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ABSTRACT  1 

Identification of transcriptional regulatory mechanisms and signaling networks involved in the response 2 

of host to infection by SARS-CoV-2 is a powerful approach that provides a systems biology view of gene 3 

expression programs involved in COVID-19 and may enable identification of novel therapeutic targets 4 

and strategies to mitigate the impact of this disease. In this study, we combined a series of recently 5 

developed computational tools to identify transcriptional regulatory networks involved in the response 6 

of epithelial cells to infection by SARS-CoV-2, and particularly regulatory mechanisms that are specific to 7 

this virus. In addition, using network-guided analyses, we identified signaling pathways that are 8 

associated with these networks and kinases that may regulate them. The results identified classical 9 

antiviral response pathways including Interferon response factors (IRFs), interferons (IFNs), and JAK-10 

STAT signaling as key elements upregulated by SARS-CoV-2 in comparison to mock-treated cells. In 11 

addition, comparing SARS-Cov-2 infection of airway epithelial cells to other respiratory viruses identified 12 

pathways associated with regulation of inflammation (MAPK14) and immunity (BTK, MBX) that may 13 

contribute to exacerbate organ damage linked with complications of COVID-19. The regulatory networks 14 

identified herein reflect a combination of experimentally validated hits and novel pathways supporting 15 

the computational pipeline to quickly narrow down promising avenue of investigations when facing an 16 

emerging and novel disease such as COVID-19. 17 

 18 

INTRODUCTION     19 

Host responses to various insults is regulated by distinct sets of regulatory networks coordinating 20 

responses matched to the insult. Viral infections of human cells lead to the production of interferons 21 

(IFNs) as an antiviral mechanism [1]. TRIF, RIG-I and MDA-5-mediated activation of Interferon response 22 

factors (IRFs) responsible for the expression of antiviral genes, such as type I, II and III IFNs, are amongst 23 

critical regulators of antiviral immunity. In turn, Type I, II and III interferons will activate JAK-STAT signaling 24 
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 3 

to further promote antiviral host responses [2]. This response must be kept in balance as viral clearance 25 

mechanisms can lead to tissue damage if not kept in check [3]. This balance can be especially hard to 26 

maintain in the presence of new emerging infections such as the novel coronavirus severe acute 27 

respiratory syndrome coronavirus - 2 (SARS-CoV-2) responsible for coronavirus disease 2019 (COVID-19), 28 

for which the host is naïve. The loss of a measured response can lead to severe complications of viral 29 

illnesses such as severe acute respiratory distress syndrome (ARDS), which has been observed in COVID-30 

19 patients [1].  31 

 32 

Unraveling the gene expression programs involved in the response of the host to the infection by SARS-33 

CoV-2 can provide a fundamental understanding of COVID-19 and its complications and can enable 34 

identification of therapeutic targets and novel treatments. The transcriptional regulatory network (TRN), 35 

composed of transcription factors (TFs) and their target genes, play significant roles in regulating these 36 

gene expression programs. Computational reconstruction of ‘COVID-19-relevant’ TRNs that depict 37 

regulatory influence of TFs on genes differentially expressed due to infection of cells by SARS-CoV-2 would 38 

facilitate our understanding of this disease. While comparing the transcriptomic profiles of cells infected 39 

with SARS-CoV-2 with normal cells can provide some insight into the host response, understanding the 40 

specific response that leads to ARDS and other complications prominent in COVID-19 requires evaluating 41 

these molecular profiles against other respiratory viruses.  42 

 43 

To identify transcriptional regulatory mechanisms involved in the host response to infection by SARS-CoV-44 

2, we analyzed gene expression profiles of human lung epithelial cell lines that were mock-treated or 45 

infected by a respiratory virus (SARS-CoV-2, RSV, H1N1 and HPIV3) from a recent study [4]. SARS-CoV-2 46 

(also named 2019 novel coronavirus (2019-nCoV) or human coronavirus 2019 (hCoV-19)) is a positive-47 

sense single-stranded RNA virus, part of the broad coronavirus family. Similar to SARS-Cov-1 and Middle 48 
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East respiratory syndrome (MERS), SARS-CoV-2 can cause severe acute respiratory disease in humans [1]. 49 

Respiratory syncytial virus (RSV) is a single-stranded negative-sense virus, a common cause of mostly mild 50 

respiratory disease in children. However, both in children [5] and adults [3], it can lead to serious lung 51 

diseases including ARDS. The influenza A virus H1N1, a negative-sense RNSA virus member of the 52 

orthomyxoviridae family, that was responsible for the 2009 swine flu pandemic.  Human parainfluenza 53 

viruses (HPIV) are negative-sense RNA viruses that cause lower respiratory infections in children, 54 

chronically ill and elderly patients [6].  55 

 56 

First, using a computational tool that we recently developed for reconstruction of ‘phenotype-relevant’ 57 

TRNs (InPheRNo) [7], we reconstructed COVID-19-relevant TRNs and identified key regulatory TFs 58 

involved in the progress of the disease. TRNs are network representations of regulatory mechanisms in a 59 

cell, in which nodes are TFs or genes, and each TF-gene edge represents a regulatory effect of the TF on 60 

the gene. Unlike other methods for reconstruction of TRNs that are usually agnostic to the phenotype 61 

under investigation, InPheRNo utilizes probabilistic graphical models to directly incorporate phenotypic 62 

information in the TRN reconstruction. This approach enables identification of transcriptional regulatory 63 

mechanisms that are involved in the specific phenotype under investigation by expression profiling (in 64 

this study, response of cells infected by SARS-CoV-2 as compared to mock-treated cells or cells infected 65 

by other viruses). Our results identified known and novel key regulatory TFs and signaling pathways 66 

involved in COVID-19 and its associated complications.  67 

 68 

Next, using a network-guided approach based on random walks on graphs, we identified kinases that 69 

are most associated with the reconstructed COVID-19-relevant TRNs, as regulators of these networks 70 

and potential therapeutic targets. Kinases are enzymes that are involved in the regulation of protein 71 

activities through phosphorylation and are a major category of drug targets for human diseases. Using 72 
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data from gene knockdown experiments from the LINCS database [8], we observed that these kinases 73 

indeed influence the expression of genes in the reconstructed TRNs in epithelial cells. Our analyses using 74 

network-based algorithms and machine learning tools provided a systems biology perspective of the 75 

response of the epithelial cells to infection by SARA-CoV-2 and identified regulatory mechanisms specific 76 

to this virus. In addition, our results implicated important families of kinases (including JAK and MAPK 77 

family) that may be used as therapeutic targets for COVID-19.  78 

 79 

RESULTS 80 

COVID-19-relevant transcriptional regulatory networks implicate major transcription factors involved 81 

in SARS-CoV-2 host response to infection 82 

We sought to identify transcriptional regulatory mechanisms involved in the host response to SARS-CoV-83 

2 infection. For this purpose, we obtained gene expression profiles of human lung epithelial cells that 84 

were mock-treated or infected by SARS-CoV-2, respiratory syncytial virus (RSV), human parainfluenza 85 

virus type 3 (HPIV3), influenza A/Puerto Rico/8/1934 (H1N1) virus (IAV), and IAV that lacks the NS1 86 

protein (IAVdNS1) from a recent study [4]. The epithelial cells were Normal Human Bronchial Epithelial 87 

(NHBE), transformed lung alveolar (A549), A549 cells transduced with a vector expressing human ACE2 88 

(A549-ACE2), and Calu3 cells.  89 

 90 

To identify COVID-19-relevant TRNs, we used InPheRNo [7], a method that we recently developed to 91 

identify ‘phenotype-relevant’ TRNs using gene expression profiles of multiple samples and their 92 

phenotypic labels. InPheRNo is based on a probabilistic graphical model (PGM) designed to integrate the  93 

collective regulatory influence of multiple TFs on a gene with the association of the gene’s expression 94 

with a phenotype to identify regulatory mechanisms that are phenotype-relevant (as opposed to 95 

phenotype-independent). In this approach, first the p-values of gene-phenotype associations (e.g. using 96 
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 6 

differential expression analysis) and p-values of gene-TF associations (using a two-step procedure based 97 

on the Elastic Net algorithm) are obtained and provided as input ‘observed variables’ to the PGM. The 98 

PGM is then trained on the data to obtain posterior probabilities for each TF-gene pair determining 99 

whether the TF regulates the gene in a phenotype-relevant manner (details are provided in the original 100 

manuscript [7]).  101 

 102 

Using data corresponding to SARS-CoV-2 infected samples and their corresponding mock-treated 103 

control, we first performed differential expression analysis and then reconstructed a COVID-19-relevant 104 

TRN associated with SARS-CoV-2 infection (as compared to mock-treated samples) using 500 most 105 

differentially expressed genes (FDR < 1.42E-3, shown in Supplementary Table S1), henceforth called 106 

‘SvM’ (SARS-CoV-2 versus mock-treated). To also identify regulatory mechanisms that are specific to 107 

SARS-CoV-2 infection (as opposed to infection by other viruses), we used InPheRNo to reconstruct a 108 

COVID-19-relevant TRN using 500 differentially expressed genes (FDR < 1.43E-3, Supplementary Table 109 

S1) by analyzing data corresponding to epithelial cells infected by SARS-CoV-2, IAV, IAVdNS1, RSV, and 110 

HPIV3. Henceforth, we use ‘SvOV’ (SARS-CoV-2 versus other viruses) to refer to the second network. The 111 

details of the analysis are provided in Methods and the reconstructed networks are provided in 112 

Supplementary Table S2.  113 

 114 

Given the SvM and SvOV COVID-19-relevant TRNs, we ranked TFs based on the number of COVID-19-115 

relevant target genes within each network. Tables 1-2 show the ranked list of top 8 TFs and top 21 TFs 116 

that target at least 1% of the considered COVID-19-related genes in SvM and SvOV networks, 117 

respectively (see Supplementary Table S3 for the full ranked list). We compared the targets of these TFs 118 

identified by InPheRNo, with their targets determined using ChIP-seq data available in the Gene 119 

Transcription Regulation Database (GTRD) database [9]. Three of the top 8 TFs in the SvM network 120 
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(NFKB1, STAT1, RELB) were present in the GTRD dataset. Out of the 18 targets identified by InPheRNo 121 

for these TFs, 17 were confirmed by GTRD (p= 8.62E-07, hypergeometric test). Similarly, four of the top 122 

TFs in the SvOV network (STAT1, RCOR1, EGR1, ZNF512B) were present in this dataset. Out of the 45 123 

targets found for these TFs by InPheRNo, 37 were confirmed using GTRD (p = 2.36E-15, hypergeometric 124 

test). 125 

 126 

Table 1: Top 8 TFs implicated in the SvM (SARS-CoV-2 vs. mock-treated) network. The TFs are ranked based on the number of 127 
their COVID-19-relevant target genes identified by InPheRNo. The second column shows the percent of the considered genes that 128 
each TF regulates. 129 

Transcription 

Factors 

Percent of 

target genes 

IRF9 3.05% 

IRF7 1.96% 

NFKB1 1.74% 

MAFF 1.53% 

SP110 1.09% 

RELB 1.09% 

STAT1 1.09% 

BATF2 1.09% 

 130 

 131 

Encouragingly, many of these TFs identified by InPheRNo have been previously shown to be activated 132 

during COVID-19 or infections by other viruses. For example, Interferon regulatory factor 9 (IRF9), the 133 

top hit in Table 1, was shown to be activated in SARS-CoV-2 infected NHBE cells [10]. While interestingly, 134 

in contrast to observations with SARS-CoV-1, infection by SARS-Cov-2 failed to limit STAT1 135 

phosphorylation [11], suggesting that STAT1 activity is maintained in SARS-CoV-2 CaLu-3 infected cells.   136 

 137 

 138 

 139 
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Table 2: Top 21 TFs implicated in the SvOV (SARS-CoV-2 vs. other viruses) network. The TFs are ranked based on the number of 140 
their COVID-19-relevant target genes identified by InPheRNo. The second column shows the percent of the considered genes that 141 
each TF regulates. 142 

Transcription 

Factors 

Percent of 

target genes 

STAT1 5.89% 

STAT2 2.95% 

MLX 2.74% 

EGR4 1.47% 

RCOR1 1.47% 

SP140L 1.47% 

TP53 1.26% 

RCOR2 1.26% 

MAX 1.26% 

ZNF496 1.26% 

ZNF512B 1.05% 

SMAD7 1.05% 

SOX12 1.05% 

IRF2 1.05% 

HDX 1.05% 

EGR1 1.05% 

SP110 1.05% 

IRF9 1.05% 

ZNF143 1.05% 

NFIX 1.05% 

ZBTB32 1.05% 

 143 

Functional characterization of COVID-19-relevant TRNs implicate major signaling pathways involved in 144 

the disease 145 

In order to determine the functional characteristics of gene expression programs involved in COVID-19, 146 

we performed pathway enrichment analysis for the implicated TFs and their COVID-19-relevant target 147 

genes in the SvM and SvOV networks. For this purpose, we used the gene set characterization (GSC) 148 

computational pipeline of KnowEnG (Knowledge Engine for Genomics) analytical platform [12]. The GSC 149 

pipeline enables ‘standard’ gene-set enrichment analysis (using Fisher’s exact test), as well as advanced 150 

‘network-guided’ analysis. The network-guided mode is an implementation of an algorithm called 151 
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DRaWR [13], which utilizes random walk with restarts (RWR) algorithm on a user-selected gene 152 

interaction network to rank pathways based on their relevance to a query gene-set. Including a gene 153 

interaction network (e.g. a protein-protein interaction (PPI) network) enriches the analysis and enables 154 

identification of important pathways that may not be detectable using simple overlap-based Fisher’s 155 

exact test.  156 

 157 

To this end, we used the set of top TFs in the SvM and SvOV networks (Tables 1-2) as separate query 158 

sets and performed standard and network-guided (using experimentally verified PPI network from 159 

STRING database [14]) pathway enrichment analysis (using Reactome pathways [15]) with default 160 

parameters (Supplementary Table S4). Pathways related to cytokine signaling and interferon signaling 161 

(interferon gamma signaling and interferon alpha/beta signaling) were implicated for both TRNs and 162 

using standard and network-guided analysis. Next, we repeated the network-guided analysis above by 163 

considering each TF and the set of its target genes in the SvM and SvOV networks as a separate query 164 

gene set (Fig. 1 and Supplementary Tables S5-S6). Fig. 1 shows gene sets that are implicated for at least 165 

two TFs and their targets in each TRN. Pathways related to Immune system, cytokines and interferon 166 

signaling were again among the pathways implicated for the majority of TFs (and their COVID-19-167 

relevant targets).  168 

 169 

Identification of kinases associated with COVID-19-relevant TRNs as potential therapeutic targets 170 

Kinases are enzymes that are involved in the regulation of protein activities through phosphorylation 171 

and are a major category of drug targets for human diseases [16]. Consequently, we sought to identify 172 

human kinases that are most associated with the constructed COVID-19-relevant TRNs as important 173 

signal transducers for this disease. For this purpose, we formed a kinase-substrate interaction (KSI) 174 

network by aggregating kinase-substrate relationships from three previous studies [17-19] (see Methods 175 
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for details). The aggregated KSI contained 29594 kinase-substrate relationships corresponding to 406 176 

unique kinases and 3942 unique substrates.  177 

 178 

To identify kinases most associated with COVID-19 we used foRWaRD, a computational tool that we 179 

recently developed to rank nodes and sets of nodes in a heterogenous network based on their relevance 180 

to a set of query set using random walk with restarts (RWR) [20]. As input to foRWaRD, we provided the 181 

aggregated KSI, a gene-gene interaction network (here we used HumanNet integrated network [21]), 182 

and a query set containing the top TFs obtained from SvM TRN (8 TFs) and SvOV TRN (21 TFs), 183 

separately. foRWaRD first forms a heterogenous network by superimposing the substrates on their 184 

corresponding gene nodes in the gene-gene interaction network. Then, it performs two runs of the RWR 185 

algorithm on this heterogenous network: one run with the query set (set of TFs) as the restart set and 186 

another run with all nodes as the restart set (to be used as control). Each run of the RWR provides a 187 

probability score for each node (including those corresponding to kinases), representing the relevance 188 

of the node to the restart set. Finally, a normalized score for each kinase is obtained by comparing the 189 

scores of the two runs of the RWR, and kinases are ranked based on how much their query set score is 190 

higher than their background (i.e. control) score. Table 3 shows the 15 highest ranked kinases for the 191 

top TFs corresponding to the SvM network and top TFs corresponding to the SvOV network, 192 

respectively. The full ranked lists of kinases are provided in Supplementary Table S7. Figs. 2 and 3 show 193 

network representations of the interactions among these kinases, their substrates, and the COVID-19-194 

relevant TRNs. Fig. 2 only includes direct kinase-TF interactions, while Fig. 3 and Supplementary Table S8 195 

include indirect interactions of kinases and TFs.   196 

 197 

As can be seen in Table 3, several families of kinases are implicated in both networks. JAK1, JAK2, and 198 

JAK3, which are identified among the top 15 kinases for both SvM and SvOV TRNs, belong to the Janus 199 
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kinase family, a family of non-receptor tyrosine kinases [22]. This family of kinases are involved in the 200 

transduction of cytokine-mediated signals through the JAK-STAT pathway. The members of the Janus 201 

family and the JAK-STAT pathway have been suggested as potential therapeutic targets in COVID-19 [23-202 

26], supporting the validity of the results from this analysis.  203 

 204 
Table 3: Top 15 kinases identified using foRWaRD for the top TFs in SvM and SvOV networks. The kinases are ranked based on 205 
the ratio of their query set probability score to their background probability score. Any ratio score >1 implies that the kinase is 206 
scored higher using the top TF query set compared to its control. 207 

Ranked list of Kinases 
(based on top 8 TFs in 

SvM network) 

Ranked list of Kinases 
(based on top 21 TFs in 

SvOV network) 

Kinase Ratio Score Kinase Ratio Score 

JAK2 45.76 MYO3A 11.60 

IKBKE 26.20 JAK3 10.74 

MAP2K5 23.88 VRK3 10.34 

CHUK 17.17 ADCK1 9.74 

IKBKB 14.22 JAK1 8.69 

JAK3 10.47 MAP2K5 8.19 

PRKDC 9.12 BMX 7.97 

LIMK2 8.26 HIPK4 7.48 

FGFR3 8.24 JAK2 7.46 

RIPK1 7.89 MAP3K13 7.34 

JAK1 7.48 LCK 6.63 

IRAK1 6.48 CAMK2B 6.34 

FLT1 5.66 MAPK14 6.32 

MAP3K8 5.54 BTK 6.13 

TBK1 5.28 MAPK11 6.05 

 208 

 209 

Evaluation of the predicted kinase-gene relationships using gene knockdown experiments 210 

Since foRWaRD incorporates both direct and indirect interactions to identify kinases, we sought to 211 

determine whether the knockdown of identified kinases directly influence the expression of the TFs and 212 

their target genes in the COVID-19-relevant TRNs. To this end, we obtained gene expression signatures 213 

corresponding to shRNA knockdown experiments from the LINCS dataset [8]. We only focused on 214 
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experiments performed in A549 cell line, since it is one of the cell lines used in our analysis to construct 215 

the COVID-19-relevant TRNs and a cell line shown to be susceptible to SARS-CoV-2 infection [27]. The 216 

gene expression signatures correspond to z-score normalized changes in the expression of 978 ‘L1000 217 

landmark genes’ as a result of knockdown of a single gene, when compared to control (no knockdown). 218 

We defined a landmark gene to be positively (or negatively) influenced by the knockdown of a kinase if 219 

its expression increased (decreased) as a result of the knockdown and also if its normalized expression 220 

change was among the top (bottom) 15% of all landmark genes.  221 

 222 

Out of the 15 kinases implicated using foRWaRD for the SvM analysis, shRNA knockdown signatures in 223 

A549 cells were available for 13 of them. In addition, 10 target genes and 2 TFs from the SvM TRN were 224 

among the L1000 landmark genes whose expression change were measured. All of the 2 TFs and the 10 225 

target genes were positively or negatively influenced by the knockdown of at least one of the implicated 226 

kinases (Supplementary Table S9 and Supplementary Figures S1-S2), supporting the interactions 227 

discovered in this study.  228 

 229 

We repeated the analysis above using the kinases implicated for the SvOV network. Knockdown 230 

signatures were only available for 7 (out of 15) implicated kinases. In addition, 14 target genes and 3 TFs 231 

from the SvOV TRN were among the L1000 landmark genes. Our analysis showed that 12 target genes 232 

(out of 14) and 2 TFs (out of 3) were positively or negatively influenced by the knockdown of at least one 233 

of the 7 kinases (Figure 4, Supplementary Table S9 and Supplementary Figure S3). Figure 4 shows the 234 

histogram of the expression changes of the landmark genes as a result of each kinase knockdown and its 235 

effect on the TFs and target genes in the SvOV TRN.  236 

 237 

Taken together, these results show that our computational pipeline that strings together InPheRNo, 238 
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KnowEnG’s GSC, and foRWaRD is capable of identifying biologically plausible signaling networks involved 239 

in regulating the responsible of airway epithelial cells to SARS-CoV-2. 240 

 241 

DISCUSSION and CONCLUSION 242 

The aim of this study was to identify signaling and transcriptional regulatory networks that play key roles 243 

in transducing signals specific to SARS-CoV-2 infection of airway epithelial cells in order to better 244 

understand the pathophysiology of COVID-19 and provide a list of potential molecular targets for 245 

therapies aimed at altering the clinical courses of the disease. The response was studied in comparison 246 

to mock-treated cells and other viruses (RSV, H1N1, HPIV3).  247 

 248 

Insights learned from the regulatory networks associated with SARS-CoV-2 versus mock-treated cells: In 249 

the first instance, comparing to mock-treated cells, we can identify the key regulatory pathways of 250 

antiviral responses. Alterations of these pathways (whether genetic, epigenetic or environmental) can 251 

have important consequences for a broad range of infections. If their activity is diminished or impaired, 252 

susceptibility to viral infections is expected, with high titers of virus likely increasing infectivity. This is 253 

the case for the loss of function of TLR7 [28] or type I and type III IFN-related genes [29, 30] leading to 254 

more severe COVID-19 disease in younger individuals. As expected, pathway enrichment analysis 255 

showed that immune (cytokine) signaling related to interferon were the top hits, as is expected for viral 256 

infection of host cells [31]. Amongst the lists of TFs identified is IRF9, a TF shown to be activated by 257 

SARS-CoV-2 [10] that forms a trimeric complex with STAT1 and STAT2 termed IFN-stimulated gene factor 258 

3 (ISG3) that binds to the IFN stimulated response element (ISRE) and controls the expression of type I 259 

and III IFN essential for the control of Influenza A virus replication [32]. Interferons alpha and beta (IFN-a 260 

and IFN-b) are among the type I IFNs that regulate the activity of immune system and act as antiviral 261 

cytokines. A recent study has shown an association between impaired interferon type I response 262 
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(represented by low activity of IFN-a and IFN-b) and severity of COVID-19 and has suggested blood 263 

deficiency in type I IFN as a hallmark of severe manifestation of the disease [28]. In addition, several 264 

studies have suggested type I IFNs as potential antiviral treatments for COVID-19 [29, 30]. IFN-g is a 265 

cytokine involved in innate and adaptive immunity and is the only member of type II IFNs. A recent study 266 

has shown a correlation between COVID-19 severity and a decrease in the production of IFN-g by CD4+ T 267 

cells [31].   268 

 269 

Pathway enrichment provides a high-level view, which lacks granular information about the regulatory 270 

pathways involved. For this reason, we focused our analysis on linking protein kinases to the identified 271 

network using foRWaRD. This analysis confirmed the importance of JAK-STAT and NFkB signaling for the 272 

expression of IFN genes and antiviral responses in SARS-CoV-2 versus mock-treated cells (Fig. 2A and 273 

3A). Identified kinases also included TANK-binding kinase 1 (TBK1) and IKKe, critical regulators of the 274 

transcription factor IRF7 that regulate amongst other genes IFN-induced oligodenylate synthetase-like 275 

(OASL) and Pentraxin-3 (PTX3) (Fig. 2A). TBK1/IKKe acts downstream of TLR3 and TLR7 via the TRIF-276 

signaling adapter, two TLR identified in genetic studies to confer susceptibility to COVID-19 [33, 34]. 277 

Moreover, high circulating expression of PTX3, derived from monocytic and endothelial cells is a 278 

predictor of short-term COVID-19 mortality [35]. The analysis thus identified several relevant pathways 279 

to SARS-CoV-2 infection and disease susceptibility/severity. 280 

 281 

Insights learned from the regulatory networks associated with SARS-CoV-2 versus other respiratory virus-282 

treated cells: Investigation of the regulatory networks specifically associated with SARS-CoV-2 can help 283 

better understand either acute complications or long-term consequences of COVID-19. This is 284 

particularly important for a novel disease, for which limited information is available. Considering that  285 
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as of December 2020, more than 75 million people have been infected, the potential of diverging 286 

responses is huge and can have long-lasting impact on the health of many. Therefore, better 287 

understanding the peculiarities of SARS-CoV-2 compared to other viruses is paramount to deal with the 288 

coming fall out of the pandemic. When looking at differences between mock- and other viruses-treated 289 

cells, the enrichment analysis highlighted a potential role for GPCR signaling associated with the TFs 290 

MAX, SP110 and EGR4. GPCRs form a large family of 7-transmembrance cell surface receptors that 291 

mediates numerous cellular functions, including cytokine/chemokine signaling involved in leukocyte 292 

chemotaxis [36]. The association with the above-mentioned TFs postulate a role in controlling cell 293 

differentiation/cell death programs by GPCR.  294 

 295 

In the SvOV network, additional protein kinases were identified including MAPK11, MAPK14, BTK, and 296 

BMX. MAPK11 and MAPK14 both belong to the p38 MAPK family which are involved in the cellular 297 

responses to extracellular stimuli including proinflammatory cytokines such as IL-6 [37]. Previously, it 298 

has been shown that one of the proteins expressed by SARS-CoV virus upregulates p38 MAPK [38]. A 299 

global phosphorylation analysis of SARS-CoV-2 infected epithelial cells also identified MAPK14 and 300 

MAPK11 as kinases upregulated during infection that make important contributions to host responses 301 

[39]. Accordingly, inhibition of MAPK14 and MAPK11 family has been proposed as a potential 302 

therapeutic approach in COVID-19 [37]. In addition to be a downstream target of TLR-signaling pathways 303 

including TLR3 in airway epithelial cells [40], MAPK14 regulates IL-6 expression and mRNA stability [41]. 304 

IL-6 circulating levels are elevated in severe COVID-19 [42]. Moreover, MAPK14 is an important signal 305 

transducer of IL-17 in endothelial cells [43], involved in neutrophilic inflammation, that may be 306 

important mediators of thrombosis in COVID-19 via the release of Neutrophil-Extracellular-Traps [20, 307 

44]. MAPK14 is an important target of the potent corticosteroid dexamethasone [45], that was shown to 308 

decrease mortality in severe COVID-19 [46].  309 
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 310 

BMX and BTK are non-receptor tyrosine kinases that belong to the Tec kinase family. Tec family has 311 

been shown to be involved in the intracellular signaling mechanisms of cytokine receptors and antigen 312 

receptor signaling in lymphocytes [47]. BMX has been shown to link both MYD88, another TLR-signaling 313 

adapter, and Focal Adhesion Kinases, a kinase associated with integrin activation to the synthesis of IL-6 314 

[48]. The inhibition of genes in this family, and particularly BTK [41], has been proposed as a therapeutic 315 

approach to protect COVID-19 patients against pulmonary injury [42] and to block thrombo-316 

inflammation [43]. Two potential downstream targets of BTK according to our regulatory networks (Fig. 317 

2B), Tumor necrosis factor ligand superfamily member 14 (TNFS14) and XIAP-associated factor 1 (XAF1) 318 

have been identified in a single cell transcriptomic study comparing IAV and SARS-CoV-2 responses [49]. 319 

TNFSF14 is a ligand of the lymphotoxin beta receptor that amplifies NFkB signaling in T lymphocytes to 320 

increase IFN-gamma production [50]. XAF1, as its name implies, binds XIAP (BIRC4) an important 321 

regulator of inflammatory signaling and apoptosis, that increases TRAIL-mediated apoptosis in response 322 

to IFNb [51]. While these responses are likely desirable during early phases of the infection, whether 323 

they can also contribute to immunopathology in the second sustained phase of the disease warrants 324 

further investigation.   325 

 326 

In conclusion, our results obtained by stringing together three powerful computational tools (InPheRNo, 327 

KnowEnG GSC, and foRWaRD) identified regulatory networks, pathways, and kinases, many of which 328 

have already been associated with COVID-19 in previous studies. These results also provided further 329 

information on putative regulatory mechanisms underpinning the infection of epithelial cells by SARS-330 

CoV-2 and identified novel potential therapeutic targets that can serve as the basis for future 331 

identification and development of drugs that mitigate the impact of COVID-19 in individuals at risk of 332 

severe complications. The SvM regulatory network was mostly related to classic antiviral response 333 
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pathways (IRF, IFN, JAK-STAT, etc.) that are well supported by genomic data on diseases susceptibility to 334 

COVID-19 [33, 34]. Interestingly, the SvOV regulatory network identified pathways associated with 335 

regulation of inflammation (MAPK14) and immunity (BTK, BMX) that may contribute to exacerbate 336 

organ damage. 337 

 338 

METHODS 339 

Data collection 340 

We downloaded mock-treated and infected RNA-seq gene expression profiles of human lung epithelial 341 

cells from the Gene Expression Omnibus (GEO) database (accession number: GSE147507). For the 342 

reconstruction of SARS-CoV-2 versus mock (SvM) TRN, we used 24 samples corresponding to 343 

independent biological triplicates of SARS-CoV-2 infected NHBE, A549, A549-ACE2, and Calu3 and their 344 

corresponding mock-treated control. For the reconstruction of SARS-CoV-2 versus other viruses (SvOV) 345 

TRN, we used 33 samples corresponding to independent biological replicates of A549 cells infected with 346 

SARS-CoV-2, RSV, IAV, and HPIV3, NHBE cells infected with SARS-CoV-2, IAV, and IAVdNS, A549-ACE2 347 

cells infected with SARS-CoV-2, and Calu3 cells infected with SARS-CoV-2. 348 

 349 

We downloaded the list of human TFs from AnimalTFDB [52]. Experimentally verified protein-protein 350 

interaction network from the STRING database [14] and HumanNet integrated network [21] were 351 

downloaded from KnowEnG’s knowledge network (version 17.06) available at the address 352 

https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md. The list of target genes for the 353 

top TFs (identified using ChIP-seq) was downloaded from the GTRD database 354 

(http://gtrd.biouml.org/downloads/20.06/intervals/target_genes/Homo%20sapiens/genes%20promote355 

r%5b-1000,+100%5d/). In this dataset, a gene is considered to be target of a TF if its promoter region 356 

(defined as the interval [-1000, +100] bp relative to gene’s transcriptional start site) contains at least one 357 
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GTRD meta-cluster for the TF. The meta-clusters reflect ChIP peaks for the same TF-gene but integrated 358 

from different experiment conditions and different peak calling methods [9].  359 

 360 

To form the aggregated KSI network, we obtained kinase-substrate relationships from three previous 361 

studies. The interactions corresponding to homo sapiens were downloaded from PhosphoSitePlus 362 

database (www.phosphosite.org) [17], PhosphoNetworks (www.phosphonetworks.org) [18], and the 363 

supplementary material of an independent study [19]. After removing duplicate edges, we formed a KSI 364 

involving 29594 kinase-substrate relationships corresponding to 406 unique kinases and 3942 unique 365 

substrates. LINCS Level 5 consensus signatures (‘trt_sh.cgs’) corresponding to shRNA knockdowns in 366 

A549 cell line were obtained from GEO with the accession number (GSE92742). We used the Consensus 367 

Gene Signatures (CGS) data since they correspond to gene expression changes that are common among 368 

multiple shRNAs that target the same gene, mitigating off-target effects [53]. 369 

 370 

Reconstruction of COVID-19-relevant TRNs using InPheRNo 371 

InPheRNo [7] is a computational method that utilizes a probabilistic graphical model to combine 372 

information on the significance (pseudo p-value) of gene-TF associations (from their expression profiles) 373 

with information on the significance (p-value) of gene-phenotype associations to construct phenotype-374 

relevant TRNs. As input, it accepts a list of TFs, the expression profiles of genes and TFs (in multiple 375 

samples), and the p-value of association between genes’ expression and a phenotype.  376 

 377 

To construct the TRNs using InPheRNo, we first performed differential expression analysis using EdgeR 378 

[54] with the cell type as a confounding factor. In the case of SvOV, since for different viruses the 379 

measurements were obtained at different time-points, we also included the time of measurement post 380 

infection as a confounding factor. Next, we quantile normalized the gene expression profiles using voom 381 
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[55] and then z-score normalized the results. We constructed the SvM and SvOV TRNs using 500 most 382 

differentially expressed genes. We ran InPheRNo (downloaded from 383 

https://github.com/KnowEnG/InPheRNo) with 1000 iterations, 500 repeats and default values for other 384 

parameters.  385 

 386 

Pathway enrichment analysis 387 

We used KnowEnG’s gene set characterization (GSC) pipeline [12] (www.knoweng.org/analyze) to 388 

perform pathway enrichment analysis. For the standard mode of GSC pipeline (without use of any gene 389 

interaction network), we chose Reactome pathways [15] as the option for target gene sets and the rest 390 

of parameters were left as default. We excluded pathways with smaller than 10 genes and adjusted the 391 

enrichment p-values (Fisher’s exact test) for multiple tests using Benjamini-Hochberg false discovery 392 

rate (FDR). Pathways with FDR < 0.05 were considered statistically significant.  393 

 394 

For the knowledge-guided mode of the GSC pipeline, we used ‘STRING Experimental PPI’ option for the 395 

knowledge network (which corresponds to experimentally verified protein-protein interaction edges 396 

from the STRING database [14]) and the amount of network smoothing was set to the default 50%. Only 397 

pathways with ‘difference score’ larger than 0.5, which correspond to those that have a query score 398 

higher than the background score, were considered associated with the input query gene set. For 399 

enrichment analysis of the set of TFs, the input file to KnowEnG’s GSC pipeline was designed such that 400 

the universe (i.e. population) would be equal to the set of all TFs present in our study. For enrichment 401 

analysis of a TF and its target genes, the universe was set to be the set of all genes and TFs present in 402 

our study.  403 

 404 

 405 
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Figure Legends: 418 

 419 

Figure 1: Pathway enrichment analysis using network-guided gene set characterization pipeline of 420 

KnowEnG. The columns correspond to top TFs and their COVID-19-relevant targets identified using 421 

InPheRNo. Only pathways that have been implicated for at least two TFs (and their targets) are depicted 422 

(see Supplementary Tables S5 and S6 for the full list). The heatmap shows the ‘difference score’ 423 

assigned to each pathway using KnowEnG. Cases in which the score was <0.5 are shown as white. A) 424 

Implicated pathways for top TFs in the SvM TRN. B) Implicated pathways for top TFs in the SvOV 425 

network.   426 
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Figure 2: Network representation of direct interactions between implicated kinases, TFs and genes 428 

associated with COVID-19. Kinases are depicted as orange ellipses, TFs are depicted as green rectangles 429 

and target genes are depicted as grey ellipses. Only direct kinase-TF interactions present in the 430 

aggregated KSI are depicted. A) Network corresponding to the SvM analysis. B) Network corresponding 431 

to the SvOV analysis.  432 

 433 

 434 
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Figure 3: Network representation of indirect interactions between implicated kinases, substrates, TFs 436 

and genes associated with COVID-19. Kinases are depicted as orange ellipses, substrates that interact 437 

with at least one of the implicated TFs in the HumanNet integrated network are depicted as blue 438 

ellipses, TFs are depicted as green rectangles and target genes are depicted as grey ellipses. Directed 439 

edges show interactions between kinases and their substrates (obtained from the aggregated KSI) as 440 

well as TFs and their target genes (obtained using InPheRNo). Undirected edges correspond to 441 

interactions between substrates and TFs (obtained from HumanNet Integrated network). A) Network 442 

corresponding to the SvM analysis. B) Network corresponding to the SvOV analysis.  443 

 444 

 445 
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 446 

Figure 4: The histogram of z-score normalized gene expression changes of LINCS L1000 landmark genes 447 

in A549 cells as a result of knockdown of kinases implicated in the SvOV analysis. Each histogram 448 

corresponds to the knockdown of one kinase. Vertical lines depict the 15th and 85th percentiles and red 449 

stars show the TFs and target genes in the SvOV network that are positively or negatively influenced by 450 

the experiment.   451 
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Titles of Supplementary Files: 454 

Supplementary Figure S1: The histogram of z-score normalized gene expression changes of LINCS L1000 455 

landmark genes in A549 cells as a result of knockdown of kinases implicated in the SvM analysis. Each 456 

histogram corresponds to the knockdown of one kinase. Vertical lines depict the 15th and 85th 457 

percentiles and red stars show the TFs and target genes in the SvM network that are positively or 458 

negatively influenced by the experiment.   459 

 460 

Supplementary Figure S2: The effect of kinase knockdowns on genes and TFs shared between the SvM 461 

TRN and L1000 landmark genes. An upward arrow shows that the expression of the gene in A549 cells 462 

increased and the change in the expression was among the top 15% of all landmark genes. A downward 463 

arrow shows that the expression of the gene in A549 cells decreased and the change in the expression 464 

was among the bottom 15% of all landmark genes. 465 

 466 

Supplementary Figure S3: The effect of kinase knockdowns on genes and TFs shared between the SvOV 467 

TRN and L1000 landmark genes. An upward arrow shows that the expression of the gene in A549 cells 468 

increased and the change in the expression was among the top 15% of all landmark genes. A downward 469 

arrow shows that the expression of the gene in A549 cells decreased and the change in the expression 470 

was among the bottom 15% of all landmark genes. 471 

 472 

Supplementary Table S1: Top 500 differentially expressed genes and their corresponding p-values. First 473 

tab corresponds to genes differentially expressed between SARS-CoV-2 infected cells and mock-treated 474 

cells. The second tab corresponds to genes differentially expressed between SARS-CoV-2 infected cells 475 

and cells infected by other respiratory viruses.  476 

 477 
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Supplementary Table S2: The SvM and SvOV TRNs constructed using InPheRNo. Column headers 478 

correspond to TFs and row names correspond to target genes. Each entry in the matrix reflects the score 479 

assigned to each potential TF-gene edge. Only edges with score > 0.5 were considered for the follow-up 480 

analysis. 481 

 482 

Supplementary Table S3: The full list of TFs ranked based on the number of COVID-19-relevant target 483 

genes identified by InPheRNo in the SvM and SvOV networks.  484 

 485 

Supplementary Table S4: Results of standard and network-guided pathway enrichment analysis using 486 

KnowEnG’s GSC computational pipeline. The results of the first two tabs are obtained by selecting the 487 

top 8 TFs from the SvM network as the query gene set, while the results of the last two tabs are 488 

obtained by selecting the top 21 TFs from the SvOV network as the query gene set.  489 

 490 

Supplementary Table S5: Network-guided pathway enrichment analysis corresponding to TFs and target 491 

genes identified by InPheRNo in the SvM network. The results of each tab are obtained by using an 492 

implicated TF and its identified target genes as a query gene-set.  493 

 494 

Supplementary Table S6: Network-guided pathway enrichment analysis corresponding to TFs and target 495 

genes identified by InPheRNo in the SvOV network. The results of each tab are obtained by using an 496 

implicated TF and its identified target genes as a query gene-set.  497 

 498 

Supplementary Table S7: The full ranked list of kinases identified by foRWaRD for the SvM and SvOV 499 

networks.  500 

 501 
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Supplementary Table S8: The indirect interactions of the implicated kinases and TFs in the SvM and 502 

SvOV networks corresponding to Fig. 3. The kinase-substrate relationships are directly extracted from 503 

the aggregated KSI. The substrate-TF interactions correspond to edges in the HumanNet Integrated 504 

network. 505 

 506 

Supplementary Table S9: The effect of shRNA knockdown of implicated kinases on the TFs and target 507 

genes identified by InPheRNo in A549 cells. Each tab includes the z-score normalized changes in the 508 

expression of the genes as well as the percentile of that change among all L1000 landmark genes.  509 
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