise is ~ 0 (Fig. 5c-d), indicating that these two algorithms minimize not only 

global read noise but also shot noise. Additionally, using simulated images with different 
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RNNU, we verified NCS could always correct the outlier pixels (Fig. 5e), confirming the 

previous finding that NCS could minimize the impact of RNNU on conventional microscopy 

images [31].   

 

Fig. 5. Noise correction for conventional microscopy. (a) A raw image and the corresponding 

corrected images using an sCMOS-specific de-noising algorithm (NCS) and a normal de-noising 
algorithm (PURE). (b) Three corresponding temporal pixel fluctuation maps. The individual 

bright pixels in (b) may be outlier pixels. The dependence of (c) PSNR and (d) SSIM on the 

RMS of read noise. (e) The dependence of NOP on RNNU. The PSNR, SSIM and temporal pixel 
fluctuation maps in (b-e) were calculated from 100 frames for each group. In (b), the left and the 

middle maps share the same color bar marked in the left, and the right map has a different color 

bar. The pixel size in (a-b) was 110 nm. 

We performed FPN correction and defect pixel correction on the same group of 

experimental images. After FPN correction, the PSNR increased from 15.5 dB to 15.8 dB, the 

SSIM increased from 0.75 to 0.76, and NOP was not changed as expected (Data not shown in 

Fig. 5). Although in the FPN correction section we confirmed FPN could be corrected to a 

negligible level, the increase of PSNR and SSIM from FPN correction is not as remarkable as 

those from NCS or PURE (see Fig. 5a). That is because temporal noises (including read noise 

and shot noise) are the dominant noises under this signal intensity [5]. Note that NCS performs 

FPN correction at the first step. On the other hand, after defect pixel correction, the PSNR, 

SSIM, and NOP became 16.3 dB, 0.79, and 25 (Data not shown in Fig. 5), respectively. The NOP 

didn’t change because the defect pixels determined under long exposure time may not overlap 

with the relative high read noise pixels with short (20 ms) exposure time, and thus was not 

corrected. Compared with the NCS and PURE, the FPN correction and defect pixel correction 

keep more raw data, at the expense of having less impact on imaging quality. Taking these 
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results together, we conclude that global read noise would be the limit for noise correction, and 

the impact of RNNU on conventional microscopy images could be well corrected by NCS. 

3.6 Scenario-specific noise correction for SMLM 

We analyzed the localization algorithms with the simulated single molecule images mentioned 

in Section 3.2. We used MLEsCMOS to localize the molecules simulated with different read noise 

maps and compared the results with those from MLEnormal (Fig. 6a). We found MLEsCMOS 

improves ~ 10% in localization precision in the high RNNU group, but does not change the 

localization precision in the low RNNU group. Because there are more relative high read noise 

pixels in the high RNNU group, the degradation of high read noise pixels on localization 

precision could be compensated by MLEsCMOS. For the low RNNU group, there are no relative 

high read noise pixels, and thus the localization precision doesn’t benefit from MLEsCMOS. 

These results indicate MLEsCMOS could correct the impact of RNNU but not global read noise 

on localization precision. 

We examined the performance of MLEsCMOS on an extreme case, where the emission 

pattern from single molecules is contaminated by an isolated high noise pixel. We also 

evaluated the performance of a modified MLEnormal (called MLEdefect), where MLEnormal is used 

to localize the raw images after defect pixel correction. We used the three algorithms (MLEnormal, 

MLEsCMOS and MLEdefect) to localize two selected groups of images (10 e- relative offset group, 

and 20 e- read noise group) in Fig. 3g-h, and then compared their localization results with the 

standard group in Fig. 3g-h. We found MLEsCMOS decreases the localization bias from > 8 nm 

to ~ 1 nm (Fig. 6b), which is obviously lower than that of the standard group. That is because 

MLEsCMOS performs FPN correction before localization, which corrects the fixed bias from not 

only the isolated high offset pixel but also every pixel. We also found MLEsCMOS could improve 

localization precision from > 23 nm to ~ 16 nm (Fig. 6c), which is slightly worse than the 

localization precision of the standard group. That means MLEsCMOS is effective to correct the 

impact of isolated high read noise pixel on localization precision. Since the high read noise 

pixels in sCMOS cameras are usually random distributed, we conclude MLEsCMOS could 

minimize the impact of high read noise pixels on SMLM. 

On the other hand, MLEdefect could reduce the impact of isolated high noise pixels on the 

localization bias and localization precision, especially when the isolated high noise pixel is 100 

nm (or more) away from the emitter center (Fig. 6b-c). However, as compared with the standard 

group, MLEdefect was observed to have an increase of ~ 2 nm in the localization bias and 

localization precision (Fig. 6b-c). This is probably because the digital value of the isolated high 

noise pixel was replaced by the mean value of 8 adjacent pixels, which reduces the impact of 

high noise pixels on SMLM, but results in a distorted emission pattern. That is to say, when 

normal pixels are considered as defect pixels and are corrected, the localization precision and 

localization bias would be degraded when a normal MLE algorithm is used.  

We compared MLEsCMOS and MLEnormal by localizing the same group of SMLM data: 

10000 raw image frames captured by the Dhyana 95 with 1 ms exposure time (Fig. 6d). We 

found MLEscmos could localize more molecules than MLEnormal: 188890 molecules for MLEscmos 

and 161464 molecules for MLEnormal. This is probably because MLEscmos considers noise non-

uniformity when image segmentation is performed [11]. We further identified 157559 molecule 

pairs from both localization algorithms, and compared them with all of the molecules localized 

by MLEscmos (Fig. 6e). We found most of the molecules localized by MLEscmos but not MLEnormal 

are low signal molecules, which are beneficial for fast SMLM imaging. But this advantage is 

not enough to raise a notable difference in the global spatial resolution when the number of 

molecules is high. Actually, the Fourier ring correlation (FRC) [32] of the final super-resolution 

image is close: 135.6 nm for MLEnormal, and 137.4 nm for MLEscmos.  

Taking these results together, it is reasonable to conclude that MLEsCMOS is a good choice 

for localizing raw images with high noise non-uniformity, because MLEsCMOS could minimize 

the impact of RNNU but not global read noise on SMLM. This conclusion also agrees with the 
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theoretical analysis of the localization precision in sCMOS camera, where read noise map 

should be included [11, 15].   

 

Fig. 6. The performance of three localization algorithms (MLEnormal, MLEsCMOS, and MLEdefect) 

for SMLM. (a) Localization precision of MLEsCMOS and MLEnormal for simulated images with 
different RNNU. (b) Localization bias and (c) localization precision of the three algorithms for 

simulated images with isolated high noise pixels: 10 e- relative offset pixels in (b), and 20 e- 

read noise pixels in (c). (d) Rendered super-resolution images. (e) Localization statistics of all 
molecules localized by MLEsCMOS (All) and the molecules localized by both MLEsCMOS and 

MLEnormal (Common). All of the localization statistics data in (e) were originated from MLEsCMOS 

calculation results. The signal in (a-c) was 500 photons/emitter. In (d), the image size was 128 

 128 pixels, and the pixel size was 110 nm.  

4. Discussion and conclusion  

Camera noise non-uniformity is a major concern for the selection and use of sCMOS cameras. 

In this paper, we analyzed systematically different kinds of camera noises in two popular back-

illuminated sCMOS cameras, and confirmed camera noise non-uniformity (including offset 

FPN, gain FPN, and RNNU) could be well-corrected by using proper algorithms. We also 

studied the impact of different noises on conventional microscopy and SMLM, and investigated 

the usability of FPN correction and defect pixel correction performed by camera manufactories.  

We found the commonly-used parameters (including PSNR and SSIM for convectional 

microscopy, localization precision and FRC for SMLM) are insensitive for assessing the noise 

non-uniformity, and thus new methods or parameters should be developed to characterize the 

impact of the noise non-uniformity on imaging quality. We suggest to study the regions around 

high noise pixels separately when discussing the impact of sCMOS noise non-uniformity on 

imaging quality. 

Both defect pixel correction and FPN correction are regularly used by camera manufactories 

to improve the image quality of sCMOS cameras. However, their usability should be considered 

carefully. For defect pixel correction, manufactory usually determines defect pixels using 

images with long exposure time, because the defect pixels are more obvious under long 

exposure time. However, because dark noise increases with exposure time, some defect pixels 

identified under long exposure time may be recognized as normal pixels when the exposure 

time is short. Taking defect pixel correction to these normal pixels results in distorted images. 
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For FPN correction, because offset FPN may change over time, relative offset map should be 

measured regularly. The effectiveness of FPN correction depends on whether the noise maps 

are measured with the same conditions as the experiment, FPN re-correction may be necessary 

for a specific experiment. Besides, although the number of high noise pixels in the Dhyana 95 

changes little during the past two years, we did observe some newly developed high offset 

pixels in another sCMOS camera that has been used for six years. We recommend sCMOS 

users to keep tracking the number and locations of high noise pixels, and perform re-correction 

if necessary.  

Although camera noise non-uniformity can be well-corrected, performing the correction 

may need additional experiments and expertise, and using the correction algorithms could be 

time-consuming. Therefore it is necessary to determine whether any sCMOS noise correction 

algorithms should be used in a specific imaging scenario. After considering all the findings in 

this paper, we present the following suggestions: 1) For most sCMOS users, it is necessary to 

perform noise non-uniformity correction only when the final images or the post processing 

algorithms cannot tolerate the isolated high noise pixels (like pixel 1-2 in Fig. 2a), because 

noise non-uniformity has smaller impact on image quality than shot noise and global read noise 

for normal pixels. 2) FPN correction is necessary for some applications that requires time-

domain averaging to improve the experiment precision, because in this case shot noise and 

global read noise have been minimized. A typical example is ultra-high resolution imaging of 

nuclear pore complex scaffold via particle averaging, where the localization precision is 

expected to be better than 1 nm [33]. 3) For experiments with long exposure time, dark FPN 

correction is always recommended, except for varied exposure time in continuous frames.  

Finally, it is worthy to point out that, after all possible corrections, the camera noise non-

uniformity is no longer the major problem for applying sCMOS cameras in various application 

fields. To further improve the imaging performance of current commercial sCMOS cameras, 

camera manufactories and end-users can take more efforts to minimize the RMS of read noise 

in sCMOS cameras. Recently, Hamamatsu Photonics took a desirable step towards this 

direction, and released a low-noise back-illuminated sCMOS camera called ORCA-Fusion BT, 

where the RMS of read noise is 0.7 e- for low read out speed mode. It would be interesting to 

see what kind of new applications would benefit from this technology advance. 
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