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Abstract 
The human ability to adaptively implement a wide variety of tasks is thought to emerge from the 
dynamic transformation of cognitive information. We hypothesized that these transformations 
are implemented via conjunctive representations in conjunction hubs – brain regions that 
selectively integrate sensory, cognitive, and motor representations. We used recent advances in 
using functional connectivity to map the flow of activity between brain regions to construct a 
task-performing neural network model from fMRI data during a cognitive control task. We 
verified the importance of conjunction hubs in cognitive computations by simulating neural 
activity flow over this empirically-estimated functional connectivity model. These simulations 
produced above-chance task performance (motor responses) by integrating sensory and task 
rule information in conjunction hubs. These findings reveal the role of conjunction hubs in 
supporting flexible cognitive computations, while demonstrating the feasibility of using 
empirically-estimated neural network models to gain insight into cognitive computations in the 
human brain. 
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Introduction 
The human brain exhibits remarkable cognitive flexibility. This cognitive flexibility enables 

humans to perform a wide variety of cognitive tasks, ranging from simple visual discrimination 
and motor control tasks, to highly complex context-dependent tasks. Key to this cognitive 
flexibility is the ability to use cognitive control, which involves goal-directed implementation of 
task rules to specify cognitive and motor responses to stimuli 1–3. Previous studies have 
investigated how task-relevant sensory, motor, and rule features are represented in the brain, 
finding that sensory stimulus features are represented in sensory cortices4,5, motor action 
features are represented in motor cortices6, while task rule features are represented in 
prefrontal and other association cortices3,7–10. However, exactly how and where in the brain 
different task representations mix to convert incoming stimuli to motor responses remains 
unclear11. In contrast, artificial neural network models (ANNs) can provide computationally 
rigorous accounts of how different task representations mix to implement cognitive 
computations12,13. Inspired by the formalization of ANNs, we constructed an 
empirically-estimated neural network (ENN) model from task fMRI data to provide insight into 
the representational transformations in the brain during a cognitive control task. 

The Flexible Hub theory provides a network account of how large-scale cognitive control 
networks implement flexible cognition by updating task rule representations14,15. While Flexible 
Hub theory primarily focuses on the importance of flexible rule updating for complex task 
performance, it does not specify how rules interact with incoming sensory stimulus activity. 
However, Flexible Hub theory was built upon the Guided Activation theory of prefrontal cortex – 
a seminal theory of the neural mechanisms underlying cognitive control – which posits that 
successful performance of a cognitive control task requires the selective mixing of task context 
with sensory stimulus activity3. The selective mixing of task context and sensory stimulus 
encoding activations would produce conjunctive (conditional association) activations that 
implement task rules on sensory stimuli. These conjunctive activations are thought to form 
through inter-area guided activations in “hidden units” located somewhere in association cortex, 
which we term conjunction hubs (Fig. 1a). The outputs of conjunction hubs then produce motor 
activations to produce task-appropriate behavior. Thus, by leveraging the notion in Guided 
Activation theory of interacting rule- and stimulus-guided neural activations (i.e., conjunctions), 
we built upon Flexible Hub theory to provide a brain implementation for flexible task control.  

We recently developed a method – activity flow mapping – that provides a framework for 
testing Guided Activation theory with empirical brain data 16. Activity flow mapping involves 
several steps. First, a network model is derived from empirically-estimated connectivity weights. 
Second, empirical task activations (e.g., activity patterns from sensory regions) are used as 
inputs to simulate the activity flow (i.e., propagating activity) within the brain network model. 
Finally, the predictions generated by simulated activity flow are tested against independent 
empirical brain activations for model validation. Here we used activity flow mapping to test 
whether putative conjunction hubs could implement the context-dependent transformations of 
task-rule and stimulus activations necessary to produce accurate behavioral (motor) activations 
in a 64-context cognitive paradigm. 
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We sought a principled approach to identify brain areas that form the conjunctive 
activations to produce flexible behavior. Recent studies have successfully used ANNs to probe 
the emergence of representational transformations in cognitive tasks12,13,17. Importantly, the 
representational geometry of ANNs has often converged with the geometry of neural 
representations18–20, suggestive of the utility of ANNs in investigating task representations in the 
brain. Inspired by these previous studies, we constructed a feedforward ANN to investigate how 
conjunctive representations emerged through the transformation of task context and stimulus 
input activations during the 64-context cognitive paradigm. After identifying the representational 
geometry of task-context and stimulus conjunctions in the ANN, we identified brain regions – 
conjunction hubs – with similar conjunctive representations in fMRI data. The identification of 
brain regions selective for task rules, sensory stimuli, motor responses, and conjunctions, made 
it possible to construct an ENN and empirically test Guided Activation theory with activity flow 
mapping over data-constrained functional connections. We found that behavioral activations (in 
motor cortices) could be predicted through the formation of conjunctive activations through 
activity flow guided by task rule and sensory stimulus activations. 

To summarize, we empirically tested Guided Activation theory by constructing a 
task-performing ENN during a 64-task cognitive paradigm. This ENN was constructed directly 
from fMRI data, and illustrated the importance of conjunction hubs in facilitating representational 
transformations. This contrasts with many possible alternative hypotheses, such as the 
possibility that representations are transformed directly from task input areas (e.g., sensory 
systems) to motor cortices, bypassing association areas. We first identified brain areas selective 
to different task components, namely task rules, sensory stimuli, motor responses, and 
conjunctions. These areas formed the spatial areas/layers of the ENN, which are conceptually 
similar to layers in a feedforward ANN. Next, in contrast to ANNs, which often use supervised 
learning to estimate connectivity weights between layers, we show that activations in ENNs can 
be transformed via activity flow over functional connectivity (FC) weights estimated from 
resting-state fMRI (Fig. 1d). This resulted in a task-performing, ENN model that transforms 
stimulus and task-rule fMRI activations into response activations in motor cortex during a flexible 
cognitive control task. Critically, the transformations implemented by the ENN were carried out 
without classic optimization approaches such as gradient learning, demonstrating that the 
intrinsic architecture of the resting brain is suitable for implementing representational 
transformations. Together, these findings illustrate the computational relevance of functional 
network organization and the importance of conjunctive representations in supporting flexible 
cognitive computations in the human brain. 
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Figure 1. Leveraging Guided Activation theory to inspire ENN models of cognitive computation 
during task-based fMRI. a) A modified version of the Guided Activation theory of prefrontal cortex, 
highlighting a potential key role for conjunction hubs. Guided Activation theory posits that sensory cortices 
(left), which contain sensory stimulus-related activations, and prefrontal areas (top), which contain task 
context activations, integrate in association cortex to produce conjunctive activations through patterns of 
guided activations. Conjunctive activations are then guided to motor areas to generate motor response 
activations for task behavior. b) Guided Activation theory can be reconceptualized in a connectionist 
framework. This provides a formalization of how flexible sensorimotor transformations may be 
implemented computationally. The formalization involves the task context and sensory stimuli 
representing the input layer, the association units representing a hidden layer, and the behavioral (motor) 
responses as the output layer. c) Testing Guided Activation theory using task fMRI data collected in 
humans during context-dependent tasks. Using quantitative methods, we empirically test how different 
task activations (e.g., sensory stimuli and task context) form conjunctive activations to produce motor 
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response activations using activity flow mapping 16 . d) Guided Activation theory can be empirically tested 
by projecting multivariate task activations between brain areas by estimating inter-area FC weight 
mappings obtained from resting-state fMRI data . Based on the activity flow principle 16 , we estimated 
inter-vertex mappings using regression (see Methods) on resting-state fMRI data. This approach identifies 
a projection that maps across distinct spatial units in empirical data, similar to how inter-layer weights 
propagate activity across layers in a feedforward ANN. 

Results 

Identifying brain areas containing task-relevant information 
Flexible Hub theory posits that rapid updates to rule representations facilitate flexible 

behavior, while Guided Activation theory3 states that sensory stimulus and task rule activations 
integrate in association cortex to form conjunctive representations (Fig. 1a,c). Thus, due to its 
comprehensive assessment of rule-guided sensorimotor behavior across 64 task contexts, we 
used the Concrete Permuted Rule Operations (C-PRO) task paradigm5 to test both theories 
(Fig. 2a). Briefly, the C-PRO paradigm is a highly context-dependent cognitive control task, with 
12 distinct rules that span three rule domains (four rules per domain; logical gating, sensory 
gating, motor selection). These rules were permuted within rule domains to generate 64 unique 
task contexts, and up to 16384 unique trials possibilities (with various stimulus pairings; see 
Methods).  

 

 
Figure 2. The Concrete Permuted Rule Operations (C-PRO) task paradigm 8 . For a given trial, 
subjects were presented with a task rule set (context), in which they were presented with three rules 
sampled from three different rule domains (i.e., logical gating, sensory gating, and motor selection 
domains). After a delay period, subjects applied the task rule set to two consecutively presented sensory 
stimuli (simultaneous audio-visual stimuli) and responded accordingly with button presses (index and 
middle fingers on either hand). We employed a miniblock design, in which for a given task rule set, three 
trials were presented separated by an inter-trial interval (1570ms). See Methods for additional details.  
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To test both Flexible Hub and Guided Activation theories, we needed to identify the set 

of regions responsive to different task components (sensory stimuli, task context, motor 
responses, and conjunctions). We first identified the set of cortical areas that contained 
decodable sensory stimulus representations (Fig. 3a). Because our stimuli were multimodal 
(audiovisual), this involved the identification of surface vertices that contained the relevant visual 
(color and orientation) and auditory (pitch and continuity) dimensions. We performed a four-way 
multivariate pattern analysis21 (using a minimum-distance classifier22) to decode stimulus pairs 
for each of the four stimulus dimensions (e.g., red-red vs. red-blue vs. blue-red vs. blue-blue). 
Decoding analyses were performed within each brain parcel using the Glasser et al. atlas23, 
using vertices within each parcel as decoding features. For all decoding analyses, statistical 
thresholding was performed using a one-sided binomial test (greater than chance=25%), and 
corrected for multiple comparisons using an FDR-corrected p<0.05 threshold. We collectively 
defined the units in the ENN (i.e., vertices) that contained sensory stimulus information to be the 
set of all vertices within the parcels that contained decodable stimulus information (Fig. 3f; 
Supplementary Tables 1-4). 
 

 
Figure 3. Identifying sensory stimulus input units (vertices) of the ENN using multivariate pattern 
classification analysis. a) We identified the sensory stimulus representations in empirical data using 
multivariate pattern decoding of stimulus activations. This corresponded to the sensory input component 
of Guided Activation theory. To decode visual features (i.e., color and orientation stimulus features) we 
decoded the vertices within each parcel in the visual network using a recent functional network atlas24 . To 
decode auditory features (i.e., pitch and continuity) we decoded the vertices within each parcel in the 
auditory network (see Methods). b) Decoding of color features using task activation estimates (from a 
task GLM) during the stimulus presentation period of the C-PRO task. Chance was 25%; cortical maps 
were thresholded using an FDR-corrected threshold of p<0.05. c)  4-way decoding of orientation features. 
d) 4-way decoding of auditory pitch features. e) 4-way decoding of auditory continuity features. f) The 
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ENN sensory units, which were derived from a mask of the vertices that could successfully decode 
stimulus features. 
 

Next, we performed a 12-way decoding analysis – isolated to the fMRI activation during 
the task instruction period – across all 12 task rules to identify the set of vertices that contained 
task rule information. Our previous study illustrated that rule representations are widely 
distributed across cortex8, such that we tested for rule representations in every parcel in the 
Glasser et al. atlas (360 total parcels23). We again found that task rule representations were 
widely distributed across cortex (Fig. 4b; FDR-corrected p<0.05 threshold; Supplementary Table 
6). The set of vertices that survived statistical thresholding were included as “task rule” input 
units in the ENN (Fig. 1c).  

The C-PRO task paradigm required button presses (using index and middle fingers on 
either hand) to indicate task responses. Thus, to isolate finger representations in empirical 
neural data, we performed a univariate contrast of the vertex-wise response-evoked activation 
estimates during index and middle finger response windows (see Methods). For each hand, we 
performed a two-sided paired t-test (paired across subjects) for middle versus index finger 
responses in the somatomotor network24. Contrast maps were corrected for multiple 
comparisons (comparisons across vertices) using an FDR-corrected threshold of p<0.05 (Fig. 
4c). Vertices that survived statistical thresholding were then selected for use as output units in 
the ENN (Fig. 1c). 

 
 

 
Figure 4. Identifying ENN units (i.e., fMRI vertices) containing relevant task rule (context) and 
motor response (behavior) representations. a) We identified the task rule input and motor output 
representations in empirical data using MVPA and univariate task activation contrasts. b) A 12-way 
decoding of each of the task rules (across the 3 rule domains) using task activations (estimated from a 
task GLM) during the encoding period of the C-PRO task. We applied this 12-way decoding to every 
parcel, given that task rule representations have been previously shown to be widely distributed across 
cortex8 . Chance decoding was 8.33%; statistical maps were thresholded using an FDR-corrected p<0.05 
threshold. c) To identify the motor/output representations, we performed a univariate contrast, contrasting 
the middle versus index finger response activations for each hand separately. Finger response activations 
were estimated during the response period, and univariate contrasts were performed on a vertex-wise 
basis using all vertices within the somatomotor network24 . Contrast maps were statistically thresholded 
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using an FDR-corrected p<0.05 threshold. The resulting finger representations matched the placement of 
finger representations in the well-established somatomotor homunculus in the human brain. 
 

Identifying conjunction hubs 
We next sought to identify conjunctive representations that could plausibly implement the 

transformation of input to output activations across the 64 task contexts (Fig. 5a). However, we 
were uncertain as to what sorts of activation patterns (i.e., representations) we would expect in 
putative conjunction hubs. Thus, we began by building an ANN that formalizes Guided 
Activation theory (Fig. 1b). We trained the ANN model on an analogous version of the C-PRO 
task until the model achieved 99.5% accuracy (see Methods). We were specifically interested in 
characterizing the representations in the hidden layer, since these activations necessarily 
integrated task rule and sensory stimulus activations (i.e., conjunctions). To identify the task rule 
and sensory stimulus conjunctive representations, we performed a representational similarity 
analysis (RSA) on the hidden layer of the ANN22. The representational similarity matrix (RSM) of 
the hidden layer consisted of 28 task activation features: 12 task rules (which spanned the 3 
rule domains), and 16 stimulus pairings (which spanned each sensory dimension). We then 
compared the RSM of the ANN’s hidden units (Fig. 5b) to RSMs of each brain region in the 
empirical fMRI data (Fig. 5c). This provided a map of brain regions with similar representations 
to those of the ANN’s hidden units, which contain the conjunction of task rule and sensory 
stimulus activations. 
 

 
Figure 5. Identifying conjunction hubs: brain areas (vertices) that contain task-relevant 
conjunctions of sensory stimulus and task rule activations. a) Guided Activation theory states that 
there exist a specific set of association (or hidden) areas that integrate sensory stimulus and task context 
activations to select appropriate motor response activations. Computationally, this corresponded to the 
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2nd hidden layer in our ANN implementation (see Methods). b) We therefore used the representational 
similarity matrix (RSM) of the ANN’s hidden layer as a blueprint to identify analogous conjunctive 
activations in empirical data. c) We constructed RSMs for each brain parcel (using the vertices within 
each parcel as features). We evaluated the correspondence between the representational geometry of 
the ANN’s 2nd hidden layer and each brain parcel’s representational geometry. Correspondence was 
assessed by taking the correlation of the upper triangle of the ANN and empirical RSMs. d) The 
representational similarity of ANN hidden units and each brain parcel. e) We showed the top 10 regions 
with highest similarity to the ANN hidden units. f) The full ENN architecture for the C-PRO task. We 
identified the vertices that contained task-relevant rule, sensory stimulus, conjunctive, and motor output 
activations. 
 

To evaluate the similarity of the ANN’s hidden representational geometry with each brain 
parcel, we computed the similarity (using Spearman’s correlation) of the ANN’s RSM with the 
brain parcel’s RSM (Fig. 5c). This resulted in a cortical map, which showed the representational 
similarity between each brain region and the ANN’s hidden representations (Fig. 5d). For our 
primary analysis, we selected the top 10 parcels with highest similarity to the ANN’s hidden units 
to represent the set of spatial units that contain putative conjunctive activations in the ENN (Fig. 
5e). The conjunction hubs were most strongly represented by the cingulo-opercular network, a 
network previously reported to be involved in task set maintenance (Supplementary Fig. 2; 
Supplementary Table 5)25. However, we also performed ENN simulations using the top 20, 30, 
and 40 regions with highest similarity to the ANN hidden units below. 
 
 

Task-performing neural network simulations via empirical connectivity 
The previous sections provided the groundwork for constructing an ENN model from 

empirical data. After estimating the connectivity weights between the surface vertices between 
ENN layers using resting-state fMRI (see Methods), we next sought to evaluate whether we 
could use this ENN to produce representational transformations sufficient for performing the 
C-PRO paradigm. This would demonstrate that the empirical input activations (task rule and 
sensory stimulus activations) and the estimated connectivity patterns between ENN layers are 
sufficient to approximate the cognitive computations involved in task performance. 

The primary goal was to predict the motor response activation pattern (i.e., behavior) 
yielding correct task performance. The only inputs to the model were a combination of activation 
patterns for a specific task context (rule combination) and sensory stimulus pair sampled from 
empirical data (Fig. 6a). The outputs of the model were the predicted motor response activation 
pattern in motor cortex that should correspond to the correct button press (Fig. 6c). High 
correspondence between the predicted and actual motor activation patterns would constitute an 
empirical identification of representational transformation in the brain, where task rule and 
sensory stimulus activity is transformed into task-appropriate motor response activation 
patterns. 
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Figure 6. Simulating context-dependent sensorimotor transformations with empirically-estimated 
task activations and inter-unit functional connectivity estimates. We constructed the ENN by 
identifying the vertices that contained task rule, sensory stimulus, and motor response activations (via 
decoding) and by estimating the resting-state FC weights between them. a) The input layer, consisting of 
vertices with decodable task rule and sensory stimulus activations. b) Through activity flow mapping, 
input representations were mapped onto surface vertices in conjunction hubs. The activity flow-mapped 
vertices were passed through a nonlinearity, which removed any negative values. This threshold was 
chosen given the difficulty in interpreting predicted negative BOLD values. c) The predicted conjunctive 
representations were then activity flow-mapped onto the motor output vertices, generating a predicted 
motor activation pattern. d) These predicted motor activations were then tested against the actual motor 
response activations of other subjects using a leave-8-subject out cross validation scheme. A decoder 
was trained on the predicted motor response activations and tested on the actual motor response 
activations of the held-out cohort (see Methods and Supplementary Fig. 1). e) An equation summarizing 
the ENN model’s computations. 
 

Simulating activity flow in the ENN involved first extracting the task rule activation 
patterns (inputs) for a randomly generated task context (see Methods and Supplementary Fig. 
1). Independently, we sampled sensory stimulus activation patterns for each stimulus dimension 
(color, orientation, pitch, continuity) (Fig. 3). Then, using activity flow mapping with resting-state 
FC weights, we projected the activation patterns from the input vertices onto the conjunction 
hub vertices (Fig. 6b). The predicted conjunction hub activation pattern was then passed 
through a simple rectified linear function, which removed any negative values (i.e., any values 
lower than resting-state baseline; see Methods). Thresholded values were then projected onto 
the output layer vertices in motor cortex (Fig. 6c), yielding a predicted response activation 
pattern. The sequence of computations performed to generate a predicted motor activation 
pattern (Fig. 6a-c) is encapsulated by the equation in Fig. 6e. Thus, predicted motor activation 
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patterns can be generated by randomly sampling different task context and sensory stimuli 
activations for each subject. 

While the above procedure yielded a predicted activation pattern in the motor output 
layer, these predictions may not actually yield meaningful activation patterns. Thus, we 
evaluated whether the predicted motor activation patterns would accurately predict the actual 
motor response activation pattern extracted (via GLM) during the response period. Activity flow 
simulations generated predicted motor responses for each subject (Supplementary Fig. 1). This 
yielded four predicted motor response activations per subject, one for each behavioral 
response. Importantly, the predicted motor response activations were generated using only 
input task activations from the task encoding period and stimulus presentation period (Fig. 6a). 
Independently, each subject also had four corresponding real motor response activations, which 
were estimated from the task GLM during the response period. Using a leave-8-subjects out 
cross-validation scheme, we trained a decoder on the four predicted motor responses and 
decoded the four actual motor responses (Fig. 6c,d). Training a decoder on the predicted 
activations and decoding the actual activations (rather than vice versa) made this analysis more 
in line with a prediction perspective – we could test if, in the absence of any motor task 
activation information, the ENN could predict actual motor response activation patterns that 
correspond to correct behavior. 

We note that this decoding analysis is highly non-trivial, given that the predicted motor 
responses are independent from the test set (actual motor responses) in three ways: 1) The 
predicted motor responses were generated from task rule and stimulus activation patterns, 
which (due to temporal separation in the task paradigm and counterbalancing) were statistically 
independent from the motor responses; 2) The motor response predictions were generated via 
activity flow mapping, and thus from a spatially independent set of vertices (see Methods); 3) 
The actual motor responses in the test set were sampled from independent subjects. By 
simulating neural network computations from stimulus and task context activations to predict 
motor response, we accurately decoded the correct finger response on each hand separately: 
decoding accuracy of right hand responses = 64.00%, non-parametric p=0.004; decoding 
accuracy of left hand responses = 79.81%, non-parametric p<0.001. These results demonstrate 
that task rule and sensory stimulus activations can be transformed into motor output activations 
by simulating multi-step neural network computations using activity flow mapping on empirical 
fMRI data. 

The importance of the conjunctive representations 
We next evaluated whether specific components of the ENN model were necessary to 

produce accurate stimulus-response transformations. We first sought to evaluate the role of the 
conjunction hubs (hidden layer) in model performance. This involved re-running the ENN with 
the conjunction hubs removed (Fig. 7c), which required resting-state FC weights to be 
re-estimated between the input and motor output layer directly. We found that the removal of 
conjunction hubs severely impaired task performance to chance accuracy (RH 
accuracy=49.05%, p=0.54; LH accuracy=50.14%, p=0.46; Fig. 7h,i). This illustrated the 
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importance of conjunction hub computations in producing the conjunctive activations required to 
perform context-dependent stimulus-response mappings15. 
 

 
Figure 7. Systematic alteration of ENN model architecture verifies validity of “full S-R model” 
results. a) We first benchmarked the motor response decoding accuracy for each hand separately using 
a standard cross-validation scheme on motor activation patterns for each hand (tested across subjects). 
This standard motor decoding was done independently of modeling sensorimotor transformations. b) The 
full stimulus-response model, taking stimulus and context input activations to predicting motor response 
patterns in motor cortex. c) The ENN model after entirely removing the hidden layer. d) The ENN model, 
where we randomly sampled regions in the hidden layer (conjunction hubs) 1000 times and estimated 
task performance. e) The ENN model after removing the nonlinearity (ReLU) function in the hidden layer. 
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f) The ENN model after lesioning connections from the task context input activations. g) The ENN model, 
where we shuffled the connectivity patterns from the stimulus and context layers 1000 times. h) 
Benchmarking the performances of all model architectures. Accuracy distributions were obtained by 
bootstrapping samples (leave-8-out cross-validation scheme and randomly sample within the training set). 
Boxplot whiskers reflect the 95% confidence interval. Grey distributions indicate the null distribution 
generated from permutation tests (permuting labels 1000 times). (*** = p<0.001; ** = p<0.01; * = p<0.01) 
i) Summary statistics of model performances. Reported accuracies are the mean of the bootstrapped 
samples. 

 
We next replaced conjunction hubs with randomly sampled parcels in empirical data. 

This assessed the importance of using the ANN’s hidden layer RSM to identify conjunction hubs 
in data (Fig. 7d). We sampled random parcels 1000 times, recomputing the inter-layer 
vertex-wise FC each time. The distribution of randomly selected conjunction hubs did not yield 
task performance accuracies that were statistically different than chance for both hands (RH 
mean accuracy=50.87%, p= 0.47; LH mean accuracy 50.85%, p=0.44; Fig. 7h,i). However, the 
overall distribution had high variance, indicating that there may be other sets of conjunction 
hubs that would yield above-chance (if not better) task performance. However, compared to the 
conjunction hubs we identified by matching empirical brain representations with ANN 
representations, we found that the ANN-matched conjunction hubs performed better than 85.2% 
of all randomly selected conjunction hubs for RH responses, and greater than 97.7% of all 
randomly selected conjunction hubs for LH responses. 

In addition, we evaluated whether the precise number of hidden regions was critical to 
task performance. We ran the full ENN model, but instead of using only the top 10 regions with 
highest similarity to the ANN’s hidden layer’s representations, we constructed ENN variants 
containing the top 20, 30, and 40 hidden regions. We found that we were able to reproduce 
correct task performance using 20 hidden regions (RH accuracy=63.90%, p<0.001; LH 
accuracy=76.95%, p<0.001). Using 30 hidden regions yielded reduced yet above-chance 
accuracies for RH responses, but not for LH responses (RH accuracy=59.83%, p=0.024; LH 
accuracy=43.54%, p=0.917). Inclusion of an additional 10 hidden regions (totaling 40 hidden 
regions) did not yield above-chance predictions of motor responses for either hand. These 
results suggest that conjunction hubs were better identified the greater the similarity of a 
region’s representational geometry was to that of the ANN’s hidden layer.  

The importance of nonlinearities when combining rule and stimulus 
activations 

We next removed the thresholding of negative BOLD values (i.e., those lower than 
resting baseline) in the hidden layer. This is conceptually similar to removing nonlinearities in an 
ANN (Fig. 7e). We found that the removal of the ReLU function significantly impaired model 
performance (RH accuracy=47.74%, p=0.70; LH=47.90%, p=0.692; Fig. 7h and 7i). This is likely 
due to the fact that context-dependent sensorimotor transformations require a nonlinear 
mapping between stimulus-response pairs, as predicted by prior computational studies26,27. 
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Removing task context impairs task performance 
We next sought to evaluate the importance of including task rule activations in model 

performance. To remove context information, we lesioned all connections from the rule input 
layer to the hidden layer. This was achieved by setting all resting-state FC connections from the 
context input layer to 0 (Fig. 7f). We ran the model on the exact same set of tasks, and found 
that as hypothesized, model performance was at chance without task context information (RH 
accuracy=50.00%, p=0.44; LH=50.00%, p=0.47; Fig. 7h,i). This illustrated that the model 
implemented a representational transformation from task context and sensory stimulus 
representations to the correct motor responses. 

The influence of specific functional network topography 
We next evaluated whether the empirically-estimated connectivity topography was 

critical to successful task performance. This involved shuffling the connectivity weights within 
the context and stimulus input layers 1000 times (Fig. 7g). While we hypothesized that the 
specific resting-state FC topography would be critical to task performance, we found that 
shuffling connectivity patterns yielded a very high variance distribution of task performance (Fig. 
7h). While the mean across all connectivity shuffles were approximately at chance for both 
hands (RH mean accuracy=50.90%, p=0.45; LH mean accuracy=50.39%, p=0.48), we found 
that there were some connectivity configurations that would significantly improve task 
performance, and other connectivity configurations that would yield significant below chance 
task performance. Notably, the FC topography that was estimated from resting-state fMRI (the 
full S-R model, without shuffling; Fig. 7b) performed greater than 85.3% of all connectivity 
reconfigurations in RH responses, and greater than 97.7% of all connectivity reconfigurations for 
LH responses. This indicates that while there may exist better connectivity patterns for task 
performance, the weights derived from resting-state fMRI were sufficient to model correct task 
performance. We note that while the distribution of performance accuracies when shuffling FC 
weights and randomly sampling hidden layers are quite similar, these two permutation analyses 
control for fundamentally distinct properties of the ENN: specificity of FC topography versus 
specificity of conjunction hubs. 

Discussion 
Characterizing how different cognitive activations are transformed throughout the brain 

would fill a critical gap in understanding how the brain implements cognitive computations28–30. 
To address this gap, we built a task-performing ENN from empirical data to characterize 
representational transformations during a cognitive control task. First, we identified brain 
vertices that were selective for task rules, sensory stimuli, motor responses, and conjunctions. 
Second, we mapped resting-state FC weights between these areas using multiple linear 
regression. Finally, using activity flow mapping, we found that incoming sensory and task rule 
activations were transformed via conjunction hubs to produce above-chance behavioral 
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predictions of outgoing motor response activations. These findings suggest that flexible 
cognitive control is implemented by guided activations, as originally suggested by Guided 
Activation theory3. 

The present results build on Flexible Hub theory and other findings emphasizing the role 
of cognitive control networks (CCNs) in highly flexible cognition 1,25,31,32. Consistent with previous 
accounts, we found that the task rule layer and conjunction hubs are most strongly affiliated with 
CCNs (e.g., cingulo-opercular and frontoparietal networks) (Supplementary Fig. 2)25,31. 
(However, we note that other functional networks also represented task rules, though to a lesser 
extent.) In addition, several studies of rapid instructed task learning found that CCNs represent 
rules compositionally in activity7,10,32 and FC14,15 patterns, which are considered essential for 
flexible reuse of task components10,12,14. The present results also demonstrate that the CCN and 
other networks use compositional rule representations, since the ENN rule activation inputs 
contained three rules whose fMRI activity patterns were added compositionally to create the full 
task context. Critically, however, we found that these compositional codes were not enough to 
implement flexible task performance – rather, conjunctive representations were required to 
interact non-linearly with these compositional representations. Moreover, our results showed 
that without conjunctive representations producing conditional interactions (e.g., through 
conjunction hub lesioning), the task performance of the ENN was substantially impaired. It will 
be important for future research to determine the exact relationship between compositional and 
conjunctive representations in implementing flexible cognitive programs. 

The ENN characterized the representational transformations required to transform task 
input activations to output activations (in motor cortex) directly from data. Model parameters, 
such as unit identification and inter-unit connectivity estimation, were estimated without 
optimizing for task performance. This contrasts with mainstream machine learning techniques 
that iteratively train ANNs that directly optimize for behavior12,17,18,33,34. Our approach enabled the 
construction of functioning ENNs with above-chance task performance without optimizing for 
behavior; instead, we were able to derive parameters from empirical neural data alone. These 
results suggest that the human brain’s intrinsic network architecture, as estimated with human 
fMRI data, is informative regarding the design of task-performing functioning models of cognitive 
computation.  

We showed that the specific FC topography could predict inter-area transformations. In 
contrast, shuffling these specific inter-area FC topographies yielded ENNs with highly variable 
task performances, suggesting the computational utility of the empirically-estimated FC patterns. 
Previous work has illustrated that the functional network architecture of the brain emerges from 
a structural backbone 35–39. Building on this work, we recently proposed that the functional 
network architecture of the brain can be used to build network coding models – models of brain 
function that describe information encoding and decoding processes constrained by 
empirically-estimated connectivity40. Related proposals have also been suggested in the 
electron microscopy connectomics literature, suggesting that structural wiring diagrams of the 
brain (e.g., in drosophila) can inform functional models of biological systems (e.g., the 
drosophila’s visual system)44,47. Consistent with these proposals, our findings establish that the 
intrinsic functional network architecture in humans provides a meaningful foundation from which 
to implement cognitive computations. 
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Despite strong evidence that the estimated functional network model can perform tasks, 
there are several theoretical and methodological limitations. First, though we perform numerous 
control analyses by either lesioning or altering the ENN architecture (Fig. 7), the space of 
alternative possible models that can potentially achieve similar (if not better) task performances 
is large. For example, here we assumed only a single hidden layer (one layer of ‘conjunction 
hubs’). However, it is possible – if not probable – that such transformations actually involve a 
large sequence of transformations, similar to how the ventral visual stream transforms visual 
input into object codes, from V1 to inferior temporal cortex18,19. It is therefore likely that the 
identification of conjunction hubs is likely dependent on both specific task demands and the 
targeted level of analysis (e.g., neuronal circuits versus large-scale functional networks). Here 
we opted for the simplest possible network model that involved conjunction hubs at the level of 
large-scale functional networks. Starting from this simple model allowed us to reduce potential 
extraneous assumptions and model complexity (such as modeling the extraction of stimulus 
features from early visual areas) which likely would have been necessary in more complex and 
detailed models. However, the current findings provide a strong foundation for future studies to 
unpack the mechanisms of finer-grained computations important for adaptive behavior. 

Another assumption in the ENN was that activations were guided by additive connectivity 
weights. Additive connectivity weights assume inter-area predicted activations are the sum of 
source activations weighted by connections. One potential alternative (among others) would 
have been multiplicative guided activations; weighted activations that are multiplied (rather than 
summed) from incoming areas, which has been previously proposed as a potential alternative to 
designing ANNs42. However, several recent studies have suggested that inter-area activations 
are predicted via additive connectivity weights in both human fMRI8,16, the primate visual 
system20, and the drosophila’s visual system39. Nevertheless, it will be important for future work 
to systematically test alternative network architectures and dynamics in producing functional 
ENN models.  

Finally, another limitation is that we constructed an ENN model that did not model 
realistic dynamics. Typical experimental paradigms include separate intervals for encoding, 
delay, stimulus, and response periods, since cognitive processing occurs over time. Here, we 
did not explicitly model temporal dynamics based on the empirical data when simulating the 
ENN. (However, we note that activation estimates for different task components, such as task 
encoding and stimulus presentation, were obtained from temporally distinct intervals.) 
Nevertheless, though it is likely that temporal dynamics (with recurrent feedback) likely play a 
role in shaping cognitive computations, we illustrate here that simple dynamics (i.e., rules + 
sensory inputs → conjunction hubs → motor outputs) involving the interplay of static activations 
are sufficient to model representational transformations. It will be important for future studies to 
construct task-performing brain models that can simulate temporal and recurrent dynamics 
constrained by empirical data, as this can provide a more detailed computational account of the 
representational transformations that contribute to behavioral variability. 

In conclusion we constructed an ENN model capable of performing adaptive cognitive 
control tasks. This model provides strong evidence for the well-known Guided Activation theory 
by providing a computational implementation of the theory that is directly estimated from 
empirical data. We first identified the relevant brain representations associated with different 
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task features. We then used an ANN to identify conjunction hubs that were critical to the 
selective integration of task input information for motor response selection. Finally, by estimating 
FC patterns from resting-state fMRI data, we parameterized a network model to generate 
predictive stimulus-to-response transformations using activity flow mapping. We expect that 
these findings will drive new investigations into characterizing the neural implementation of 
cognitive computations, providing dual insight into how the brain implements cognitive 
processes and how such knowledge can inform the design of ANN architectures. 

Methods 

Participants 
Data were collected from 106 human participants across two different sessions (a 

behavioral and an imaging session). Participants were recruited from the Rutgers 
University-Newark community and neighboring communities. Technical error during MRI 
acquisition resulted in removing six participants from the study. Four additional participants were 
removed from the study because they did not complete the behavior-only session. fMRI analysis 
was performed on the remaining 96 participants (54 females). All participants gave informed 
consent according to the protocol approved by the Rutgers University Institutional Review 
Board. The average age of the participants that were included for analysis was 22.06, with a 
standard deviation of 3.84. Additional details regarding this participant cohort have been 
previously reported 43. 

C-PRO task paradigm 
We used the Concrete Permuted Operations (C-PRO) paradigm (Fig. 2a) during fMRI 

acquisition, and used a computationally analogous task when training our ANN model. The 
details of this task are described below, and are adapted from a previous study8. 

The C-PRO paradigm is a modified version of the original PRO paradigm introduced in 
Cole et al., (2010)44. Briefly, the C-PRO cognitive paradigm permutes specific task rules from 
three different rule domains (logical decision, sensory semantic, and motor response) to 
generate dozens of novel and unique task contexts. This creates a context-rich dataset in the 
task configuration domain akin in some ways to movies and other condition-rich datasets used 
to investigate visual and auditory domains5. The primary modification of the C-PRO paradigm 
from the PRO paradigm was to use concrete, sensory (simultaneously presented visual and 
auditory) stimuli, as opposed to the abstract, linguistic stimuli in the original paradigm. Visual 
stimuli included either horizontally or vertically oriented bars with either blue or red coloring. 
Simultaneously presented auditory stimuli included continuous (constant) or non-continuous 
(non-constant, i.e., “beeping”) tones presented at high (3000Hz) or low (300Hz) frequencies. 
Fig. 2a demonstrates two example task-rule sets for “Task 1” and “Task 64”. The paradigm was 
presented using E-Prime software version 2.0.10.353 45. 
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Each rule domain (logic, sensory, and motor) consisted of four specific rules, while each 
task context was a combination of one rule from each rule domain. A total of 64 unique task 
contexts (4 logic rules x 4 sensory rules x 4 motor rules) were possible, and each unique task 
set was presented twice for a total of 128 task miniblocks. Identical task sets were not 
presented in consecutive blocks. Each task miniblock included three trials, each consisting of 
two sequentially presented instances of simultaneous audiovisual stimuli. A task block began 
with a 3925 ms instruction screen (5 TRs), followed by a jittered delay ranging from 1570 ms to 
6280 ms (2 – 8 TRs; randomly selected). Following the jittered delay, three trials were presented 
for 2355 ms (3 TRs), each with an inter-trial interval of 1570 ms (2 TRs). A second jittered delay 
followed the third trial, lasting 7850 ms to 12560 ms (10-16 TRs; randomly selected). A task 
block lasted a total of 28260 ms (36 TRs). Subjects were trained on four of the 64 task contexts 
for 30 minutes prior to the fMRI session. The four practiced rule sets were selected such that all 
12 rules were equally practiced. There were 16 such groups of four task sets possible, and the 
task sets chosen to be practiced were counterbalanced across subjects. Subjects’ mean 
performance across all trials performed in the scanner was 84% (median=86%) with a standard 
deviation of 9% (min=51%; max=96%). All subjects performed statistically above chance (25%). 

fMRI acquisition and preprocessing 
The following fMRI acquisition details is taken from a previous study that used the 

identical protocol (and a subset of the data)8. 
Data were collected at the Rutgers University Brain Imaging Center (RUBIC). 

Whole-brain multiband echo-planar imaging (EPI) acquisitions were collected with a 32-channel 
head coil on a 3T Siemens Trio MRI scanner with TR=785 ms, TE=34.8 ms, flip angle=55°, 
Bandwidth 1924/Hz/Px, in-plane FoV read=208 mm, 72 slices, 2.0 mm isotropic voxels, with a 
multiband acceleration factor of 8. Whole-brain high-resolution T1-weighted and T2-weighted 
anatomical scans were also collected with 0.8 mm isotropic voxels. Spin echo field maps were 
collected in both the anterior to posterior direction and the posterior to anterior direction in 
accordance with the Human Connectome Project preprocessing pipeline 49. A resting-state scan 
was collected for 14 minutes (1070 TRs), prior to the task scans. Eight task scans were 
subsequently collected, each spanning 7 minutes and 36 seconds (581 TRs). Each of the eight 
task runs (in addition to all other MRI data) were collected consecutively with short breaks in 
between (subjects did not leave the scanner). 

fMRI Preprocessing 
The following details are adapted from a previous study that used the same 

preprocessing scheme on a different data set50. 
Resting-state and task-state fMRI data were minimally preprocessed using the publicly 

available Human Connectome Project minimal preprocessing pipeline version 3.5.0. This 
pipeline included anatomical reconstruction and segmentation, EPI reconstruction, 
segmentation, spatial normalization to standard template, intensity normalization, and motion 
correction 64. After minimal preprocessing, additional custom preprocessing was conducted on 
CIFTI 64k grayordinate standard space for vertex-wise analyses using a surface based atlas23. 
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This included removal of the first five frames of each run, de-meaning and de-trending the time 
series, and performing nuisance regression on the minimally preprocessed data 51. We removed 
motion parameters and physiological noise during nuisance regression. This included six motion 
parameters, their derivatives, and the quadratics of those parameters (24 motion regressors in 
total). We applied aCompCor on the physiological time series extracted from the white matter 
and ventricle voxels (5 components each extracted volumetrically)52. We additionally included 
the derivatives of each component time series, and the quadratics of the original and derivative 
time series (40 physiological noise regressors in total). This combination of motion and 
physiological noise regressors totaled 64 nuisance parameters, and is a variant of previously 
benchmarked nuisance regression models51. 

fMRI task activation estimation 
We performed a standard task GLM analysis on fMRI task data to estimate task-evoked 

activations from different conditions. Task GLMs were fit for each subject separately, but using 
the fully concatenated task data set (concatenated across 8 runs). We obtained regressors for 
each task rule (during the encoding period), each stimulus pair combination (during stimulus 
presentation), and each motor response (during button presses). For task rules, we obtained 12 
regressors that were fit during the encoding period, which lasted 3925ms (5 TRs). For logic 
rules, we obtained regressors for “both”, “not both”, “either”, and “neither” rules. For sensory 
rules, we obtained regressors for “red”, “vertical”, “high”, and “constant” rules. For motor rules, 
we obtained regressors for “left middle”, “left index”, “right middle”, and “right index” rules. Note 
that a given encoding period contained overlapping regressors from each of the logic, sensory, 
and motor rule domains. However, the regressors were not collinear since specific rule 
instances were counterbalanced across all encoding blocks.  

To obtain activations for sensory stimuli, we fit regressors for each stimulus pair. For 
example, for the color dimensions of a stimulus, we fit separate regressors for the presentation 
of red-red, red-blue, blue-red, and blue-blue stimulus pairs. This was done (rather than fitting 
regressors for just red or blue) due to the inability to temporally separate individual stimuli with 
fMRI’s low sampling rate. Thus, there were 16 stimulus regressors (four conditions for each 
stimulus dimension: color, orientation, pitch, continuity). Stimulus pairs were presented after a 
delay period, and lasted 2355ms (3 TRs). Note that a given stimulus presentation period 
contained overlapping regressors from four different conditions, one from each stimulus 
dimension. However, the stimulus regressors were not collinear since stimulus pairings were 
counterbalanced across all stimulus presentation periods (e.g., red-red stimuli were not 
exclusively presented with vertical-vertical stimuli). 

Finally, to obtain activations for motor responses (or finger button presses), we fit 
regressors for each motor response. There were four regressors for motor responses, one for 
each finger (i.e., left middle, left index, right middle, right index fingers). Responses overlapped 
with the stimulus period, so we fit regressors for each button press during the 2355ms (3 TR) 
window during stimulus presentations. Note, however, that while response regressors 
overlapped with stimulus regressors, response regressors were not collinear with stimulus 
presentations. This is because a response is statistically independent from a stimulus pair, 
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enabling the extraction of meaningful response activation patterns. A strong validation was that 
the finger representations could be reliably extracted according to the appropriate topographic 
organization in somatomotor cortex (Fig. 4c). 

(For a schematic of how task GLMs were performed, see Supplementary Fig. 3. For the 
task design matrix of an example subject, see Supplementary Fig. 4.) 

fMRI decoding: Identifying sensory stimulus representations 
Decoding analyses were performed to identify the brain areas that contained relevant 

task context and sensory stimulus representations. To identify the brain areas that contained 
relevant sensory stimulus representation, we performed four, four-way decoding analyses on 
each stimulus dimension: color (vision), orientation (vision), pitch (audition), constant (audition). 
For color stimulus information, we decoded activation patterns where the stimulus pairs were 
red-red, red-blue, blue-red, and blue-blue. For orientation stimulus information, we decoded 
activation patterns where the stimulus pairs were vertical-vertical, vertical-horizontal, 
horizontal-vertical, horizontal-horizontal. For pitch stimulus information, we decoded activation 
patterns where the stimulus pairs were high-high, high-low, low-high, and low-low. Finally, for 
constant (beeping) stimulus information, we decoded activation patterns where the stimulus 
pairs were constant-constant, constant-beeping, beeping-constant, beeping-beeping.  

Decoding analyses were performed using the vertices within each parcel as decoding 
features. We limited decoding to visual network parcels for decoding visual stimulus features, 
and auditory network parcels for decoding auditory stimulus features. Visual parcels were 
defined as the VIS1 and VIS2 networks in Ji et al. (2019)24, and auditory networks as the AUD 
network. We performed a group-level decoding analysis, with a leave-8-subjects out 
cross-validation scheme. The choice of leaving 8 (out of 96) subjects out was due to recent 
studies suggesting that test sets should contain roughly 10% of the entire data set to yield 
stable predictive estimates of the test-set25. Moreover, of the 88 subjects that remained in the 
train set pool (for each cross-validation fold), the training set was randomly sampled (with 
replacement, number of bootstrapped samples per fold = 88). We used a minimum-distance 
classifier (based on Pearson’s correlation score), where a test set sample would be classified as 
the condition whose centroid is closest to in the multivariate activation pattern space 22. P-values 
were calculated using a binomial test. Statistical significance was assessed using a False 
Discovery Rate (FDR) corrected threshold of p<0.05 across all 360 regions. 

fMRI decoding: Identifying task rule representations 
To identify the brain areas that contained task rule information, we performed a 12-way 

decoding analysis on the activation patterns for each of the 12 task rules. We used the same 
decoding and cross-validation scheme as above (for identifying sensory stimulus 
representations). However, we ran the decoding analyses on all 360 parcels, given previous 
evidence that task rule information is widely distributed across cortex8. P-values were calculated 
using a binomial test. Statistical significance was assessed using an FDR-corrected threshold of 
p<0.05 across all 360 regions.  
 

20 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.24.424353doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424353
http://creativecommons.org/licenses/by-nd/4.0/


fMRI activation analysis: Identifying motor response activations 
To identify the brain areas/vertices that contained motor response information, we 

performed univariate analyses to identify the finger press activations in motor cortex. We 
performed two univariate activation contrasts, identifying index and middle finger activations on 
each hand. For each hand, we performed a two-sided group paired (by subject) t-test 
contrasting index versus middle finger representations. We constrained our analyses to include 
only vertices in the somatomotor network. Statistical significance was assessed using an 
FDR-corrected p<0.05 threshold, resulting in a set of vertices that were selective to button press 
representations in motor cortex (see Fig. 4c). 

We subsequently performed a decoding analysis on these sets of vertices (see Fig. 7h). 
We decoded finger presses on each hand separately. Note that this decoding analysis is 
circular, since we had already determined that the selected vertices contained relevant 
information with regards to motor responses (via a univariate t-test). However, this provided an 
important benchmark to evaluate how well we could predict motor button responses using only 
context and stimulus activations (described below) relative to cross-validation of motor button 
response activations (i.e., a noise ceiling). Similar to the previous decoding analyses, we 
performed a leave-8-out cross validation scheme using a minimum-distance classifier, 
bootstrapping training samples for each fold. Moreover, because the decoding analysis was 
limited to a single ROI (as opposed to across many parcels/ROIs), we were able to compute 
confidence intervals (by bootstrapping cross-validation folds) and run nonparametric 
permutation tests since it was computationally tractable. We ran each cross-validation scheme 
1000 times to generate confidence intervals. Null distributions were computed by randomly 
permuting labels 1000 times. P-values were computed by comparing the null distribution against 
the mean of the bootstrapped accuracy values. 

Identifying conjunctive representations: ANN construction 
We trained a simple feedforward ANN on a computationally analogous form of the 

C-PRO task. This enabled us to investigate how task rule and stimulus activations integrate into 
conjunctive representations in an ANN’s hidden layer. 

To model the task context input layer, we designated an input unit for each task rule 
across all rule domains. Thus, we had 12 units in the task context layer. A specific task context 
(or rule set) would selectively activate three of the 12 units; one logic rule, one sensory rule, and 
one motor rule. Input activations were either 0 or 1, indicating an active or inactive state. 

To model the stimulus input layer, we designated an input unit for a stimulus pair for 
each sensory dimension. To isolate visual color stimulus pairings, we designated input units for 
a red-red pairing, red-blue pairing, blue-red pairing, and blue-blue pairing. (Note that each unit 
represented a stimulus pair because the ANN had no temporal dynamics to present consecutive 
stimuli.) To isolate visual orientation stimulus pairings, we designated inputs for a 
vertical-vertical, vertical-horizontal, horizontal-vertical, and horizontal-horizontal stimulus pairing. 
To isolate auditory pitch stimulus pairings, we designated input units for high-high, high-low, 
low-high, and low-low frequency combinations. Finally, to isolate auditory continuity stimulus 
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pairings (i.e., whether an auditory tone was constant or beeping), we designated input units for 
constant-constant, constant-beeping, beeping-constant, and beeping-beeping. Altogether, 
across the four sensory domains, we obtained 16 different sensory stimulus pair input units. For 
a given trial, four units would be activated to simulate a sensory stimulus combination (one unit 
per sensory domain). For example, a single trial might observe red-red (color), 
vertical-horizontal (orientation), low-high (pitch), constant-beeping (continuity) stimulus 
combination. Thus, to simulate an entire trial including both context and sensory stimuli, 7/28 
possible input units would be activated. 

We constructed our ANN with two hidden layers containing 1280 units each. This choice 
was due to recent counterintuitive evidence suggesting that the learning dynamics of extremely 
high-dimensional ANNs (i.e., those with many network parameters to tune) naturally protect 
against overfitting, supporting generalized solutions46. Moreover, we found that across many 
initializations, the representational geometry identified in the ANN’s hidden layer was highly 
replicable. Finally, our output layer contained four units, one for each motor response 
(corresponding to left middle, left index, right middle, right index finger presses). 

The ANN transformed a 28-element input vector (representing a specific trial instance) 
into a 4-element response vector, and obeyed the equation 

 
(X W )Y = f s hidden2 out + b (1) 

where corresponds to the 4-element response vector, is a sigmoid function, Y f s W out

corresponds to the connectivity weight matrix between the hidden and output layer,  is a biasb  
term, and  is the activity vector of the 2nd hidden layer.  was obtained by theXhidden2 Xhidden2  
equation 

((X )W )Xhidden2 = f r hidden1 + I hidden + b (2) 
((X )W )Xhidden1 = f r input input + b (3) 

Where is a rectified linear function (ReLU),  is the connectivity matrix between thef r W hidden  
hidden layers,  corresponds to the 1st hidden layer activations that contain trialXhidden1  
information,  is the input layer,  is the connectivity matrix between the input and 1stX input W input  
hidden layer, and is a noise vector sampled from a normal distribution with 0-mean and I n

1

-variance, where  refers to the number of hidden units.n  

Identifying conjunctive representations: ANN training 
The ANN was trained by minimizing the mean squared error between the network’s 

outputs and the correct target output. The mean squared error was computed using a 
mini-batch approach, where each mini-batch comprised of 192 distinct trials. (Each of the 64 
unique task contexts were presented three times (with randomly sampled stimuli) in each 
mini-batch. Training was optimized using Adam, a variant of stochastic gradient descent47. We 
used the default parameters in PyTorch (version 1.0.1), with a learning rate of 0.0001. Training 
was stopped when the last 1000 mini-batches achieved over 99.5% average accuracy on the 
task. This performance was achieved after roughly 10,000 mini-batches (or 1,920,000 trials). 
Weights and biases were initialized with a uniform distribution , where ,(− , )U √k √k k = 1

targets  
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where ‘targets’ represents the number of units in the next layer. Note that no cross-validation 
was performed (nor was it necessary), since we were only interested in representational 
geometry of the hidden layer. We also note that the representational geometry we observed in 
the hidden layer was robust to different initializations and hyperparameter choices.  

Identifying conjunctive representations: ANN representational analysis 
We extracted the representational geometry of the ANN’s 2nd hidden layer using 

representational similarity analysis (RSA)48. This was done to understand how task rule and 
stimulus activations were transformed in the hidden layer. To extract the representational 
geometry of the hidden layer, we systematically activated a single unit in the input layer (which 
corresponded to either a task rule or sensory stimulus pair), and estimated the corresponding 
hidden layer activations (using trained connectivity weights). This resulted in a total of 28 (12 
task rules and 16 sensory stimuli combinations) activation patterns. The representational 
similarity matrix (RSM) was obtained by computing the Pearson’s correlation between the 
hidden layer activation patterns for all 28 conditions. 

Identifying conjunctive representations: fMRI analysis 
We compared the representational geometry of the ANN’s hidden layer to the 

representational geometry of each brain parcel. This was possible because we extracted the 
exact same set of activation patterns (e.g., activations for task rules and sensory stimuli) in 
empirical data as our ANN model, enabling a direct comparison of representations. The 
representational geometry was estimated as the representational similarity matrix (RSM) of all 
task rules and sensory stimuli conditions. 

We first estimated the empirical RSMs for every brain parcel separately in the Glasser et 
al. (2016) atlas. This was done by comparing the activation patterns of each of the 28 task 
conditions using the vertices within each parcel (12 task rule activations, 16 sensory stimulus 
activations). We then applied a Fisher's z-transform on both the empirical and ANN’s RSMs, 
and then estimated the Spearman’s rank correlation between the Fisher’s z-transformed ANN 
and empirical RSMs (using the upper triangle values only). This procedure was performed on 
the RSM of every brain parcel, providing a similarity score between each brain parcel’s and the 
ANN’s representational geometry. For our main analysis, we selected the top 10 parcels with 
highest similarity to the ANN’s hidden layer. However, we also performed additional analyses 
using the top 20, 30, and 40 parcels. 

Inter-layer FC weight estimation 
We estimated the inter-layer resting-state FC to identify weights between regions and 

layers in our empirical model. This was similar to a previously published approach which 
identified FC weights between pairs of brain regions8. This involved identifying FC weight 
mappings between the task rule input layer to the hidden layer, sensory stimulus input layer to 
the hidden layer, and the hidden layer to the motor output layer. For each inter-layer FC 
mapping, we estimated the vertex-to-vertex FC weights using principal components linear 
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regression. We used principal components regression because most layers had more vertices 
(i.e., predictors) than samples in our resting-state data (resting-state fMRI data contained 1065 
TRs). For all inter-layer FC estimations, we used principal components regression with 500 
components. Specifically, inter-layer weights were estimated by fitting principal components to 
the regression equation 

βY = β0 + ∑
500

i
X i i + ε (3) 

where  corresponds to the t x n matrix with t time points and n vertices (i.e., the targetY  
vertices to be predicted),  corresponds to a constant term,  corresponds to the 1 x n matrixβ0 βi  
reflecting the mapping from the component time series onto the n target vertices, X i  
corresponds to the t x 1 component time series for component i, and  corresponds to the errorε  
in the regression model. Note that corresponds to the t x 500 component matrix obtained fromX  
a PCA on the resting-state data from the source layer. Also note that these loadings onto these 
500 components are saved for later, when task activation patterns from a source layer are 
projected onto a target layer. The loadings project the original vertex-wise task activation 
patterns in the source layer onto a lower-dimensional space enabling faster computations. A 
similar approach was used in a previous study53. FC weights were computed for each individual 
separately, but then averaged across subjects to obtain a group inter-layer weight FC matrix. 

Note that in some cases, it was possible for overlap between the source and target 
vertices. (For example, some hidden area vertices may have coincided with the same vertices in 
the context layer.) In these cases, these overlapping vertices were excluded in the set of 
predictors (i.e., removed from the source layer) in the regression model. 
 

Simulating sensorimotor transformations with multi-step activity flow 
mapping 

We generated predictions of motor response activations (in motor cortex) by assessing 
the correct motor response given a specific task context and sensory stimulus activation pattern 
(for additional details see Supplementary Fig. 1). For each subject, we simulated 960 trials. This 
consisted of the 64 unique task contexts paired with 15 randomly sampled stimulus 
combinations. For a trial, the task context input activation pattern was obtained by extracting the 
activation vector for the logic, sensory, and motor rule, and computing the mean rule vector (i.e., 
additive compositionality). The sensory stimulus input activation pattern was obtained by 
extracting the relevant sensory stimulus activation pattern. (Note that for a given trial, we only 
extracted the activation pattern for the sensory feature of interest. For example, if the rule was 
“Red”, only color activation patterns would be extracted, and all other stimulus activations would 
be set to 0.) Thus, the context and sensory stimulus activation patterns could be defined as 

)/3Xcontext = (Rlogic + Rsensory + Rmotor (4) 
Xstimulus = Xsensory (5) 

where  corresponds to the input activation pattern for task context, corresponds toXcontext Rlogic  
extracted logic rule activation pattern (e.g., “Both”, “Not Both”, “Either”, or “Neither”) obtained 
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from the task GLM,  corresponds to the extracted sensory rule activation pattern from theRsensory  
task GLM,  corresponds to the extracted motor rule activation pattern from the task GLM,Rmotor  
and  corresponds to the extracted sensory stimulus activation pattern that is indicated byXstimulus  
the task context. 

 and  reflect the input activation patterns that were used to predict motorXcontext Xstimulus  
response conditions. Importantly, these input activation patterns were both spatially and 
representationally distinct from the motor response activations (in motor cortex). They were 
representationally distinct because these input activation patterns contained no information 
about the motor response required for a correct response. (In addition, we also used 
cross-validation to predict the motor response of a held-out subject, described below). 

We used the inter-layer FC weight maps to project  and  onto the hiddenXcontext Xstimulus  
layer vertices. The projections (or predicted activation patterns on the hidden layer) were then 
thresholded to remove any negative BOLD predictions. This thresholding is equivalent to a 
rectified linear unit (ReLU), a commonly used nonlinear function in artificial neural networks34. 
Thus, the hidden layer was defined by 

(X W W )Xhidden = f r context context2hidden + Xstimulus stimulus2hidden (6) 
where  corresponds to the predicted hidden layer activation pattern,  is a ReLUXhidden f r  
function (i.e., ),  corresponds to the inter-layer resting-state FC(x) max(x, )f r =  0 W context2hidden  
weights between the context and hidden layer, and  corresponds to the inter-layerW stimulus2hidden  
resting-state FC weights between the stimulus and hidden layer. Note that all inter-layer FC 
weights ( ) were computed using a principal component regression with 500 components.W x  
This requires that the vertex-wise activation space (e.g., ) be projected onto componentXcontext  
space such that we define 

WW x = U ˆ pc (7) 
where  corresponds a m x 500 matrix which maps the source layer’s m vertices intoU  
component space, and  is a 500 x n matrix that maps the components onto the targetŴ pc  
layer’s n vertices. (Note that corresponds to the regression coefficients from equation 3.,Ŵ pc  
and that both  and  are estimated from resting-state data.) Thus,  is an m x nU Ŵ pc W x  
transformation from a source layer’s spatial pattern to a target layer’s spatial pattern that is 
achieved through principal component regression on resting-state fMRI data. 

Finally, we generated a predicted motor output response by computing 
WXoutput = Xhidden hidden2output (8) 

where  corresponds to the predicted motor response (in motor cortex), and Xoutput W hidden2output  
corresponds to the inter-layer resting-state FC weights between the hidden and output layer. 
The full model computation can thus be formalized as 

(X W W ) WXoutput = f r context context2hidden + Xstimulus stimulus2hidden hidden2output (9) 
 only yields a predicted activation pattern for the motor cortex for a given contextXoutput  

and stimulus input activation pattern. To evaluate whether  could successfully predict theXoutput  
correct motor response for a given trial, we constructed an ideal ‘task solver’ that would indicate 
the correct motor response on a given trial (Supplementary Fig. 1). This solver would then be 
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used to extract the correct motor response activation pattern, and compare the predicted motor 
cortex activation with the actual motor cortex activation pattern. 

We simulated 960 trials per subject, randomly sampling context and stimulus input 
activation patterns. Because we sampled across the 64 task contexts equally (15 trials per 
context), the correct motor responses were equally balanced across 960 trials. Thus, of the 960 
simulated trials for each subject, 240 trials yielded a left middle, left index, right middle, and right 
index response each. Each of these 240 predicted motor response patterns were subsequently 
averaged across trials such that we only obtained 4 predicted motor response patterns for each 
subject. Averaging was performed to remove any potential biases that a trial may have (e.g., a 
task context with the ‘left middle’ motor rule might be more biased towards a ‘left middle’ motor 
response). 

 

Statistical and permutation testing of predicted motor response activations 
The simulated empirical model generated predicted activations of motor activations in 

motor cortex. However, the predictions would only be interesting if they resembled actual motor 
response activations directly estimated the response period via task GLM. In other words, 
without a ground truth reference to the actual motor response activation pattern, the predicted 
activation patterns would hold little meaning. The simulated empirical model generated four 
predicted activation patterns corresponding to predicted motor responses for each subject. We 
also had four actual activation patterns corresponding to motor responses that were extracted 
from the motor response period using a standard task GLM for each subject. To test whether 
the predicted activation patterns actually conformed to the actual motor response activation 
patterns, we trained a decoder on the predicted motor response activations and tested on the 
actual motor response activations of held-out subjects. We used the same cross-validation 
decoding scheme as before, with the exception that training was exclusively performed on 
predicted activation patterns of 88 subjects, while testing was exclusively performed on the 
actual activation patterns of 8 held-out subjects. Training a decoder on the predicted activations 
and decoding the actual activations made this analysis consistent with a prediction perspective 
– we could test if, in the absence of any motor task activation information, the ENN could predict 
actual motor response activation patterns that correspond to behavior. All other details (e.g., 
minimum-distance classifier, leave-8-subjects out cross-validation) remained the same. 

Statistical significance was assessed using permutation tests. We permuted the labels of 
the predicted motor responses while testing on the actual motor responses. Null distributions 
are visualized in gray (Fig. 7h). Statistical significance was assessed by comparing the mean of 
the bootstrapped predicted-to-actual accuracy scores, and comparing them against a 
non-parametric p-value that was estimated from the null distribution. Statistical significance was 
defined by a p<0.05 threshold. 
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Code and data availability 
All code and data related to this study will be made available on a public repository upon 

(or before) publication. In the interim, code and data are available on request. 
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Supplementary Figures 

Supplementary Figure 1. Flow chart describing neural network simulations with empirical data via 
activity flow mapping. We generate a subject’s predicted motor response activations using only task 
rule and sensory stimulus activation patterns as inputs. We then test these predictions against the actual 
motor response activations of held-out subjects.   
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Supplementary Figure 2. Network affiliations of conjunction hubs and the task rule input layer 
using a previously defined multimodal atlas and network partition 23,24 . a) The network affiliations of 
the 10 conjunction hub brain areas. b) Network affiliations of the 228 brain regions that contained 
decodable task rule information. 
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Supplementary Figure 3. Example of task GLM approach to obtain task activation estimates. a) An 
example miniblock containing one encoding block (task rule set) and three trials. Note that while stimulus 
presentation and response periods overlap, they are not collinear. b) The regressors for the relevant task 
conditions in the example miniblock. We obtain regressors (estimated across all 128 miniblocks) for all 
task rule, sensory stimuli, and motor response conditions. Altogether there are 32 different task conditions 
(12 task rules, 16 sensory stimuli pairs, and four motor response periods). Note that task rule regressors 
(logic, sensory, and motor rule examples) appear collinear in this example, but that across all 128 
miniblocks task rule conditions are properly counterbalanced to avoid collinearity. Regressors shown here 
are illustrated without convolution with SPM’s canonical HRF.  
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Supplementary Figure 4. A task GLM design matrix for an example subject.  
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Supplementary Table 1. Regions containing decodable color (red/blue) stimulus information. 
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Label GlasserID Network Affiliation Hemisphere 
Visual2-54_L-Ctx L_VVC_ROI Visual2 L 
Visual2-05_R-Ctx R_V4_ROI Visual2 R 
Visual1-03_R-Ctx R_DVT_ROI Visual1 R 
Visual2-22_R-Ctx R_V4t_ROI Visual2 R 
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Supplementary Table 2. Regions containing decodable orientation (vertical/horizontal) stimulus 
information. 
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Label GlasserID Network Affiliation Hemisphere 
Visual1-04_L-Ctx L_V1_ROI Visual1 L 
Visual2-28_L-Ctx L_MST_ROI Visual2 L 
Visual2-30_L-Ctx L_V2_ROI Visual2 L 
Visual2-31_L-Ctx L_V3_ROI Visual2 L 
Visual2-32_L-Ctx L_V4_ROI Visual2 L 
Visual2-33_L-Ctx L_V8_ROI Visual2 L 
Visual2-35_L-Ctx L_V7_ROI Visual2 L 
Visual2-40_L-Ctx L_LO2_ROI Visual2 L 
Visual2-41_L-Ctx L_PIT_ROI Visual2 L 
Visual2-42_L-Ctx L_MT_ROI Visual2 L 
Visual2-51_L-Ctx L_V3CD_ROI Visual2 L 
Visual1-01_R-Ctx R_V1_ROI Visual1 R 
Visual2-03_R-Ctx R_V2_ROI Visual2 R 
Visual2-04_R-Ctx R_V3_ROI Visual2 R 
Visual2-05_R-Ctx R_V4_ROI Visual2 R 
Visual2-06_R-Ctx R_V8_ROI Visual2 R 
Visual2-09_R-Ctx R_IPS1_ROI Visual2 R 
Visual2-12_R-Ctx R_LO1_ROI Visual2 R 
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Supplementary Table 3. Regions containing decodable pitch (high/low) stimulus information. 
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Label GlasserID Network Affiliation Hemisphere 
Auditory-08_L-Ctx L_A1_ROI Auditory L 
Auditory-09_L-Ctx L_52_ROI Auditory L 
Auditory-10_L-Ctx L_RI_ROI Auditory L 
Auditory-11_L-Ctx L_TA2_ROI Auditory L 
Auditory-12_L-Ctx L_PBelt_ROI Auditory L 
Auditory-13_L-Ctx L_MBelt_ROI Auditory L 
Auditory-14_L-Ctx L_LBelt_ROI Auditory L 
Auditory-15_L-Ctx L_A4_ROI Auditory L 
Auditory-01_R-Ctx R_A1_ROI Auditory R 
Auditory-02_R-Ctx R_52_ROI Auditory R 
Auditory-03_R-Ctx R_TA2_ROI Auditory R 
Auditory-04_R-Ctx R_PBelt_ROI Auditory R 
Auditory-05_R-Ctx R_MBelt_ROI Auditory R 
Auditory-06_R-Ctx R_LBelt_ROI Auditory R 
Auditory-07_R-Ctx R_A4_ROI Auditory R 
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Supplementary Table 4. Regions containing decodable constant/beeping stimulus information. 
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Label GlasserID Network Affiliation Hemisphere 
Auditory-08_L-Ctx L_A1_ROI Auditory L 
Auditory-09_L-Ctx L_52_ROI Auditory L 
Auditory-10_L-Ctx L_RI_ROI Auditory L 
Auditory-11_L-Ctx L_TA2_ROI Auditory L 
Auditory-12_L-Ctx L_PBelt_ROI Auditory L 
Auditory-13_L-Ctx L_MBelt_ROI Auditory L 
Auditory-14_L-Ctx L_LBelt_ROI Auditory L 
Auditory-15_L-Ctx L_A4_ROI Auditory L 
Auditory-01_R-Ctx R_A1_ROI Auditory R 
Auditory-02_R-Ctx R_52_ROI Auditory R 
Auditory-03_R-Ctx R_TA2_ROI Auditory R 
Auditory-04_R-Ctx R_PBelt_ROI Auditory R 
Auditory-05_R-Ctx R_MBelt_ROI Auditory R 
Auditory-06_R-Ctx R_LBelt_ROI Auditory R 
Auditory-07_R-Ctx R_A4_ROI Auditory R 
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Supplementary Table 5. Conjunction hubs. 
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Label GlasserID Network Affiliation Hemisphere 
Cingulo-Opercular-49_L-Ctx L_FOP3_ROI Cingulo-Opercular L 
Somatomotor-15_R-Ctx R_OP4_ROI Somatomotor R 
Dorsal-Attention-18_L-Ctx L_AIP_ROI Dorsal-Attention L 
Cingulo-Opercular-04_R-Ctx R_5mv_ROI Cingulo-Opercular R 
Cingulo-Opercular-22_R-Ctx R_FOP3_ROI Cingulo-Opercular R 
Somatomotor-08_R-Ctx R_7PC_ROI Somatomotor R 
Cingulo-Opercular-44_L-Ctx L_PFcm_ROI Cingulo-Opercular L 
Frontoparietal-34_L-Ctx L_a47r_ROI Frontoparietal L 
Frontoparietal-03_R-Ctx R_7Pm_ROI Frontoparietal R 
Somatomotor-07_R-Ctx R_7AL_ROI Somatomotor R 
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Supplementary Table 6. Task rule (input) regions. 

43 

Label GlasserID Network Affiliation Hemisphere 
Visual1-04_L-Ctx L_V1_ROI Visual1 L 
Visual2-30_L-Ctx L_V2_ROI Visual2 L 
Visual2-31_L-Ctx L_V3_ROI Visual2 L 
Visual2-32_L-Ctx L_V4_ROI Visual2 L 
Somatomotor-21_L-Ctx L_4_ROI Somatomotor L 
Somatomotor-22_L-Ctx L_3b_ROI Somatomotor L 
Cingulo-Opercular-30_L-Ctx L_FEF_ROI Cingulo-Opercular L 
Dorsal-Attention-12_L-Ctx L_PEF_ROI Dorsal-Attention L 
Language-10_L-Ctx L_55b_ROI Language L 
Frontoparietal-29_L-Ctx L_RSC_ROI Frontoparietal L 
Frontoparietal-30_L-Ctx L_POS2_ROI Frontoparietal L 
Visual2-35_L-Ctx L_V7_ROI Visual2 L 
Visual2-36_L-Ctx L_IPS1_ROI Visual2 L 
Visual2-38_L-Ctx L_V3B_ROI Visual2 L 
Visual2-42_L-Ctx L_MT_ROI Visual2 L 
Auditory-08_L-Ctx L_A1_ROI Auditory L 
Language-11_L-Ctx L_PSL_ROI Language L 
Language-12_L-Ctx L_SFL_ROI Language L 
Posterior-Multimodal-05_L-Ctx L_PCV_ROI Posterior-Multimodal L 
Default-38_L-Ctx L_7m_ROI Default L 
Default-39_L-Ctx L_POS1_ROI Default L 
Default-40_L-Ctx L_23d_ROI Default L 
Default-41_L-Ctx L_v23ab_ROI Default L 
Default-42_L-Ctx L_d23ab_ROI Default L 
Cingulo-Opercular-32_L-Ctx L_23c_ROI Cingulo-Opercular L 
Somatomotor-25_L-Ctx L_24dd_ROI Somatomotor L 
Somatomotor-26_L-Ctx L_24dv_ROI Somatomotor L 
Somatomotor-27_L-Ctx L_7AL_ROI Somatomotor L 
Cingulo-Opercular-33_L-Ctx L_SCEF_ROI Cingulo-Opercular L 
Cingulo-Opercular-34_L-Ctx L_6ma_ROI Cingulo-Opercular L 
Cingulo-Opercular-35_L-Ctx L_7Am_ROI Cingulo-Opercular L 
Somatomotor-28_L-Ctx L_7PC_ROI Somatomotor L 
Visual2-43_L-Ctx L_LIPv_ROI Visual2 L 
Visual2-44_L-Ctx L_VIP_ROI Visual2 L 
Somatomotor-29_L-Ctx L_1_ROI Somatomotor L 
Somatomotor-30_L-Ctx L_2_ROI Somatomotor L 
Somatomotor-31_L-Ctx L_3a_ROI Somatomotor L 
Somatomotor-32_L-Ctx L_6d_ROI Somatomotor L 
Somatomotor-33_L-Ctx L_6mp_ROI Somatomotor L 
Somatomotor-34_L-Ctx L_6v_ROI Somatomotor L 
Cingulo-Opercular-36_L-Ctx L_p24pr_ROI Cingulo-Opercular L 
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Cingulo-Opercular-37_L-Ctx L_33pr_ROI Cingulo-Opercular L 
Cingulo-Opercular-38_L-Ctx L_a24pr_ROI Cingulo-Opercular L 
Cingulo-Opercular-39_L-Ctx L_p32pr_ROI Cingulo-Opercular L 
Default-44_L-Ctx L_a24_ROI Default L 
Default-45_L-Ctx L_d32_ROI Default L 
Frontoparietal-32_L-Ctx L_8BM_ROI Frontoparietal L 
Default-47_L-Ctx L_10r_ROI Default L 
Default-49_L-Ctx L_8Av_ROI Default L 
Default-51_L-Ctx L_9m_ROI Default L 
Default-52_L-Ctx L_8BL_ROI Default L 
Default-54_L-Ctx L_10d_ROI Default L 
Frontoparietal-33_L-Ctx L_8C_ROI Frontoparietal L 
Language-14_L-Ctx L_44_ROI Language L 
Language-15_L-Ctx L_45_ROI Language L 
Default-55_L-Ctx L_47l_ROI Default L 
Frontoparietal-34_L-Ctx L_a47r_ROI Frontoparietal L 
Cingulo-Opercular-40_L-Ctx L_6r_ROI Cingulo-Opercular L 
Language-16_L-Ctx L_IFJa_ROI Language L 
Frontoparietal-35_L-Ctx L_IFJp_ROI Frontoparietal L 
Language-17_L-Ctx L_IFSp_ROI Language L 
Frontoparietal-36_L-Ctx L_IFSa_ROI Frontoparietal L 
Frontoparietal-37_L-Ctx L_p9-46v_ROI Frontoparietal L 
Cingulo-Opercular-42_L-Ctx L_9-46d_ROI Cingulo-Opercular L 
Default-56_L-Ctx L_9a_ROI Default L 
Frontoparietal-39_L-Ctx L_a10p_ROI Frontoparietal L 
Frontoparietal-40_L-Ctx L_11l_ROI Frontoparietal L 
Dorsal-Attention-15_L-Ctx L_LIPd_ROI Dorsal-Attention L 
Dorsal-Attention-16_L-Ctx L_6a_ROI Dorsal-Attention L 
Frontoparietal-42_L-Ctx L_i6-8_ROI Frontoparietal L 
Cingulo-Opercular-43_L-Ctx L_43_ROI Cingulo-Opercular L 
Somatomotor-35_L-Ctx L_OP4_ROI Somatomotor L 
Somatomotor-36_L-Ctx L_OP1_ROI Somatomotor L 
Somatomotor-37_L-Ctx L_OP2-3_ROI Somatomotor L 
Auditory-09_L-Ctx L_52_ROI Auditory L 
Auditory-10_L-Ctx L_RI_ROI Auditory L 
Cingulo-Opercular-44_L-Ctx L_PFcm_ROI Cingulo-Opercular L 
Cingulo-Opercular-45_L-Ctx L_PoI2_ROI Cingulo-Opercular L 
Auditory-11_L-Ctx L_TA2_ROI Auditory L 
Cingulo-Opercular-46_L-Ctx L_FOP4_ROI Cingulo-Opercular L 
Cingulo-Opercular-47_L-Ctx L_MI_ROI Cingulo-Opercular L 
Frontoparietal-44_L-Ctx L_AVI_ROI Frontoparietal L 
Orbito-Affective-05_L-Ctx L_AAIC_ROI Orbito-Affective L 
Cingulo-Opercular-48_L-Ctx L_FOP1_ROI Cingulo-Opercular L 
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Cingulo-Opercular-49_L-Ctx L_FOP3_ROI Cingulo-Opercular L 
Somatomotor-38_L-Ctx L_FOP2_ROI Somatomotor L 
Dorsal-Attention-17_L-Ctx L_PFt_ROI Dorsal-Attention L 
Dorsal-Attention-18_L-Ctx L_AIP_ROI Dorsal-Attention L 
Default-62_L-Ctx L_PreS_ROI Default L 
Language-18_L-Ctx L_STGa_ROI Language L 
Language-19_L-Ctx L_A5_ROI Language L 
Dorsal-Attention-19_L-Ctx L_PHA3_ROI Dorsal-Attention L 
Language-21_L-Ctx L_STSdp_ROI Language L 
Default-65_L-Ctx L_STSvp_ROI Default L 
Frontoparietal-45_L-Ctx L_TE1p_ROI Frontoparietal L 
Dorsal-Attention-20_L-Ctx L_TE2p_ROI Dorsal-Attention L 
Dorsal-Attention-21_L-Ctx L_PHT_ROI Dorsal-Attention L 
Visual2-45_L-Ctx L_PH_ROI Visual2 L 
Language-22_L-Ctx L_TPOJ1_ROI Language L 
Posterior-Multimodal-06_L-Ctx L_TPOJ2_ROI Posterior-Multimodal L 
Visual1-06_L-Ctx L_DVT_ROI Visual1 L 
Dorsal-Attention-22_L-Ctx L_PGp_ROI Dorsal-Attention L 
Frontoparietal-47_L-Ctx L_IP1_ROI Frontoparietal L 
Dorsal-Attention-23_L-Ctx L_IP0_ROI Dorsal-Attention L 
Cingulo-Opercular-50_L-Ctx L_PFop_ROI Cingulo-Opercular L 
Cingulo-Opercular-51_L-Ctx L_PF_ROI Cingulo-Opercular L 
Frontoparietal-48_L-Ctx L_PFm_ROI Frontoparietal L 
Default-69_L-Ctx L_PGi_ROI Default L 
Default-70_L-Ctx L_PGs_ROI Default L 
Visual2-46_L-Ctx L_V6A_ROI Visual2 L 
Default-71_L-Ctx L_PHA2_ROI Default L 
Default-73_L-Ctx L_31a_ROI Default L 
Visual2-54_L-Ctx L_VVC_ROI Visual2 L 
Cingulo-Opercular-52_L-Ctx L_PoI1_ROI Cingulo-Opercular L 
Somatomotor-39_L-Ctx L_Ig_ROI Somatomotor L 
Cingulo-Opercular-53_L-Ctx L_FOP5_ROI Cingulo-Opercular L 
Frontoparietal-50_L-Ctx L_p47r_ROI Frontoparietal L 
Auditory-14_L-Ctx L_LBelt_ROI Auditory L 
Auditory-15_L-Ctx L_A4_ROI Auditory L 
Default-77_L-Ctx L_TE1m_ROI Default L 
Cingulo-Opercular-55_L-Ctx L_a32pr_ROI Cingulo-Opercular L 
Cingulo-Opercular-56_L-Ctx L_p24_ROI Cingulo-Opercular L 
Visual1-01_R-Ctx R_V1_ROI Visual1 R 
Visual2-02_R-Ctx R_V6_ROI Visual2 R 
Visual2-03_R-Ctx R_V2_ROI Visual2 R 
Visual2-04_R-Ctx R_V3_ROI Visual2 R 
Visual2-05_R-Ctx R_V4_ROI Visual2 R 
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Somatomotor-01_R-Ctx R_4_ROI Somatomotor R 
Somatomotor-02_R-Ctx R_3b_ROI Somatomotor R 
Cingulo-Opercular-01_R-Ctx R_FEF_ROI Cingulo-Opercular R 
Cingulo-Opercular-02_R-Ctx R_PEF_ROI Cingulo-Opercular R 
Frontoparietal-01_R-Ctx R_RSC_ROI Frontoparietal R 
Frontoparietal-02_R-Ctx R_POS2_ROI Frontoparietal R 
Visual2-08_R-Ctx R_V7_ROI Visual2 R 
Visual2-09_R-Ctx R_IPS1_ROI Visual2 R 
Visual2-11_R-Ctx R_V3B_ROI Visual2 R 
Visual2-12_R-Ctx R_LO1_ROI Visual2 R 
Cingulo-Opercular-03_R-Ctx R_PSL_ROI Cingulo-Opercular R 
Posterior-Multimodal-01_R-Ctx R_PCV_ROI Posterior-Multimodal R 
Default-01_R-Ctx R_7m_ROI Default R 
Default-02_R-Ctx R_POS1_ROI Default R 
Default-03_R-Ctx R_23d_ROI Default R 
Default-04_R-Ctx R_v23ab_ROI Default R 
Default-05_R-Ctx R_d23ab_ROI Default R 
Somatomotor-03_R-Ctx R_5m_ROI Somatomotor R 
Cingulo-Opercular-04_R-Ctx R_5mv_ROI Cingulo-Opercular R 
Cingulo-Opercular-05_R-Ctx R_23c_ROI Cingulo-Opercular R 
Somatomotor-04_R-Ctx R_5L_ROI Somatomotor R 
Somatomotor-05_R-Ctx R_24dd_ROI Somatomotor R 
Somatomotor-06_R-Ctx R_24dv_ROI Somatomotor R 
Somatomotor-07_R-Ctx R_7AL_ROI Somatomotor R 
Cingulo-Opercular-06_R-Ctx R_SCEF_ROI Cingulo-Opercular R 
Cingulo-Opercular-07_R-Ctx R_6ma_ROI Cingulo-Opercular R 
Cingulo-Opercular-08_R-Ctx R_7Am_ROI Cingulo-Opercular R 
Somatomotor-08_R-Ctx R_7PC_ROI Somatomotor R 
Visual2-16_R-Ctx R_LIPv_ROI Visual2 R 
Visual2-17_R-Ctx R_VIP_ROI Visual2 R 
Dorsal-Attention-02_R-Ctx R_MIP_ROI Dorsal-Attention R 
Somatomotor-09_R-Ctx R_1_ROI Somatomotor R 
Somatomotor-10_R-Ctx R_2_ROI Somatomotor R 
Somatomotor-11_R-Ctx R_3a_ROI Somatomotor R 
Somatomotor-12_R-Ctx R_6d_ROI Somatomotor R 
Somatomotor-13_R-Ctx R_6mp_ROI Somatomotor R 
Somatomotor-14_R-Ctx R_6v_ROI Somatomotor R 
Cingulo-Opercular-09_R-Ctx R_p24pr_ROI Cingulo-Opercular R 
Cingulo-Opercular-10_R-Ctx R_a24pr_ROI Cingulo-Opercular R 
Cingulo-Opercular-11_R-Ctx R_p32pr_ROI Cingulo-Opercular R 
Frontoparietal-05_R-Ctx R_d32_ROI Frontoparietal R 
Frontoparietal-06_R-Ctx R_8BM_ROI Frontoparietal R 
Default-11_R-Ctx R_8Av_ROI Default R 
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Default-12_R-Ctx R_8Ad_ROI Default R 
Default-13_R-Ctx R_9m_ROI Default R 
Default-14_R-Ctx R_8BL_ROI Default R 
Frontoparietal-07_R-Ctx R_8C_ROI Frontoparietal R 
Frontoparietal-08_R-Ctx R_44_ROI Frontoparietal R 
Default-17_R-Ctx R_47l_ROI Default R 
Cingulo-Opercular-12_R-Ctx R_6r_ROI Cingulo-Opercular R 
Language-04_R-Ctx R_IFJa_ROI Language R 
Frontoparietal-11_R-Ctx R_IFSp_ROI Frontoparietal R 
Cingulo-Opercular-13_R-Ctx R_IFSa_ROI Cingulo-Opercular R 
Frontoparietal-12_R-Ctx R_p9-46v_ROI Frontoparietal R 
Cingulo-Opercular-15_R-Ctx R_9-46d_ROI Cingulo-Opercular R 
Dorsal-Attention-04_R-Ctx R_6a_ROI Dorsal-Attention R 
Cingulo-Opercular-16_R-Ctx R_43_ROI Cingulo-Opercular R 
Somatomotor-15_R-Ctx R_OP4_ROI Somatomotor R 
Somatomotor-16_R-Ctx R_OP1_ROI Somatomotor R 
Auditory-02_R-Ctx R_52_ROI Auditory R 
Cingulo-Opercular-17_R-Ctx R_PFcm_ROI Cingulo-Opercular R 
Cingulo-Opercular-18_R-Ctx R_PoI2_ROI Cingulo-Opercular R 
Cingulo-Opercular-19_R-Ctx R_FOP4_ROI Cingulo-Opercular R 
Cingulo-Opercular-20_R-Ctx R_MI_ROI Cingulo-Opercular R 
Frontoparietal-20_R-Ctx R_AVI_ROI Frontoparietal R 
Orbito-Affective-02_R-Ctx R_AAIC_ROI Orbito-Affective R 
Cingulo-Opercular-21_R-Ctx R_FOP1_ROI Cingulo-Opercular R 
Cingulo-Opercular-22_R-Ctx R_FOP3_ROI Cingulo-Opercular R 
Somatomotor-19_R-Ctx R_FOP2_ROI Somatomotor R 
Dorsal-Attention-05_R-Ctx R_PFt_ROI Dorsal-Attention R 
Dorsal-Attention-06_R-Ctx R_AIP_ROI Dorsal-Attention R 
Default-23_R-Ctx R_PreS_ROI Default R 
Default-24_R-Ctx R_H_ROI Default R 
Language-06_R-Ctx R_A5_ROI Language R 
Language-07_R-Ctx R_STSdp_ROI Language R 
Default-27_R-Ctx R_STSvp_ROI Default R 
Frontoparietal-21_R-Ctx R_TE1p_ROI Frontoparietal R 
Dorsal-Attention-09_R-Ctx R_PHT_ROI Dorsal-Attention R 
Visual2-18_R-Ctx R_PH_ROI Visual2 R 
Language-08_R-Ctx R_TPOJ1_ROI Language R 
Posterior-Multimodal-03_R-Ctx R_TPOJ2_ROI Posterior-Multimodal R 
Posterior-Multimodal-04_R-Ctx R_TPOJ3_ROI Posterior-Multimodal R 
Visual1-03_R-Ctx R_DVT_ROI Visual1 R 
Dorsal-Attention-10_R-Ctx R_PGp_ROI Dorsal-Attention R 
Frontoparietal-23_R-Ctx R_IP1_ROI Frontoparietal R 
Dorsal-Attention-11_R-Ctx R_IP0_ROI Dorsal-Attention R 
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Cingulo-Opercular-23_R-Ctx R_PFop_ROI Cingulo-Opercular R 
Cingulo-Opercular-24_R-Ctx R_PF_ROI Cingulo-Opercular R 
Frontoparietal-24_R-Ctx R_PFm_ROI Frontoparietal R 
Default-31_R-Ctx R_PGi_ROI Default R 
Default-32_R-Ctx R_PGs_ROI Default R 
Visual2-23_R-Ctx R_FST_ROI Visual2 R 
Visual2-26_R-Ctx R_VMV2_ROI Visual2 R 
Default-34_R-Ctx R_31pd_ROI Default R 
Cingulo-Opercular-25_R-Ctx R_PoI1_ROI Cingulo-Opercular R 
Somatomotor-20_R-Ctx R_Ig_ROI Somatomotor R 
Cingulo-Opercular-26_R-Ctx R_FOP5_ROI Cingulo-Opercular R 
Frontoparietal-27_R-Ctx R_p47r_ROI Frontoparietal R 
Auditory-07_R-Ctx R_A4_ROI Auditory R 
Frontoparietal-28_R-Ctx R_TE1m_ROI Frontoparietal R 
Cingulo-Opercular-28_R-Ctx R_a32pr_ROI Cingulo-Opercular R 
Cingulo-Opercular-29_R-Ctx R_p24_ROI Cingulo-Opercular R 
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