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Abstract

The interlocking roles of lexical, syntactic and semantic processing in language
comprehension has been the subject of longstanding debate. Recently, the
cortical response to a frequency-tagged linguistic stimulus has been shown to
track the rate of phrase and sentence, as well as syllable, presentation. This
could be interpreted as evidence for the hierarchical processing of speech,
or as a response to the repetition of grammatical category. To examine the
extent to which hierarchical structure plays a role in language processing
we recorded EEG from human participants as they listen to isochronous
streams of monosyllabic words. Comparing responses to sequences in which
grammatical category is strictly alternating and chosen such that two-word
phrases can be grammatically constructed — cold food loud room — or
is absent — rough give ill tell — showed cortical entrainment at the
two-word phrase rate was only present in the grammatical condition. Thus,
grammatical category repetition alone does not yield entertainment at higher
level than a word. On the other hand, cortical entrainment was reduced
for the mixed-phrase condition that contained two-word phrases but no
grammatical category repetition — that word send less — which is not
what would be expected if the measured entrainment reflected purely abstract
hierarchical syntactic units. Our results support a model in which word-level
grammatical category information is required to build larger units.
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Introduction

The ability of the human brain to rapidly generate meaning from an incoming
stream of words is an impressive feat. The role played by hierarchical syntactic
structure during this processing is the subject of an ongoing debate with,
on the two extremes, some arguing that full hierarchical analysis is central
to sentence comprehension [2, 5, 9], while others claim that hierarchical
representations are non-essential [10–13].

According to the hierarchical account of language, comprehension is
underpinned by the brain’s ability to abstract over a number of linguistic
levels, such as grammatical categories and phrases and to combine them
hierarchically according to a set of grammatical principles. In this view
language users parse an incoming sequence of words into a nested tree-
like structure that details taxonomy-like relationships between syntactic
constituents and enables sentence comprehension (Fig. 1).

In support of this view, it has been demonstrated, using MEG in [8] and
using EEG in [7] that cortical activity can entrain to the rate of syllable,
phrase and sentence presentation. In the EEG experiments participants were
played continuous streams of four-word sentences, where each word was 320
ms long in duration and consisted of only a single syllable. As in Fig. 1 each
sentence was composed of a noun phrase and a verb phrase, each containing
two words. Thus these stimuli have a specific frequency at three levels of
linguistic structure: syllables at 3.125 Hz, phrases at 1.5625 Hz and sentences
at 0.78125 Hz. The neural responses were analysed using time-frequency
decomposition and measures of inter-trial phase coherence (ITPC). Cortical
activity was found to be phase-locked to the rate of presentation of syllables,
phrases and sentences even though only the syllable frequency was present
in the auditory signal itself, the other two frequencies rely on the meaning of
the words and the structure of the sentences.

However, it has also been suggested that the brain could rely on simpler,
potentially more generic, strategies underpinned by statistical processing
of linguistic representations. In line with this, recent work [13] has shown
that a model solely based on distributional word semantics is sufficient to
predict the response observed in [7, 8]. In this model the distributional word
semantics are represented by skipgram-word2vec vectors [4,17]. In skipgram,
word2vec vectors are calculated by training a simple linear neural network
with one hidden layer; the input and output layers both correspond to words
and the network is trained on the task of predicting, from a given input
word, the unordered list of words that occur in proximity to it in text. The
components of the word2vec vector for a given word are the weights feeding
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Fig 1. Demonstration of a syntactic tree for an example sentence
from [7,8]. The sentence is composed of a noun phrase and a verb phrase,
each consisting of two words presented at a rate of 3.125 Hz. The sentence
is described using a hierarchical tree that splits the sentence first into a
noun phrase and a verb phrase and then into words. This is a particularly
simple tree, more complex trees may have more branches. This simple
structure is convenient for frequency tagging and the different frequencies
corresponding to the three levels of the tree, sentence, phrase and word,
have been marked here.

forwards from the word to the hidden layer. Words that are likely to occur in
a similar context have similar representations in the hidden layer and hence
are associated with similar word2vec vectors. To a striking degree these
high-dimensional vectors have specific directions that serve, at least locally,
to represent specific concepts, so that, for example, the same direction that
leads from “big” to “biggest” leads from “small” to “smallest” [16,18].

In [13] fictive EEG signals representing experimental trials were con-
structed from the word2vec vectors for each stimulus. In the EEG experiment
each word was presented for 320 ms and so, in the ficitive data 320 copies of
the vector for each word were lined up side-by-side forming the columns of
a matrix so each column represents 1 ms of the stimulus. The rows of this
matrix were then treated as a EEG and this fictive signal was analysed in the
same way as the real EEG signal is, with measures of the evoked response
averaged over rows, much as we average over individual electrodes. This
simulated EEG signal demonstrated the same entrainment to words, phrases
and sentences as the real signal. Since the high-dimensional word2vec vectors
represent single words only and do not explicitly encode information about
word sequences, this demonstrated that semantic relationships that can be
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deduced from a text corpus are sufficient to explain the ITPC peaks seen in
the real experiment, without any need to invoke the hierarchical structure of
the sentence.

The current study aimed to elucidate the importance of hierarchical
structure during language processing using EEG. We recorded neural activity
from 20 participants while they listened to streams of two-word sequences
from four different conditions:

AN (adjective-noun): repetition of adjective-noun sequences,

AV (adjective-verb): repetition of adjective-verb sequences,

MP (mixed phrase): repetition of grammatical two-word phrases with
varying grammatical categories,

RR (random): random word order; no phrases possible.

In the AN and AV conditions, grammatical categories occurred at a regular
rate, so adjectives, nouns or verbs were repeated every other word. However
the stream could only be parsed into grammatical phrases in the AN condition,
for example:

A N A N A N

AN: cold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold food loud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud room tall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girl

where underlining indicates grammatical phrases. In the AV condition, no
such grammatical phrases could be formed, as in the example:

A V A V A V

AV: rough give ill tell thin chew

In the MP condition, grammatical two-word phrases could be formed, but
grammatical category occurred with no regularity, for example

Det N V P Adv V

MP: that wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat word send lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend less too loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loudtoo loud

and, finally, in the RR condition there are neither grammatical phrases nor
any regularity

Pre V A P V Det

RR: from solve good him ask an
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As in [7] the principle measure of response used here is the inter-trial
phase coherence (ITPC); this quantifies the clustering of phases across trials
at a given frequency. According to the hierarchical account we would expect
a peak in ITPC at the phrase rate in both the AN and MP conditions,
but no peak in ITPC in the AV or RR condition. A sequential account of
language processing that relies primarily upon word-level statistics would
instead predict a peak in ITPC at the phrasal rate in both the AN and AV
conditions: our stimulus was designed so that the peak calculated using the
fictive EEG simulated from word2vec gives similar phrase peaks in the AN
and AV conditions.

Anticipating the main results, a peak in ITPC at the phrasal rate was
significantly larger for AN than for any of the other conditions, suggesting
that neural entrainment cannot be explained solely by hierarchical accounts
or grammatical category regularity; rather, it additionally calls for higher
level, syntactic representations. Our results support a language system that
exploits both linear and hierarchical operations of language inputs to generate
meaning.

Results

The simulated EEG calculated from the word2vec representation yielded
a peak in ITPC of the simulated EEG responses at the rate of syllable
presentation (3.125 Hz, Fig. 2 in each of the four conditions. The model
also yielded a peak in ITPC at the rate of phrase presentation (1.5625 Hz)
for the AN and AV conditions ( 2), where, respectively, the grammatical
adjective-noun phrases or the ungrammatical adjective-verb sequences were
repeatedly presented. As described in the Methods, the stimuli for the
AN and AV conditions were designed so that the vectors corresponding to
successive words have similar distances in both of these conditions and the
AN and AV conditions show similar peaks at the phrase frequency, even
though one condition can be parsed into grammatical two-word phrases and
the other cannot. The model also showed a pronounced, but lower amplitude
peak in ITPC at the rate of phrase presentation during the MP condition.
The phrase peak was absent from an version of the RR condition in which
words are shuffled at random.

Human EEG data showed a highly significant peak (p < 0.001) in ITPC
at the rate of syllable presentation (3.125 Hz) in all conditions tested (Fig. 3).
There was a highly prominent peak at the phrase rate (1.5625Hz) in the AN
condition (p < 0.001), and a much less prominent yet still significant peak in
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Fig 2. ITPC of the simulated EEG calculated from the word2vec
representation for the four conditions. The model yielded peaks in ITPC at
the rate of syllable presentation (3.125 Hz) in each of the four conditions
(AN, AV, MP, random). Vertical red lines represent the frequency at which
syllables and two-word sequences are presented, the blue lines show
responses for 20 simulated particants, the black is the grand average over
these participants.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423994doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423994
http://creativecommons.org/licenses/by/4.0/


the MP condition (p = 0.042). The phrase peak was not significant in the
AV condition (p = 0.063). For the RR condition no evidence of a phrase-level
response was found (p = 0.36). A reduction in the amplitude of ITPC peaks
at the phrase rate in the MP condition when compared to the AN condition,
and its absence in the RR condition, was consistent with the simulated data,
but the less prominent peak in the AV condition was not.

As described in the Methods section, data for the AN, AV and MP
conditions come from 20 participants, there is only data for the control RR
condition for 16 of these. Restricting the analysis to these 16 participants
does not change the conconclusions from these results; on 16 participants the
peaks at the rate of syllable presentatioon are significant (p < 0.001) for all
participants; the phrase peak is significant for the AN condition (p < 0.001),
the AV condition is significant (p = 0.044), the MP condition has p = 0.15
and RR, p = 0.38.

We have also performed an additional, ‘by item’ analysis with streams
used as item, the ITCPs were averaged across participants to produce an
average value for each stream for each condition. In this approach far smaller
ITCP peaks were expected because of the likely differences in the phase
of responses from participant to participant. In the ‘by item’ analysis the
ITCP included both the variability of the response to stimulus, which we
are interested in, as well as the less interesting variability in phase due to
differences between the participants, for example, in their head shape and size.
Nonetheless, the result was somewhat similar: there were significant peaks
at the syllable rate (p < 0.001) and at the phrase rate for AN : p < 0.001;
whereas the AV, AN and RR conditions showed no peaks.

In order to directly compare the ITPC values at the phrase rate across
the four conditions, the Kruskal-Wallis test was used. The effect of condition
was significant at the phrase frequency (p = 0.003). Pairwise comparisons
(one-sided pairwise Wilcoxon signed-rank test, uncorrected) showed that
the ITPC in the AN condition at the phrase rate was significantly higher
than in the AV or MP condition (both p = 0.006); the difference (two-sided
pairwise Wilcoxon signed-rank test) between the AN and MP condition was
not significant (p = 0.82). The effect of condition on the frequency of syllable
presentation had p = 0.051 and, perhaps surprisingly, the pair-wise two-sided
tests indicate that AV was different from RR (p = 0.0042) and both AV
(p = 0.041) and AN (p = 0.0025) were different from MP. This might indicate
that the participants listened more attentively to the AN and AV stimuli.

Figure 4 shows individual particpants ITPCs for each condition. Statisti-
cally significant peaks at the rate of syllable presentation were observed in
all participants in the AN and AV conditions, 19/20 participants in the MP
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Fig 3. EEG responses recorded in human participants for each of the four
conditions. Statistically significant peaks in ITPC values were observed at
the rate of syllable presentation (3.125 Hz) in each of the four conditions
(AN, AV, MP, RR). A statistically significant peak in ITPC is observed at
the rate of phrase presentation (1.5625 Hz) in the AN and MP conditions.
Red stars represent statistical significance ? : p < 0.05, ?? : p < 0.01 and
? ? ? : p < 0.005. Vertical red lines represent the frequency at which
syllables and two-word sequences are presented.
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condition and 15/16 in the RR condition.
When analysing the EEG responses of individual subjects at the rate of

phrase presentation, a statistically significant peak was observed in 14/20
participants in the AN condition, in 7/20 participants in the AV condition,
9/20 in the MP and 3/16 in the RR conditions. Thus the pattern observed
in the grand averages can be seen in the majority of individual participants.
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Fig 4. ITPC responses from individual participants at the phrase rate
(3.125 Hz; filled bars) and the syllable rate (1.5625 Hz; unfilled bars) in each
of the four conditions (AN, AV, MP, RR). For the AN, AV and MP
conditions, values of the ITPC at each frequency of interest are displayed for
each of the 20 participants, for RR, for the 16 participants. Participants one
to 20 are ordered in accordance to their ITPC at the phrase frequency in
the AN condition, in increasing order from left to right. Red horizontal lines
indicate the mean ITPC value for random phases along with the
corresponding significance thresholds (p < 0.05). These values are the same
for both frequencies and so any ITPC that is above the upper red line is
significantly higher than chance level.
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Discussion

The current study investigated whether, and to what extent, syntactic
structure is automatically utilised by the brain during language compre-
hension, over and above information about grammatical category. It was
found that repetitive presentation of grammatically well-formed, two-word
adjective-noun phrases yields a prominent peak in ITPC at the rate of phrase
presentation, but that repetitive presentation of two-word adjective-verb
sequences that cannot be combined into a phrase did not produce a peak.
The amplitude of the AN peak, as well as the syllable peak in response to
single words, is consistent with previous findings [7]. This provides support
for a syntactic operation that enables combining of words into higher-level
syntactic units and suggests that the processing of linguistic input involves
levels of abstraction beyond word-level grammatical-category information.
This supports classical syntax-based approaches to language [2, 5, 9]. It is
also generally compatible with the proposal that higher-level chunking of
smaller language units occurs during language processing [6], although the
nature of what the chunks are remains unclear. Indeed, in our analysis we
have assumed that the grammatical categories we employed in designing
our stimuli are relevant for language processing in the brain. There are
other grammatical accounts that could be used to construct putative phrase
conditions. Nonetheless, using a Chomskyan account of phrase structure has
given us two conditions, AN and AV, which produced significantly different
responses.

The distributional semantics model predicts a similar peak in ITPC at
the rate of phrase presentation during both the AN and AV conditions.
However, despite similarity in distributional vector space for the AN and
AV conditions, the ITPC peak at the rate of phrase presentation was absent
in the AV condition in the experimental recording. This suggests that the
brain’s response is not merely a function of grammatical category; rather, it
also reflects higher-level syntactic constituency.

The ITPC peak at the rate of phrase presentation was found in response to
the MP condition was significantly smaller than the peak found in response to
the AN condition, even though the MP condition contained repeated presen-
tation of grammatically well-formed phrases. To the extent that each phrase
involves combining two words into a single syntactic unit, there is a clear
regularity in the MP condition at the syntactic level. This reduction might
indicate that the response is not sufficiently abstract to reflect repetition of
syntactic constituents independent of their lexical properties; for example,
the phrases differ in the location of their head; determiner-noun phrases
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have the head after the modifier (that word) while verb-adverb phrases
have their head before (send less). According to this interpretation, the
phrase-level response found in the AN condition cannot be interpreted in its
entirety as a reflection of the Merge operation [5] in its most general form:
in both the AN and MP conditions words are pairwise merged into a phrase,
but the ITPC peak is larger in the former case.

Another explanation for the reduction in phrase peak in the response to
the MP condition is that streams for this condition are more difficult to follow
and consequently less well attended to. To investigate this we performed
a behavioural study in which subjects listened to a stimulus modelled on
our EEG stimulus with streams for the AN, MP and RR condition. After
the last stream they were asked to indicate whether they thought the last
stream was composed of two-word phrases or random words. The order of
the streams was randomized, thus each subject was only asked this question
about one condition with a given subject had an equal chance of being asked
about each condition: the AN, MP or RR stream; in fact there were 33
subjects asked about an AN stream, 27 about an MP stream and 28 about
an RR stream.

For AN 32/33 ≈ 0.97 thought the stream was made of two-word phrases,
for MP this was 24/27 ≈ 0.89 and for RR it was 22/28 ≈ 0.79. Thus,
almost all subjects asked about an AN stream correctly identified that is
was composed of phrases, but a substantial majority of subjects asked about
an RR stream incorrectly believed it was in fact composed of phrases; MP
lies between the two. A Fisher Exact test shows that AN subjects were
significantly (p = 0.031) more likely to believe the stream was composed
of phrases than RR subjects; the other two comparisons are not significant
(AN>MP p = 0.234 and MP>RR p = 0.253). This behavioural experiment
demonstrates the difficulty in parsing the stimulus as it is being listened to
and does indicate that the MP streams are harder to distinguish from RR
than the AN streams. See the Supplementary Information for a description
of the design of this experiment.

A model of language comprehension is likely to exploit linear and hierar-
chical factors and describe how the brain uses different types of evidence:
lexical, syntactic and semantic, in deducing meaning. While these different
elements had seemed difficult to reconcile, recent neural network models
with a linear temporal structure are able to discover and encode hierarchical
structure, see [1, 14] for example. These models are consistent with the
results outlined in the current study. Here we present evidence that words
are combined by the brain into phrases and that syntactic information is
important for the brain’s response to language; this indicates that hierarchi-
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cal structure is deduced and classified, at least in part, based on syntactic
information.

One issue with frequency tagging experiments, like the one presented
here, is that neural mechanisms responsible for generating the ITPC in
the frequency tagging paradigm are still not clear. It may be that cortical
entrainment to the rate at which features of interest are presented causes the
peaks in ITPC [15], or instead it is possible that the frequency tag is driven
by regularities in ERPs in response to individual words or their combination.
It is also possible that there is a variable ‘error’ signal associated with the
irregularity of the MP condition and the ill-formed AV phrases and this is
disrupting the response at 1.5625 Hz, the phrase frequency. Indeed, without
a model relating neural dynamics to the ITPC we cannot be certain that the
relative sizes of different responses are indicative of different manipulations
of the incoming signal; this is a limitation of frequency-tagged experiments
such as the one presented here.

In [20] it is argued that specific networks of neurons may be sensitive
to sequences of words from discrete grammatical categories. In this way,
local networks of neurons could learn to become sensitive to activation by a
sequence of elements from different groups, for example an adjective followed
by a noun, as in the AN condition presented in this study. This could explain
why we see a larger ITPC at the phrase rate following repetitive presentation
of phrases of the same type (AN). In other words adjective-noun sequences
would repetitively and consistently activate the same sequence-detecting net-
work of neurons responsible for processing adjective-noun sequences, whereas
presentations of a mixture of different types of phrases would activate a
different network of sequence-detecting neurons and thus generate an incon-
sistent EEG response and a smaller peak in ITPC at the phrase rate. On the
other hand there would be no sequence-detector network for ungrammatical
combinations, such as adjective-verb, and these therefore fail to elicit a
phrase-level response.

In conclusion, the experiments described in the current study demonstrate
that neural entrainment cannot be readily explained at the lexical level; rather,
it additionally calls for higher-level syntactic representations. Yet, in our
paradigm, frequency tagging of higher-level syntactic units emerged most
strongly in the presence of grammatical category repetition, leaving open
the question of how abstract syntactic representations are.
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Methods

Participants

Twenty right-handed, native English speakers (12 female, mean age 25 years,
range 22–42 years) participated in this study. Participants were screened for
dyslexia and hearing impairments. All participants gave written, informed
consent prior to undertaking the study and were reimbursed for their time
at a rate of £10/hour. Ethical approval for our experimental procedures
were obtained from the University of Bristol Faculty of Science ethics board.
All methods were performed in accordance with the relevant guidelines and
regulations.

Stimuli

The experimental procedures were similar to those used in a recent EEG
study [7]. Listeners were played streams of monosyllabic words in English.
The words were synthesised individually using the MacinTalk Synthesizer

(male voice Alex, in Mac OS X 10.7.5). All of the synthesised words (226–
365 ms) were adjusted to 320 ms duration and normalised in intensity using
the freely available Praat software [3].

Monosyllabic words were selected from different grammatical categories,
namely adjectives, nouns, verbs, pronouns, adverbs, determiners and preposi-
tions. Words were only selected if they could be unambigouously categorised
into a distinct grammatical category, so, for example words such as drink,
ride or walk were avoided because they are ambiguous between verbs and
nouns. All nouns were singular and all verbs were in the present tense.

The four experimental conditions were AN, AV, MP and RR:

1. Repetition of ‘adjective-noun’ sequences (AN).

cold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold foodcold food loud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud roomloud room tall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girltall girl bad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad catbad cat huge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge carhuge car

An adjective and a noun were repeated every other word. This condition
contained grammatically correct two-word phrases, (underlined, with
the grammatical category repeated every second word.

2. Repetition of ‘adjective-verb’ sequences (AV).

rough give ill tell thin chew hot hang green fetch
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An adjective and a verb were repeated every other word. The word
sequence in this condition preserved the repetition of grammatical
category but did not contain grammatically well-formed phrases.

3. Repetition of grammatically well-formed phrases (underlined) without
repetition of grammatical category information (MP).

that wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat wordthat word send lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend lesssend less not loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loud huge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge birdhuge bird fish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cry

Grammatically well-formed, two-word phrases were composed from a
pool of adjectives, nouns, verbs, pronouns, adverbs, determiners and
prepositions. Phrases could take one of the following forms: ‘verb-noun’,
‘verb-adjective’, ‘adverb-adjective’, ‘determiner-noun’, ‘preposition-
noun’, ‘verb-adverb’ and these were presented in a pseudo-randomised
order to avoid repetition of grammatical category in adjacent phrases
and to prevent grammatical phrases occurring across phrase bound-
aries: thus, for example, not loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loudnot loud fish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cryfish cry would be excluded since
loud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fishloud fish is a noun phrase.

4. Pseudo-random word sequence chosen so that no phrases can be formed
regularly between adjacent words.

with chew small the his out tall old down tell

In this condition, words from the pool of adjectives, verbs, prepositions
and determiners were randomly selected. Nouns were not included
because they combine into grammatically correct phrases with words
from many other grammatical categories.

A complete list of all stimuli used in the current study can be found in
the Supplementary Information. Critically, in the AN and AV conditions,
words were ordered such that there is not difference in similarity between the
word2vec representation of consecutive words. Taking AN as an example,
all the cosine similarities between the vectors representing adjective and
nouns were calculated and only those pairs with values between 0.75 and
one were retained; these values were hand-tuned to give a sufficient number
of pairs while excluded as far as possible dissimilar pairs. To form a stream
an initial pair was picked for this set, giving the first adjective-noun pair
in the stream, A1 and N1. The adjective, A2 6= A1, whose similarity to N1

is closest to the similarity of A1 and N1 is then picked. Next the noun N2

is picked so its similarity to A2 the closest to the similarity of N1 and A2.
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With the constraint that no pair appears twice, this is repeated until all 52
words are chosen. The same method was used to generate streams for the
AV condition.

Experimental Procedures

Each stream contained a sequence of 52 monosyllabic words played back to
back in a continuous stream. Streams were therefore 16.64 seconds long. In
total, participants listened to 150 streams, with 25 streams for each of the
four conditions AN, AV, MP and RR, along with two filler conditions. An
error in the marker file meant that one block was not usable, so 24 streams
were included in the analysis. Blocks were made up of six streams and
contained one stream from each condition plus the two filler streams. Within
each block, streams were presented to the participants one after the other.
After each stream, participants were asked whether they had heard any four
word phrases, the instructions give three examples: ask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thingask him this thing,
from my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old carfrom my old car or sit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that treesit in that tree. This acted as the attention trap
with the four-word phrases occurring in ten percent of streams. These
streams were not excluded from the analysis. Following the button press,
the next stream was played after a delay of 250 ms. At the end of each block
participants were given a 10s break, with a longer 2 minute break at the
halfway point. The streams within each block were presented in a random
order that was counterbalanced across participants but the composition of
blocks and their order was the same across participants.

EEG Recording

EEG signals were sampled at 1000 Hz from 32 Ag/AgCl electrodes fitted on
a standard electrode layout elasticised cap using a BrainAmp DC amplifier
(Brain Products GmbH). The EEG was recorded in DC mode , using a
low-pass filter of 1000 Hz (fifth-order Butterworth filter with 30 dB/octave).
FCz was used as a reference channel. The impedance of the electrodes was
kept below 5 kOhms. Recordings were analysed offline using MATLAB (v.
R2020b, Mathworks Inc.) and the FieldTrip toolbox (v. 20200607) [19].
As the recordings were performed using a 32-channel system (rather than
a 128-channel system as, for example, [7]) we did not do dimensionality
reduction on our EEG signals using PCA. Eyeblink artifacts were removed by
applying ICA to the filtered signal. An independent component was removed
if in its topography the mean power over the most frontal four channels
(Fp1, Fp2, F7 and F8) was two times greater than the mean power over all
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other channels, as in [7]. As our signals of interest are in the low-frequency
region, at 1.5625 Hz (phrases), and 3.125 Hz (syllables), the EEG signals
were filtered offline using a 25 Hz low-pass filter (sixth-order Butterworth
fileter with 36 dB/octave). Data were re-referenced offline to a common
average reference. For each condition, individual streams (16.64s long) were
epoched. Upon sound onset there is a transient EEG response and so the first
four syllables (1.28 seconds) in each epoch were removed from the analysis.
This meant that the overall length of the analysed part of each stream was
15.36 seconds (corresponding to 48 syllables x 0.32 s).

Data analysis

After preprocessing, the EEG signal was converted into the frequency domain
using the discrete Fourier transform with a frequency resolution of 0.0651
(1/15.36) Hz. The intertrial phase coherence (ITPC), what is also known as
the square mean resultant, is

R(f ;φ) =

∣∣∑
k e

iθkφ
∣∣

K
(1)

where θc is the phase angle of each complex-valued Fourier coefficient at
frequency f and k is a trial index, with φ representing the other parameters
such as the channel.

In most examples, the ITPC is calculated for each of the four different
conditions for each participant and each channel; in this case k represents the
different word streams corresponding to a given condition. In this case the
ITPC is R(f ; pce) where p labels participants, c conditions and e electrodes.
This is averaged across electrodes to give R(f ; pc) and, for example, the
ITPC for different conditions is compared by examining the 20 pairs of
values corresponding to the twenty partipants. For the ‘per-item’ analysis
the ITPC is calculated for each condition for each stream and each channel
so that k corresponds to the different participants. After also averaging
across electrodes, this gives R(f ; sc) where s is the index which labels the
streams.

Significance Testing

To determine whether a peak at one of the two target frequencies was
significantly different from chance the ITPC was compared to the ITPC for
random data. For the data an ITPC was calculated for each electrode using
24 phases computed for the 24 streams in each condition for the stimulus; this

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423994doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423994
http://creativecommons.org/licenses/by/4.0/


is then averaged over the 32 electrodes. To produce a simulated ITPC this
calculation was mimicked for random phases. Thus, 24 phases were picked at
random and used to calculate a ITPC for one ‘electrode’, this was repeated
32 times and the 32 values were averaged to give a simulated ITPC value
which can be compared to the ITPC values calculated using the experimental
data. To produce the confidence intervals for Fig. 4 5,000 of these simulated
ITPC values were generated in this way, these were ordered and, for example,
the 95% confidence interval corresponds to the 250th and 4750th entries in
this list. To determine whether an ITPC peak was significantly different
from chance a Mann-Whitney U-test was performed using these 5,000 values
and the actual participant data: a Mann-Whitney rather then Wilcoxon test
was used because these are not paired samples.

Simulating Word Vector ITPCs

The word2vec repsententions for the words used in the stimuli were down-
loaded from (https://fasttext.cc/docs/en/pretrained-vectors.html).
These were calculated using a distributional semantics model that was trained
on a large English corpus [4]. Following [13] the simulated EEG was cal-
culated from these vectors: the vectors are 300-dimensional so they give
300 channels. Time is discretized into 1ms quanta and a period of 320ms is
allocated to each word. For a given stream let ve(t) denote the value of the
voltage at time t. If w1 is the word2vec representation of the first word in
the stream then for t ∈ [1, 320]

ve(t) =

{
ηξ(t) t < τ
w1
e + ηξ(t)

(2)

where τ is a delay chosen uniformly in the interval [20,60], ξ(t) is unit-
variance zero-mean pink-noise and η = 0.5. This is repeated for each word
in the stream, with independent τ . Individual participants correspond to
a different random selection of 32 ‘electrodes’ from the 300 components
and to different instances of the 1/f -noise: this is done to give the graphs
some similarity to the graphs for the real data, but is not intended to model
participant-to-participant variability.

The AN, AV and MP conditions use the identical stimuli as used in the
experiment. However, the random condition differs from the RR condition in
that the words are shuffled. In the RR condition adjacent words are chosen
so as to not repeat grammatical category, the ITPC on these data is sensitive
enough to detect this deviation from true randomness. With its different
types of artificial noise, the simulated EEG is a complicated measure of the

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423994doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423994
http://creativecommons.org/licenses/by/4.0/


regularity of the stimuli. A much simpler measure is given by the Fourier
coefficent

φ =
∑
e

∣∣∣∣∣∑
i

(−1)iwie

∣∣∣∣∣ (3)

where wie is the e component of the ith word in a stream. Averaging φ over
streams and normalizing to the random condition gives values of 1.87, 2.41,
1.41, 1.13 for AN, AV, MP and RR respectively.

Code and data availability

The data collected in this study is available at doi:10.5281/zenodo.4019709;
the Presentation 20.0 (Neurobehavioural Systems Inc.) script used to
run the experiment, the stimuli and the code used for data analysis and for
producing the simulated EEG is available at doi:10.5281/zenodo.4275804.
In addition to the MATLAB code used to epoch the EEG data, perform blink-
removal and calculate the Fourier transform, analysis and simulations were
performed using Julia (v. 1.1.1). All data from the behaviour experiment
and the scripts in jsPsych (v. 5.0.1) used to run the experiment are available
online at doi:10.5281/zenodo.4275815.
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