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ABSTRACT 

 

Self-sustaining dynamics maintained through recurrent connections are of fundamental 

importance to cortical function. We show that Up-states—an example of self-sustained 

network dynamics—autonomously emerge in cortical circuits across three weeks of ex 

vivo development, establishing the presence of unsupervised synaptic learning rules that 

lead to globally stable emergent dynamics. Computational models of excitatory-inhibitory 

networks have established that four sets of weights (WE←E, WE←I, WI←E, WI←I) cooperate 

to generate stable self-sustained dynamics, but have not addressed how a family of 

learning rules can operate in parallel at all four weight classes to achieve self-sustained 

inhibition-stabilized regimes. Using numerical and analytical methods we show that 

standard homeostatic rules cannot account for the emergence of self-sustained dynamics 

due to the paradoxical effect. We derived a novel family of homeostatic learning rules that 

operate in parallel at all four synaptic classes, which robustly lead to the emergence of 

Up-states and balanced excitation-inhibition.  
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INTRODUCTION 

 

Synaptic learning rules refer to the biological algorithms that govern the strength of 
synapses. Learning rules such as Hebbian plasticity, spike-timing-dependent plasticity, 
and forms of homeostatic plasticity have vastly advanced our understanding of the 
mechanisms underlying neurodevelopment, learning, and cognition (Hebb, 1949; Abbott 
and Nelson, 2000; Turrigiano and Nelson, 2004; Feldman, 2012; Ahmadian and Miller, 
2019). In most theoretical studies, however, a single learning rule is implemented in a 
single class of synapses, while other synapse classes are set at reasonable initial values 
and held constant. In contrast, experimental data reveals that over the course of 
development and learning, most classes of synapses are plastic (Buonomano and 
Merzenich, 1998; Feldman, 2009; Froemke, 2015; Chiu et al., 2019). Thus, even in a 
simplified cortical circuit with only a single class of excitatory and inhibitory neurons, four 
synaptic learning rules must govern four classes of weights: WE←E, WE←I, WI←E, WI←I.  
 
 The importance of carefully regulating multiple weight classes in parallel is particularly 
evident in cortical circuits that are defined in part by the presence of recurrent excitation 
(Douglas et al., 1995; Shepherd, 1998), which if not carefully held in check by inhibition 
can lead to epileptiform activity (McCormick, 1989; Steriade and Contreras, 1998)—
notably circuits such as the striatum and cerebellum, which do not possess recurrent 
excitation do not exhibit epileptic foci. It is well established that many experimentally 
observed regimes require recurrent excitation, including Up-states (Steriade et al., 1993; 
Timofeev et al., 2000), asynchronous states (van Vreeswijk and Sompolinsky, 1998; 
Renart et al., 2010) and persistent activity associated with working memory (Fuster and 
Jervey, 1981; Goldman-Rakic, 1995; Wang, 2001). Experimental and theoretical 
evidence indicates that the self-sustaining persistent neural activity observed during Up-
states is held in check by strong inhibition (van Vreeswijk and Sompolinsky, 1996; Shu et 
al., 2003; Renart et al., 2010). More generally, that cortical circuits can function as an 
inhibition-stabilized network in which increases in the firing rate of excitatory neurons are 
rapidly counterbalanced by inhibition (Tsodyks et al., 1997a; Ozeki et al., 2009; Rubin et 
al., 2015; Sanzeni et al., 2020b).  
 
 At the computational level self-sustained activity and inhibition-stabilized networks are 
often modeled as a simplified circuit composed of excitatory (E) and inhibitory (I) 

subpopulations of neurons with four classes of synaptic weights WEE, WEI, WIE, WII. 
Critically, in order to generate stable persistent activity these weights must obey certain 
theoretically well-defined relationships (Tsodyks et al., 1997a; Brunel, 2000; Ozeki et al., 
2009; Rubin et al., 2015; Jercog et al., 2017). Here we address the question of how 
weights at all four synapse classes can be set in a self-organizing manner. Consistent 
with previous results we first show that cortical networks seem to be ontogenetically 
programmed to homeostatically generate Up-states. Specifically, while Up-states occur 
spontaneously in vivo during anesthesia, slow-wave sleep, and quiet wakefulness 
(Steriade et al., 1993; Timofeev et al., 2000; Beltramo et al., 2013; Hromádka et al., 2013), 
and in acute slices (Sanchez-Vives and McCormick, 2000; Shu et al., 2003; Fanselow 
and Connors, 2010; Sippy and Yuste, 2013; Xu et al., 2013; Sadovsky and MacLean, 
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2014; Neske et al., 2015; Bartram et al., 2017), they also emerge in organotypic cultures 
over the course of ex vivo development (Plenz and Kitai, 1998; Seamans et al., 2003; 
Johnson and Buonomano, 2007; Kroener et al., 2009; Motanis and Buonomano, 2015; 
Motanis and Buonomano, 2020). Furthermore, Up-state frequency appears to be 
homeostatically regulated—e.g., optogenetically stimulating cortical circuits over the 
course of days decreases Up-state frequency (Motanis and Buonomano, 2015; Motanis 
and Buonomano, 2020). 
 
 Some computational models have incorporated synaptic learning rules operating in 
parallel at multiple synapse classes (Lazar et al., 2009; Bauer et al., 2014; Binas et al., 
2014; Mackwood et al., 2020). However, the issue of how four key synapse classes 

(WEE, WEI, WIE, WII) are governed across development to lead to self-sustained 
dynamics has not been addressed. One possibility is that standard homeostatic forms of 
plasticity could underlie the emergence of inhibition-stabilized networks. In homeostatic 
learning rules, such as synaptic scaling it is generally assumed that excitatory weights 
are up-regulated (down–regulated) when neurons are below (above) some 
ontogenetically determined set-point of average neural activity, and conversely that 
inhibitory weights are regulated in the opposite direction (Turrigiano et al., 1998; van 
Rossum et al., 2000; Kilman et al., 2002; Turrigiano and Nelson, 2004; Peng et al., 2010). 
Here we show that such standard homeostatic rules are inherently unstable in the context 
of inhibition-stabilized networks. This is in part a consequence of the so-called 
paradoxical effect, in which an external increase in the excitatory drive to inhibitory 
neurons produces a net decrease in steady-state firing rate of inhibitory neurons (Tsodyks 
et al., 1997a; Ozeki et al., 2009; Rubin et al., 2015). We show that the existence of the 
paradoxical effect constrains the learning rules that are capable of leading to inhibition-
stabilized networks, and suggests the need for either “paradoxical” or nonlocal learning 
rules. We develop a family of homeostatic learning rules operating in parallel at all four 
weight classes, which lead to the unsupervised emergence of Up-states in the inhibition-
stabilized regime. Importantly, we predict that for the learning rules to be local the 
plasticity in the inhibitory neurons should be, paradoxically, anti-homeostatic.  
 
 
 
RESULTS 
 
 
Up-states represent a transition from a quiescent state to a network-wide regime in which 
both excitatory and inhibitory neurons are active (Fig. 1A). During Up-states the firing rate 
of excitatory neurons is relatively low (1-5 Hz) indicating that recurrent excitation is held 
in check by appropriately tuned inhibition (Neske et al., 2015; Jercog et al., 2017; Romero-
Sosa et al., 2020). By recording in organotypic cortical circuits it is possible to show that 
Up-states develop over the course of ex vivo development (Plenz and Kitai, 1998; 
Seamans et al., 2003; Johnson and Buonomano, 2007; Kroener et al., 2009; Motanis and 
Buonomano, 2015; Motanis and Buonomano, 2020). Early in development, at 8 days-in-
vitro (DIV-8) most of the neurons are silent, while at later stages (DIV-23) spontaneous 
Up-states are observed (Fig. 1B). Over the first four-weeks of ex vivo development there 
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is an increase and stabilization of Up-state frequency and duration (Fig. 1C-D) (Johnson 
and Buonomano, 2007; Motanis and Buonomano, 2015). The fact that Up-states emerge 
autonomously during ex vivo development indicates that synaptic learning rules are in 
place to orchestrate the unsupervised emergence of Up-states.  
 

 
Figure 1. Up-states emerge autonomously over the course of ex vivo development. 

(A) Example of Up-states in simultaneously recorded pyramidal (green) and parvalbumin (PV) positive inhibitory 
neurons (red).  

(B) Spontaneous activity recording of a pyramidal neuron at 8 and 23 days in vitro development (DIV). Up-states 
are present only at later developmental stages.  

(C) Evolution of the mean Up-state duration over the course of ex vivo development.  
(D) Evolution of the mean Up-state frequency over the course of ex vivo development.  
(E) Two-population firing rate model of Up-states. The schematic of the model is shown on the right. The dynamics 

of the excitatory (green) and inhibitory (red) populations are governed by four synaptic weights, WE←E, WE←I, 
WI←E, and WI←I.  Traces correspond to the firing rate of each of the populations in the presence of external 
noise.  

  

 
Computational studies have demonstrated that Up and Down states can be simulated as 
a bistable dynamical system composed of interconnected populations of excitatory (E) 
and inhibitory (I) neurons (Fig. 1E), in which Down-states represent a quiescent fixed-
point, and Up- or asynchronous states represent a second non-trivial fixed-point attractor. 
In the Up regime recurrent excitation produces amplification, but the activity is held in 
check by rapid inhibition. The dynamics settles into a stable fixed-point attractor, and 
instantiates an example of an inhibition-stabilized network. The neural dynamics within 

two-population models is governed by four classes of synaptic weights WEE, WEI, WIE, 
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WII. (Fig. 1E, right). Analytical and numerical studies have demonstrated that these four 
weights must obey certain “balanced” relationships in order to support the stable self-
sustaining dynamics—e.g., if excitation is too strong, runaway (or saturated) excitation 
occurs, and if inhibition is too strong only the trivial quiescent fixed-point will be stable 
(Tsodyks et al., 1997b; van Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Ozeki et al., 
2009; Rubin et al., 2015; Jercog et al., 2017) (see Section 2.2 in the Supplementary 
Material).  
 
In most computational models the set of four weights is determined analytically or through 
numerical searches. Since Up-states emerge autonomously over the course of 
development in ex vivo cortical networks, and because all four weight classes have been 
observed to undergo synaptic plasticity in experimental studies, we next asked how the 
stable self-sustained dynamics characteristic of Up-states might emerge in a self-
organizing manner.  
 
Standard homeostatic learning rules do not account for the emergence of Up-
states 
 
One attractive possibility is that cortical neurons are homeostatically programmed to 
generate Up-states. Specifically, that both excitatory and inhibitory neurons exhibit 
ontogenetically programmed firing rate setpoints, and they homeostatically adjust their 
excitatory and inhibitory weights to reach these target setpoints (Motanis and 
Buonomano, 2015; Motanis and Buonomano, 2020). Numerous homeostatic synaptic 
learning rules have been proposed based on experimental findings. Such rules are 
traditionally defined by changes in synaptic weights that are proportional to an “error term” 
defined by the difference between the setpoint and the average activity levels (Turrigiano 
et al., 1998; van Rossum et al., 2000; Kilman et al., 2002; Turrigiano and Nelson, 2004; 
Liu and Buonomano, 2009b; Peng et al., 2010; Vogels et al., 2011; Mackwood et al., 

2020), e.g., ∆WEE  Eset - Eavg.  
 

To determine if homeostatic learning rules can lead to stable self-sustained dynamics 
we started with the two-population model proposed by (Jercog et al., 2017) (see 
Methods), but instead of setting the weights manually, we initialized weights at random 
values and applied a family of homeostatic learning rules to all four weights classes (Fig. 
2A). We initially assumed, based on experimental data, that during Up-states the E and I 
populations exhibited target setpoints at 5 and 14 Hz, respectively (Romero-Sosa et al., 
2020). We first examined whether a set of four learning rules can lead to a transition from 
a quiescent Down-state to a stable self-sustained dynamic regime (representing a 
permanent Up-state) in response to a brief external input (initially low levels of noise were 
used to avoid spontaneous Up↔Down transitions). 
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Figure 2. Standard homeostatic rules are unstable and do not lead to the emergence of self-sustained activity.  

(A) Schematic (left) of the population rate model in which the four weights are governed by standard homeostatic 
learning rules (right)  

(B) Example simulation of the network over the course of simulated development. The evolution of the firing rate 
of the excitatory and inhibitory population within a trial in response to a brief external input is shown in every 
plot. Eset=5 and Iset=14 represent the target homeostatic setpoints. Weights are initialized to WEE=2.1 WEI=3 
WIE=4 WII=2. Note that while an evoked Up-state emerges by Trial 200 the firing rates do not converge to their 
setpoints, and by Trial 1000 the Up-state is now longer observed.  

(C) Average rate across trials (upper plot) for the excitatory and inhibitory populations for the data shown in (B). 
Weight dynamics (bottom plot) produced by the homeostatic rules across trials for the data shown in (B). 

(D) Average final rate for 100 independent simulations with different weight initializations. 
(E) Simulation of a network starting with weights that generate Up-states that match the Eset=5 and Iset=14 Hz 

(Trial 1, top). After 1000 trials the network has diverged from its setpoints, indicating the synaptic learning 
rules are unstable. Weights were initialized to WEE=5 WEI=1.09 WIE=10 WII=1.54.  

(F) Numerical solution for the analytical condition of stability of the neural system and learning rule system as a 
function of WEE and WIE. Blue asterisk corresponds to the initial conditions shown in Panel E (top).   
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Although the rules are homeostatic in nature (e.g., if I is below Iset, an increase of WIE 

and a decrease in WII would be induced), they fail to lead the network to converge to 
stable Up-states (Fig. 2B-D). At the beginning of the experiment (Trial 1), an external 

input to the excitatory population does not engage recurrent activity because WEE  is too 
weak. By Trial 200 the weights have evolved and although the external input now 
generates an apparently stable Up-state, the activities E and I do not match the 
corresponding setpoints and thus the weights keep evolving —specifically, the network is 
in a nonbiologically observed regime in which E > I. By Trial 600 E = Eset but I < Iset, and 
rather than converging to Iset, the network returns to a regime without an Up-state by Trial 
1000. A that point both setpoint “error terms” have increased, keeping the weight 
dynamics going. Results across 100 simulations with different weight initializations (see 
Methods) further indicates that the standard homeostatic rules are ineffective at driving E 
and I towards their respective setpoints and generating stable self-sustained dynamics 
(Fig. 2D).  
 
In order to support our numerical simulations, we analytically characterized the stability 
of the family of standard homeostatic learning rules. Overall, a network in which the 
weights undergo plasticity can be characterized as a dynamical system composed of two 
subsystems: the neural subsystem composed of the two differential equations that define 
E and I dynamics, and the synaptic learning rule subsystem defined by the four learning 
rules (see Supplementary Material). We make use of the two very different time scales of 
the neural (fast) and learning rule (slow) subsystems to perform a quasi-steady state 
approximation of the neural subsystem; then we compute the eigenvalues of the four-
dimensional learning rule subsystem, and finally get an analytical expression for the 
stability condition of the learning rules (see Section 2.3 in the Supplementary Material). 
For the entire system to be stable, both the neural and learning rules subsystems have 
to be stable. We found that the standard homeostatic rules are unstable for biologically 
meaningful parameter values in which the neural system is stable. An example of this 
result is shown in Fig. 2E-F for a particular set of parameter values (see Methods). Here 
the network is initialized at a condition satisfying the homeostatic setpoints Eset and Iset 
(Fig. 2E). Although the neural subsystem is stable at this condition (Trial 1), the standard 
homeostatic rules drive the weight values and the average activity of the network away 
from the setpoints (Trial 1000). This simulation is represented by the blue asterisk in Fig. 
2F where the theoretical regions of stability are shown (see Supplementary Material for a 
detailed explanation). Critically, Fig. 2F shows that the stability region of the neural 
subsystem, i.e., an inhibition-stabilized network as in (Ozeki et al., 2009; Jercog et al., 
2017), is entirely within the region where the standard homeostatic learning rules are 
unstable. We therefore conclude that the standard homeostatic rules do not display a 
dynamical regime that would lead to the emergence of stable Up states in an inhibition-
stabilized network. Similarly, a combination of analytical and numerical methods also 
indicates that variants of these homeostatic rules, such as Synaptic Scaling (Turrigiano 
et al., 1998; van Rossum et al., 2000; Sullivan and de Sa, 2006) are also unstable (see 
Supplementary Material, Section 2.6). These results suggest that, in the context of 
inhibition-stabilized networks, “standard” homeostatic learning rules are inherently 
unstable and cannot account for the emergence of Up states. 
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The paradoxical effect constrains the learning rules that can lead to Up-states.  
 
The inability of the homeostatic learning rules to generate stable Up-states is in part a 
consequence of a counterintuitive, yet well described, property of the two-population 
models of Up-states and inhibition-stabilized networks: the so-called paradoxical effect 
(Tsodyks et al., 1997a; Rubin et al., 2015; Sanzeni et al., 2020a). Specifically, if during 
an Up-state one increases the external drive to the inhibitory population, the net result will 
counterintuitively be a decrease in the firing rate of the inhibitory units. This paradoxical 
effect can be understood in terms of the I→E→I loop: the increased inhibitory drive should 
lead to a lower steady-state rate for E, but this new steady-state value also relies on a 

given E/I balance, thus there must be a parallel decrease in the I firing rate (in other 
words, the decrease in E decreases the drive to I by more than the external increase to 
I). This paradoxical effect has profound consequences for learning rules that attempt to 
drive excitatory and inhibitory weights to their setpoints.  
 
 

 
 
Figure 3. The paradoxical effect constrains the learning rules that can lead to Up-states.  

(A) Example of the self-sustained dynamics of a two-population model with weight values shown in the diagram. 
Both the E and I firing rates fall below their respective setpoints. The objective is to adjust the weights so that 
the E and I activity match their setpoints.   

(B) An increase of WIE from 10 to 12 results in a paradoxical decrease of the I rate.  
(C) Paradoxically, an effective way to increase the steady-state I firing rate is to decrease its excitatory drive, i.e., 

WIE. 

 
Consider a network state in which the I rate falls significantly below its setpoint, and the 
E rate is close to its setpoint (Fig. 3A). In order to reach the I setpoint a homeostatic 

manipulation on the inhibitory neuron would intuitively result in an increase of WIE. 

However, as it can be seen if we increase WIE (Fig. 3B), the inhibitory population actually 
decreases because of the paradoxical effect—thus increasing the error term Iset-I. To 
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increase the steady-state inhibitory rate we can decrease the excitatory weight onto the 
inhibitory neurons (Fig. 3C). This simple example shows the complexity of designing a 
coherent set off rules in such a coupled system (see an analysis of the paradoxical effect 
in Section 2.2.3 of the Supplementary Material). 
 
A novel cross-homeostatic rule robustly leads to the emergence of self-sustained 
Up-states  
 
Given that a standard set of homeostatic learning rules does not account for the 
development of Up-states, we attempted to identify alternative learning rules. By defining 
a loss function based on the difference between E and I and their respective setpoints we 
derived a set of learning rules using gradient descent. This approach led to 
mathematically complex and biologically implausible rules; however, approximations and 
simulations inspired a simple class of learning rules that we will refer to as cross-
homeostatic (see Methods). The main characteristic of this set of rules is that the 
homeostatic setpoints are “crossed” (Fig. 4A). Specifically, the weights onto the excitatory 

neuron (WEE and WEI) are updated to minimize the inhibitory error while weights into 

the inhibitory neuron (WIE and WII) change to minimize the excitatory error. Although 
apparently non-local, these rules can be interpreted as the total inhibitory and excitatory 
input current into the cell. Such input could be read by the cell via activation of 
metabotropic mGlu and GABAB receptors. Indeed, similar local rules have been derived 

for WEI and WIE weights in models with only two plastic weights (Mackwood et al., 
2020).  
 
An example of the performance of the cross-homeostatic rules is shown in Fig. 4B-C. 
After an initial phase with no sustained firing rate (Trial 1), recurrent activity reaches a 
stable Up-state (Trial 25), whose average rate continues to converge towards its defined 
setpoints (Trial 300) until the learning rule system reaches steady state (Trial 1000). The 
average E and I rates of the network evolve asymptotically towards the defined setpoints, 
as the weights evolve and converge (Fig. 4C). Across different weight initializations the 
rules proved effective in driving the mean Up-state activity of the network to the target E 
and I setpoints (Fig. 4D). These results establish that this family of cross-homeostatic 
rules leads to inhibition-stabilized networks and is robustly stable. 
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Figure 4. A family of cross-homeostatic learning rules lead to self-sustained dynamics at Eset and Iset. 

(A) Schematic of the model and the family of cross-homeostatic learning rules. 
(B) Example network dynamics across simulated development. The network is initialized with weights that do not 

lead to self-sustained dynamics in response to an external input (Trial 1). By Trial 25 a stable Up-state is 
observed, but at firing rates far from the target setpoints (dashed lines). By Trial 1000 the network has 
converged to an Up-state in which E and I firing rate match their respective setpoints. Weights are initialized 
to WEE=2.1 WEI=3 WIE=4 WII=2. 

(C) Average rate across trials (upper plot) for the excitatory and inhibitory populations for the data shown in (B). 
Weight dynamics (bottom plot) induced by the homeostatic rules across trials for the data shown in (B) 

(D) Average final rate for 100 independent simulations with different weight initializations (see Methods). 

 
To contrast the mechanisms underlying the instability of the standard homeostatic rules 
and stability of the cross-homeostatic rules, we compared the trajectories of the weights 
across different experiments for both rules (Fig. 5A-D). The weight trajectory from its 
initial value to its final one is shown for 100 different simulations. Each line corresponds 
to individual experiments with different weight initializations. Circles indicate the final 
values of the weights. Independently of the initial conditions, the weights converge to a 
line attractor (actually a 2D plane attractor in 4D weight space) for the cross-homeostatic 
rules (Fig. 5B-D), but not for the standard homeostatic rules (Fig. 5A-C). Note that this 
attractor refers to the sets of weights that generate Up-states where E and I activity 
matches Eset and Iset respectively. That is, for a given pair of setpoints (Eset, Iset) the final 

values of the weights WEI and WII are linear functions of WEE and WIE. This is a 
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direct consequence of the steady state conditions for the nontrivial fixed-point of the two-
population model (Tsodyks et al., 1997a; Ozeki et al., 2009; Jercog et al., 2017), where 
the slope of the line is defined by the setpoints Eset/Iset (Fig. 5C-D, see Methods). 
Numerical simulations confirm that the cross-homeostatic, but not the standard, 
homeostatic rule robustly guides Up-states to different Eset and Iset setpoints (Fig. 5E-F).   
 

 
Figure 5. Cross-homeostatic rules lead to stable balanced dynamics while homeostatic rules fail to do so.  

(A) Weight trajectories for 100 different simulations with random weight initializations for the homeostatic rules. 
Lines show change from initial to final (circles) weight values. 

(B) Trajectories shown for the cross-homeostatic rules for the same initial conditions as in (A).   
(C) Final weight values for homeostatic plasticity simulations with same starting conditions as in (A) and (B) but 

for additional homeostatic pairs of setpoints. Line 1: Eset=5, Iset=14; Line 2: Eset=5, Iset=28; Line 3: Eset=10, 
Iset=14.  Data shown in (A) and (B) corresponds to Line 1. Blue lines correspond to the theoretical linear 
relationship between the excitatory and inhibitory weights at a fixed point obeying Eset and Iset. The slope of 
the line is defined by the ratio of the setpoints (see Methods).    

(D) Final weight values for cross-homeostatic plasticity simulations under the same initial conditions as in (C).  
(E) Final rate for the excitatory and inhibitory population after homeostatic learning. The different bar plots 

correspond to the data shown in (C), where 3 different pairs of setpoints are tested.  
(F) Final rate for the excitatory and inhibitory population for the cross-homeostatic learning from data in (D).  
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To further validate the effectiveness and stability of the cross-homeostatic rule we again 
used analytic methods to determine the eigenvalues of the 4-dimensional learning-rule 
dynamical system governed by the four cross-homeostatic rules. As above, stability is 
determined by the sign of the real part of the eigenvalues of the system. It can be shown 
(see Section 2.4 in the Supplementary Material) that this learning rule is stable for any 
set of parameter values, provided that the stability conditions of the neural subsystem are 
satisfied.  
 
Therefore, it is possible to formally establish that the cross-homeostatic learning rules are 
inherently stable and can account for the emergence and maintenance of inhibition-
stabilized self-sustained regimes and Up-states. 
 
A locally balanced homeostatic rule also accounts for the emergence of Up-states 
 
The solutions achieved by the cross-homeostatic rule highlight the fundamental 

relationship between the WEE/WEI and WIE/WII ratios, which is analytically imposed 
by the relationship among weight values and firing rates for Up-states to exist (whether 

stable or not; see Methods). For example, to satisfy 
𝑑𝐸

𝑑𝑡
= 0 in the Up-state fixed point, the 

net excitation and inhibition must obey a specific “balance”, meaning that once WEE or 

WEI is determined, the other is analytically constrained for a given set of setpoints and 
parameters. This implies that the 4-dimensional system defined by the four learning rules 

can be reduced to 2-dimensions—because WEI  WEE and WII  WIE. We thus 
exploited this constraint to design a simple set of local rules that would lead to the 

emergence of self-sustained Up-states. Here ∆WEE follows the standard homeostatic 

learning rule, while ∆WIE follows a local anti-homeostatic rule (Fig. 6A). WEI and WII 

converge to linear functions of WEE and WEI, respectively, so their change is always 
“locked” to the evolution of the plastic weights. Because of this imposed relationship, we 

will refer to this as the balanced-homeostatic rule. We interpret the plasticity of the WEI 

and WII to rely on ontogenetically programed ratios of WEE and WIE weights, 
respectively. This interpretation is supported by observations that after the induction of 
excitatory plasticity the inhibitory weights can slowly “rebalance” (Froemke et al., 2007; 
Froemke, 2015) 
 
As shown in Fig. 6B, the balanced-homeostatic rule can drive the activity of the network 
to a stable Up-state. Starting in a weight regime that does not support self-sustained 
activity (Trial 1), the rule initially leads to a self-sustained Up-state in which E is close to 
Eset but I is well below Iset (Trials 70 and 600). This initial developmental stage is followed 
by asymptotic convergence to Iset. (Trial 1000). Note that due to the linear relationship 

imposed on the weights, a minimum weight must be assigned to WEE and WIE in order 

to prevent negative weights (see Methods)—which is why we initialize WIE at higher 
values than in Fig. 2 and 4. Across 100 simulations all networks converged to the target 

setpoints (Fig. 6D). As expected, the balanced-homeostatic rule also drove the (WEE, 

WEI) and (WIE, WII) weight pairs to the stable line attractors across a range of setpoints 
(Fig. S1). 
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Figure 6. Balanced-homeostatic rules also lead to self-sustained dynamics at Eset and Iset.  

(A) Schematic of the model and the family of cross-homeostatic learning rules. 
(B) Example network dynamics across development. The network is initialized with weights that do not lead to 

self-sustained dynamics in response to an external input (Trial 1). By Trial 70 a stable Up-state is observed, 
but at firing rates far from the target setpoints (dashed lines). By Trial 1000 the network has converged to an 
Up-state in which the E and I firing rates match their respective setpoints. Weights are initialized to WEE=2.1 
WEI=3 WIE=7.5 WII=2.  

(C) Average rate across trials (upper plot) for the excitatory and inhibitory populations for the data shown in (B). 
Weight dynamics (bottom plot) governed by the balanced-homeostatic rules trials for the data shown in (B) 

(D) Average final rate for 100 independent simulations with different weight initializations (see Methods). 
 

 
As above, we developed analytic expressions for the stability of the Balanced-
homeostatic rules. This analysis demonstrated that this set of rules is stable for 
biologically meaningful parameter values, and that its stability region overlaps with the 
stability region of the neural subsystem for infinitely many values of the two free weights 

WEE and WIE (see Section 2.5 in the Supplementary Material). 
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Simulating the empirically observed development of Up-states  
 
In the previous simulations the inhibitory and excitatory populations converge to a 

permanent Up-state (i.e., an asynchronous state) because in the absence of significant 

noise there were no spontaneous Up↔Down transitions. We thus next simulated the 

developmental emergence of spontaneous Up-states in the model with the cross-

homeostatic learning rules, and contrasted the performance of the model with the 

experimentally observed developmental time-course of Up-state frequency and duration 

(Fig.1 C-D). Following Jercoq et al. (2017) we increased the noise levels and included an 

adapting current to the excitatory population to capture Up→Down transitions. With initial 

weights that correspond to early developmental stages which lack any spontaneous Up-

state, the network undergoes a progressive increase in spontaneous Up↔Down 

transitions (Fig. 7A), with the average Up rate converging to the defined setpoints (Fig. 

7B). The network converged to the setpoints across multiple simulations (Fig. 7C) and 

the development of Up-state frequency and duration paralleled the experimentally 

observed developmental time-course (Fig. 7D).  
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Figure 7. Orchestrated excitatory and inhibitory rules lead to the emergence of stable Up↔Down transitions. 

(A) Simulation of the development of spontaneous Up-states. The weights of the two-population model evolve 
following cross-homeostatic rules and under the presence of high external noise and intrinsic excitatory 
adaptation. Under these conditions, stable Up↔Down transitions emerge (Trial 1000) over the course of 
simulated development from a quiescent stage (Trial 1). Initial weights are WEE=3 WEI=1 WIE=7 WII=0.5.  

(B) Average rate during the Up-states for both neural populations (upper plot) for the simulation shown in (A). 
Bottom plot shows the evolution of the weights. 

(C) Final mean Up rate for 20 independent simulations. Initial weights are specified in (A). 
(D) Average Up duration and frequency over the course of simulated development. Averages are computed every 

50 trials for 20 independent simulations. Shaded area shows ± SEM.   
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DISCUSSION  

 
 Elucidating the learning rules that govern the connectivity of neural circuits represents 
a critical goal in neuroscience, because learning rules provide a link between the cellular, 
systems, and computational levels of analyses. For example, elucidation of Hebbian 
associative synaptic plasticity linked simple computations at the level of single proteins 
(the NMDA receptor) with higher-order computations at the level cortical networks and 
cognition (Hebb, 1949; Miller et al., 1989; Buonomano and Merzenich, 1998; Martin et 
al., 2000; Song et al., 2000). To date however, most learning rules have been studied 
primarily in the context of a single synapse class—e.g., how associative and homeostatic 

plasticity operating at WEE synapses (while holding other weights constant) contribute 
to cortical map formation. Yet, it is widely accepted that virtually all synapse classes 
undergo plasticity governed by class-specific learning rules (Abbott and Nelson, 2000; 
Froemke, 2015; Hennequin et al., 2017; Chiu et al., 2019). Thus, it is necessary to 
understand how many learning rules operating in parallel lead to functional dynamical 
regimes and computations. Here we have taken a first step towards addressing this 
problem by examining how independent learning rules operating at four different synapse 
classes can capture the experimentally observed emergence of Up-states in cortical 
networks. 
 

Here we focused on the emergence of Up-states because: 1) they represent one of 
the best examples of both self-sustained dynamics and of an inhibition-stabilized network 
regime; and 2) Up-states emerge autonomously during ex vivo development, and are 
homeostatically modulated by external activity (Plenz and Kitai, 1998; Seamans et al., 
2003; Johnson and Buonomano, 2007; Kroener et al., 2009; Motanis and Buonomano, 
2015; Motanis and Buonomano, 2020)—thus suggesting that there are homeostatic 
learning rules in place to guide cortical networks to exhibit Up-states.  
 

Our results first demonstrated that standard homeostatic rules that attempt to drive 
excitatory and inhibitory neurons to target setpoints during Up-states, are ineffective at 
generating stable self-sustained dynamics. Both numerical simulations (Fig. 2) and 
analytical analyses (see Supplementary Material) reveal that a system of four 
homeostatic learning rules is unable to reliably and stably drive excitatory and inhibitory 
neurons to their respective setpoints. Indeed, we showed that, despite the fact that an 
Up-state can exist under these rules (i.e., a set of weight values making I=Eset and I=Iset 
in the absence of noise), the standard homeostatic family of learning rules cause the 
network to diverge away even at the smallest amount of noise because the Up-state is 
unstable under these rules (Fig. 2E-F). These results emphasize the need to understand 
the experimentally described forms of homeostatic plasticity in specific contexts, and 
whether they are symmetrically present in the excitatory and inhibitory branches of 
cortical circuits.  
 
The paradoxical effect and paradoxical learning rules.  
 
 One of the reasons standard homeostatic rules operating at all four synapses struggle 
with generating stable self-sustained dynamics is related to the paradoxical effect (Fig. 
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3). Up-states represent a nontrivial fixed-point in which recurrently generated excitation 
is counterbalanced by the net inhibition through the E→I→E branch. As a result of this 
coupled negative feedback, if the excitatory drive to the inhibitory population is increased 
there will be a decrease in excitatory firing rate which in turn will decrease the firing of the 
inhibitory population. The paradoxical effect establishes that the decrease excitatory input 
to the inhibitory population that arises from the decreased rate of excitatory neurons must 
be larger than the initial increased drive of the inhibitory population (Tsodyks et al., 1997a; 
Ozeki et al., 2009). This effect has profound consequences for the unsupervised 
emergence of Up-states, e.g., if there is an ontogenetically determined Up-state Iset, it is 

not sufficient to simply homeostatically adjust WIE and WII to reach this setpoint (Fig. 
3, Section 2.2.3 of the Supplementary Material). 
 
 A family of cross-homeostatic rules provide a solution to the paradoxical effect and 
can robustly drive networks to self-sustained dynamic regimes (Fig. 4-5). As implemented 
here, this family of rules has the counterintuitive and nonlocal property of having “cross-

homeostatic setpoints”—e.g., the error terms in WEE and WEI  correspond to Iset-I. As 
has been pointed out, such nonlocal cross-homeostatic rules can be implemented as a 
local rule in which the excitatory neurons are programmed to seek a target amount of 
inhibitory synapse activation (Mackwood et al., 2020). Although this hypothesis has not 
been directly experimentally tested, it seems inconsistent with experimental studies that 
have used bicuculline to increase network activity, and have observed weaker putative 
WE←E synapses (Turrigiano et al., 1998; Turrigiano and Nelson, 2004).  
 
 Therefore, we further considered a balanced homeostatic rule that proposes that the 
excitatory weights onto excitatory and inhibitory neurons are governed by local 
homeostatic and anti-homeostatic rules, respectively. Again, as a consequence of the 
paradoxical effect anti-homeostatic regulation of the inhibitory population is more effective 
than homeostatic regulation. This rule proposes that there are ontogenetically determined 
balances which determine the strength of WE←I and WI←I synapses in relation to the WE←E 
and WI←E synapses, respectively. 
 
Conclusions and experimental predictions 
 
The balanced-homeostatic rule is consistent with current experimental data with respect 
to the WE←E weight (Turrigiano et al., 1998; Burrone et al., 2002; Turrigiano and Nelson, 
2004; Goel and Lee, 2007). While homeostatic plasticity of WE←I, WI←E, and WI←I is more 
complex and dependent on inhibitory cells types (Hartman et al., 2006; Xue et al., 2014; 
Joseph and Turrigiano, 2017), to the best of our knowledge there is little evidence for the 
notion of anti-homeostatic plasticity of the WI←E class. But it is important to stress that 
there are likely multiple forms of homeostatic plasticity being driven by multiple 
homeostatic setpoints (Liu et al., 1998; O'Leary et al., 2013; O’Leary et al., 2014). 
Specifically, in the context of the current work, it is critical to distinguish between the Up-
state firing rate setpoint, and the more conventional average activity setpoint. Whereas 
these two setpoints clearly interact, it remains unclear if neurons have independent 
setpoints for average activity and Up-state firing rate. Thus, it remains to be determined 
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if the existence of anti-homeostatic plasticity is observed in inhibitory neurons in response 
to shifts in Up-state activity levels.  
 
There is, however, substantial experimental evidence that support the prediction that 
plasticity of excitatory synapses drives a “rebalancing” of inhibitory weights—consistent 
with the notion of an ontogenetically determined balance (Froemke et al., 2007; Froemke, 
2015; Antoine et al., 2019; Chiu et al., 2019). For example, after induction of excitatory 
plasticity inhibitory synapses onto excitatory neurons “rebalance” over the course of 
minutes (Froemke et al., 2007). Furthermore, the same NMDA-dependent protocols that 
induce potentiation of EPSPs can also result in potentiation of IPSPs (Chiu et al., 2018; 
Field et al., 2020), and on the anatomical level there is a correlation between the number 
of inhibitory and excitatory anatomic synaptic contacts on every dendritic compartment 
(Iascone et al., 2020).  
 

Together our findings demonstrate that even if a given learning rule in isolation generates 

beneficial properties, it is not necessarily the case that the same rule will be effective in 

the context of a recurrent excitatory/inhibitory network governed by multiple rules 

operating in parallel. Furthermore, because emergent neural dynamic regimes are highly 

nonlinear, and in particular, that stable self-sustained dynamic regimes exhibit a 

paradoxical effect in these networks, it is likely that the brain exhibits “paradoxical” or anti-

homeostatic learning rules, such as those proposed here, to generate self-sustained 

dynamic regimes.  
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METHODS 

 

Ex vivo slice preparation and Electrophysiology  

The experimental results shown in Figure 1 relied on the reanalysis of previously 

published data (Motanis and Buonomano, 2015; Romero-Sosa et al., 2020). All animal 

experiments followed guidelines established by the National Institutes of Health (NIH) and 

were approved by the Chancellor’s Animal Research Committee at the University of 

California, Los Angeles.  

Organotypic slices were prepared using the interface method (Stoppini et al., 1991). 

Briefly, five to seven day-old WT mice were anesthetized with isoflurane and decapitated. 

The brain was removed and placed in chilled cutting media. Coronal slices (400 µm 

thickness) containing auditory cortex were sliced using a vibratome (Leica VT1200) and 

placed on filters (MillicellCM, Millipore, Billerica, MA, USA) with 1 mL of culture media. 

Culture media was changed at 1 and 24 hours after cutting and every 2-3 days thereafter. 

Cutting media consisted of EMEM (MediaTech cat. #15-010) plus (final concentration in 

mM): MgCl2, 3; glucose, 10; HEPES, 25; and Tris-base, 10. Culture media consisted of 

EMEM plus (final concentration in mM): glutamine, 1; CaCl2, 2.6; MgSO4, 2.6; glucose, 

30; HEPES, 30; ascorbic acid, 0.5; 20% horse serum, 10 units/L penicillin, and 10 μg/L 

streptomycin. Slices were incubated in 5% CO2 at 35°C. 

Whole cell recordings were made from LII/III pyramidal regular spiking neurons, 

identified using infrared differential interference contrast visualization. Recordings were 

performed at 7-30 days in vitro (DIV) in artificial cerebrospinal fluid composed of (in mM): 

125 NaCl, 5.1 KCl, 2.6 MgSO4, 26.1 NaHCO3, 1 NaH2PO4, 25 glucose, and 2.6 CaCl2 

(ACSF was formulated to match the standard culture media). The temperature was 

maintained at 32-33 °C, and the perfusion rate set at 4.5-5 mL/min. The internal solution 

for whole-cell recordings contained (in mM): 100 K-gluconate, 20 KCl, 4 ATP-Mg,10 

phospho-creatine, 0.03 GTP-Na, and 10 HEPES and was adjusted to pH 7.3 and 300 

mOsm. In order to be considered for analysis, cells had to have a resting potential less 

than -55 mV and not change by more than 15% over the course of the recording. The 

criteria for input and series resistance were 100-300 MΩ and <25 MΩ, respectively.  

For the data shown in Figure 1A, PV-Cre mice were used. The slices were transfected at 

5-7 DIV with 1 µL of LSL-tdTomato (Addgene#: 100048) and recordings were performed 

16-18 days after transfection. Fluorescent PV neurons were targeted using a 430 nm LED 

to visualize tdTomato. 
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Computational model 

A two-population firing-rate model was implemented based on Jercoq et al (2017). The 

firing rate of the excitatory (E) and inhibitory (I) population obeyed Wilson and Cowan 

dynamics (Wilson and Cowan, 1972): 

(1)     𝜏𝐸

𝑑𝐸

𝑑𝑡
= −𝐸 + 𝑓𝐸(𝑊𝐸𝐸𝐸(𝑡) − 𝑊𝐸𝐼𝐼(𝑡) − 𝑎 + 𝜂𝐸(𝑡)) 

(2)     𝜏𝐼

𝑑𝐼

𝑑𝑡
= −𝐼 + 𝑓𝐼(𝑊𝐼𝐸𝐸(𝑡) − 𝑊𝐼𝐼𝐼(𝑡) + 𝜂𝐸(𝑡)) 

where WXY represents the weight between the presynaptic unit Y and postsynaptic unit 

X. 𝜏𝑋 and 𝜂𝑋 represent a time constant and an independent noise term, respectively. The 

time constants were set to 𝜏𝐸 = 10 𝑚𝑠 for the excitatory and 𝜏𝐼 = 2 𝑚𝑠 for the inhibitory 

population. The noise term was an Ornstein-Uhlenbeck process with a time constant of 

1 𝑚𝑠  and standard-deviation  𝜎𝑋. All simulations had a 𝜎𝑋 = 0.1 𝐻𝑧 except for Figure 7 

where 𝜎𝑋 = 1.2 𝐻𝑧  was used. To elicit Up-states a step current was injected at the 

beginning of each trial on the excitatory population, except for Figure 7, where Up-state 

transitions were spontaneously elicited by the higher levels of noise. For Figure 7 an 

intrinsic spike frequency adaptation term was included for the excitatory population 

(Jercog et al., 2017): 

(3)     𝜏𝑎

𝑑𝑎

𝑑𝑡
= −𝑎(𝑡) + 𝛽𝐸(𝑡) 

where 𝛽 represents the adaptation gain. For the data show in Figures 1 to 6 no adaptation 

was present (𝛽=0). On Figure 7 we set 𝛽=0.4.  

The function 𝑓𝑌(𝑥) represents the intrinsic excitability of the neurons, and it is modeled as 

a threshold-linear (ReLU) function with threshold 𝜃𝑌 and gain 𝑔𝑌 .  

(4)     𝑓𝑌(𝑥) = {
0  𝑖𝑓 𝑥 < 𝜃𝑌

𝑔𝑌 (𝑥 −  𝜃𝑌) 𝑖𝑓  𝑥 ≥ 𝜃𝑌
 , 𝑌 = {𝐸, 𝐼} 

This function models the F-I curve, or activation function, characteristic of nerve cells. The 

values for 𝜃𝑌 and 𝑔𝑌  obey experimentally grounded relations (Jercog et al., 2017; Romero-

Sosa et al., 2020). The threshold for the excitatory population is set to 𝜃𝐸 = 4.8 while the 

inhibitory population has a greater threshold 𝜃𝐼 = 25. The gain of the inhibitory population 

𝑔𝐼 = 4 is also greater than the excitatory one 𝑔𝐸 = 1 as confirmed by experiments (Romero-

Sosa et al., 2020)  

 

Synaptic plasticity 

The four weights (WE←E, WE←I, WI←E, WI←I) follow homeostatic and homeostatic-like 

synaptic plasticity rules driven by the deviation of the excitatory and inhibitory population 

rates to their target setpoints (𝐸𝑠𝑒𝑡 and 𝐼𝑠𝑒𝑡). Three different learning rules are presented 

in this study.  
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Standard homeostatic family of rules:  

(5)    Δ𝑊𝐸𝐸 = +𝛼𝐸𝐸(𝐸𝑠𝑒𝑡 − 𝐸) 

           Δ𝑊𝐸𝐼 = −𝛼𝐸𝐼(𝐸𝑠𝑒𝑡 − 𝐸) 

           Δ𝑊𝐼𝐸 = +𝛼𝐼𝐸(𝐼𝑠𝑒𝑡 − 𝐼) 

           Δ𝑊𝐼𝐼 = −𝛼𝐼𝐼(𝐼𝑠𝑒𝑡 − 𝐼) 

Where the learning rates are 𝛼𝐸 = 𝑔𝐸𝛼 and 𝛼𝐼 = 𝑔𝐼𝛼, with 𝛼 = 0.00002. The setpoints 

follow experimental values previously characterized in (Romero-Sosa et al., 2020) (𝐸𝑠𝑒𝑡 =

5 and 𝐼𝑠𝑒𝑡 = 14). For Figure 5 two alternative pairs of setpoints were explored (𝐸𝑠𝑒𝑡 = 5 

and 𝐼𝑠𝑒𝑡 = 24) and (𝐸𝑠𝑒𝑡 = 10 and 𝐼𝑠𝑒𝑡 = 14).  

The exact formulation of the presented homeostatic rules can be recovered after a zeroth 

order approximation of a gradient descent derivation on the following loss function:  

(6)    𝐿 =
1

2
(𝐸 − 𝐸𝑠𝑒𝑡)2 +  

1

2
(𝐼 − 𝐼𝑠𝑒𝑡)2 

 
The mathematical derivation can be found in the Supplementary Material (Section 3). The 

configuration of setpoints follows a classic homeostatic formulation (Turrigiano et al., 

1998; Rossum et al., 2000; Liu and Buonomano, 2009a; Vogels et al., 2011), where every 

neural population adapts its input weights homeostatically in order to minimize its error 

term. It is proved in the Supplementary Material (Section 2.3) that these rules are 

inherently unstable for biologically meaningful parameter values in the context of 

inhibition-stabilized networks.  

Cross-homeostatic family of rules: 

(7)    Δ𝑊𝐸𝐸 = +𝛽(𝐼𝑠𝑒𝑡 − 𝐼) 

           Δ𝑊𝐸𝐼 = −𝛽(𝐼𝑠𝑒𝑡 − 𝐼) 

           Δ𝑊𝐼𝐸 = −𝛽(𝐸𝑠𝑒𝑡 − 𝐸) 

           Δ𝑊𝐼𝐼 = +𝛽(𝐸𝑠𝑒𝑡 − 𝐸) 

Where the learning rate is set to 𝛽 = 0.001. These rules represent non-standard forms of 

homeostatic plasticity, where each neural population adjusts its incoming weights to 

minimize the target setpoint of the presynaptic population. However, considering our 

population model, this formulation could be interpreted in a local manner: as the neurons 

minimizing the total presynaptic input current to a target setpoint. We note that an 

equivalent rule for 𝑊𝐼𝐸 has been recently derived by (Mackwood et al., 2020) and 

successfully implemented in its input current form in a multi-unit rate model. Different to 

(Mackwood et al., 2020), the cross-homeostatic rules were inspired by a first order 

approximation of a gradient descent derivation of the loss function presented in (6) (see 

Supplementary Material, Section 3). We further prove that these rules are inherently 
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stable (Supplementary Material, Section 2.4) and lead to balanced dynamics (Figure 5) 

in the context of inhibition-stabilized networks.  

Balanced-homeostatic family of rules:  

 

(8)    Δ𝑊𝐸𝐸 = +𝛾𝐸𝐸(𝐸𝑠𝑒𝑡 − 𝐸) 

           Δ𝑊𝐸𝐼 =
1

𝜏𝑃
(𝑓(𝑊𝐸𝐸) − 𝑊𝐸𝐼) 

           Δ𝑊𝐼𝐸 = −𝛾𝐼𝐼(𝐼𝑠𝑒𝑡 − 𝐼) 

           Δ𝑊𝐼𝐼 =
1

𝜏𝑃
(𝑔(𝑊𝐼𝐸) − 𝑊𝐼𝐼) 

Where:  

(9)    𝑓(𝑊𝐸𝐸) =
(𝐸𝑆𝑒𝑡𝑊𝐸𝐸 − 𝜃𝐸)𝑔𝐸 − 𝐸𝑆𝑒𝑡

𝐼𝑆𝑒𝑡𝑔𝐸
 

 

(10)   𝑔(𝑊𝐼𝐸) =
(𝐸𝑆𝑒𝑡𝑊𝐼𝐸 − 𝜃𝐼)𝑔𝐼 − 𝐼𝑆𝑒𝑡

𝐼𝑆𝑒𝑡𝑔𝐼
 

 

Where the learning rates are 𝛾𝐸 = 𝑔𝐸𝛼1 and 𝛾𝐼 = 𝑔𝐼𝛼2, with 𝛼1 = 0.002 and 𝛼2 = 0.00002. 

𝑊𝐸𝐸  and 𝑊𝐼𝐸 obey classic homeostatic forms of plasticity (neurons update their input 

weight based on their own setpoint), with 𝑊𝐼𝐸 being anti-homeostatic. The presynaptic 

term for 𝑊𝐼𝐸 , which should be E on the classic homeostatic formulation, was also 

changed to I to make the rule even more local. 𝑊𝐸𝐼 and 𝑊𝐼𝐼 slowly evolve towards a 

hardwired function of the homeostatic weights with a plasticity time constant 𝜏𝑃 = 100 

(trial units). The hardwired relationship (9) and (10), corresponds to the steady-state 

solution of the neural system when the inhibitory and excitatory rates are its target 

setpoints. The solution can be obtained by setting the left side of equations (1) and (2) to 

zero, and substitute the steady state 𝐸 and 𝐼 values by 𝐸𝑆𝑒𝑡  and 𝐼𝑆𝑒𝑡. It is thus a necessary 

condition for the system to be at its setpoints that a linear relationship (or balance) 

between the excitatory and inhibitory weights is obeyed. The slope of the line corresponds 

to the relation 𝐸𝑆𝑒𝑡/𝐼𝑆𝑒𝑡. The linear constraint is exploited to reduce the number of free 

weights following homeostatic learning rules.  

We prove that these rules are stable for a biologically meaningful set of parameter values, 
provided the neural subsystem satisfies its stability conditions (Supplementary Material, 
Section 2.5).  

All rules:  

For all simulations, the weights were updated after the completion of every trial. The trials 

last 2 seconds, except for for Figure 7 in which a 20 second trial period was implemented. 
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For our numerical simulations, 𝐸 and 𝐼 on every rule are implemented as average firing 

rates. The average of  𝐸 and 𝐼  is computed after every trial and then is low pass filtered 

by a process with a time constant 𝜏𝑡𝑟𝑖𝑎𝑙. We set 𝜏𝑡𝑟𝑖𝑎𝑙 = 2 for the homeostatic and cross-

homeostatic rules and 𝜏𝑡𝑟𝑖𝑎𝑙 = 10 for the balanced rule.  

In Figure 7, the average rate is linearly rectified by a hypothetical activity sensor (e.g., a 

calcium sensor) with threshold 1 Hz and gain 1. In this manner, only the rate during active 

periods was integrated.  

A minimum weight of 0.1 was set for all weights, except with the balanced rule, whose 

𝑊𝐸𝐸 and 𝑊𝐼𝐸 minimum obeys the value set by the linear relationship of the rule when 𝑊𝐸𝐼 

and 𝑊𝐼𝐼 are at its minimum 0.1 weight (eq. 9 and 10).  

A saturation to the excitatory and inhibitory firing rate was added for practical reasons, 

and set at 100 and 250 Hz respectively. It aided the visualization of the results of Figure 

5, where many experiments would have diverged towards infinity due to the instability of 

the homeostatic rule. Note the saturation is not necessary for the cross-homeostatic rule 

to be inherently stable as proved in the Supplementary Material.  

 

Data analysis and Software availability 

Data are represented by the mean ± SEM.  

In Figures 2, 3 and 6D, Figure 5 and Supplementary Figure 1 we randomly initialize the 

weights in between the following ranges:  

𝑊𝐸𝐸[4,7], 𝑊𝐸𝐼[0.5,2], 𝑊𝐼𝐸[7,13], 𝑊𝐼𝐼[0.5,2]  

Experimental and computational analysis were performed in custom-written MATLAB 

R2020a software. SageMath was used for the analytical proofs (see Supplementary 

Material). The MATLAB source code that reproduces Figures 2, 4, 6 and 7, and the 

Jupyter notebooks with SageMath code will be available at:  

https://github.com/BuonoLab/UpDev2020.git 
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Supplementary Figure 1. Balanced-homeostatic rules lead to stable balanced dynamics at the setpoints. 
(A) Weight trajectories for 100 different simulations with random weight initializations for the balanced-

homeostatic rules. Lines show trajectories from initial to final values (circles). 
(B) Final weight values for simulations with same starting conditions as in (A) but for additional homeostatic pairs 

of setpoints. Line 1: Eset=5, Iset=14; Line 2: Eset=5, Iset=28; Line 3: Eset=10, Iset=14.  Data shown in (A) 
corresponds to Line 1. Blue lines correspond to the theoretical linear relationship between the excitatory and 
inhibitory weights at a fixed point obeying Eset and Iset. The slope of the line is defined by the ratio of the 
setpoints.    

(C) Final rate for the excitatory and inhibitory population after balanced-homeostatic learning. The different bar 
plots correspond to the data shown in (B), where 3 different pairs of setpoints are tested.  
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