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Abstract 8 

Motivation: The full picture of abnormalities in protein complexes in cancer remains 9 

largely unknown. Comparing the co-expression structure of each protein complex 10 

between tumor and normal groups could help us understand the cancer-specific 11 

dysfunction of proteins. However, the technical limitations of mass spectrometry-based 12 

proteomics and biological variations contaminating the protein expression with noise 13 

lead to non-negligible over- (or under-) estimating co-expression. 14 

Results: We propose a robust algorithm for identifying protein complex aberrations in 15 

cancer based on differential protein co-expression testing. Our method based on a 16 

copula is sufficient for improving the identification accuracy with noisy data over a 17 

conventional linear correlation-based approach. As an application, we show that 18 

important protein complexes can be identified along with regulatory signaling pathways, 19 

and even drug targets can be identified using large-scale proteomics data from renal 20 

cancer. The proposed approach goes beyond traditional linear correlations to provide 21 

insights into higher order differential co-expression structures. 22 

Availability and Implementation: https://github.com/ymatts/RoDiCE. 23 

Contact: matsui@met.ngaoya-u.ac.jp  24 

Supplementary information: Supplementary data are available online. 25 
 26 

1 Introduction 27 

Cancer is a complex system. Many molecular events, such as genomic mutations and epigenetic 28 

and transcriptomic dysregulations, were identified as cancer drivers (Hoadley et al., 2018). 29 

However, our knowledge of how they characterize the downstream mechanisms with proteomic 30 

phenotypes remains scarce (Clark et al., 2019; Liu et al., 2016; Mertins et al., 2016; Zhang et al., 31 

2016). Protein complexes are responsible for most cellar activities. Recent studies (Ori et al., 32 

2016; Romanov et al., 2019; Ryan et al., 2017) have demonstrated that protein subunits tend to 33 

show co-expression patterns in proteome profiles; furthermore, the subunits of a complex are 34 
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simultaneously down-/up-regulated with the genomic mutations (Ryan et al., 2017). However, 1 

we know little about the changes in the co-regulatory modes of protein complexes between the 2 

tumor and normal tissues. 3 

We propose a novel algorithm for differential co-expression of protein abundances to identify 4 

the tumor-specific abnormality of protein complexes. Differential co-expression (DC) analysis is 5 

a standard technique of gene expression analysis to find differential modes of co-regulation 6 

between conditions, and numerous methods already exist (Bhuva et al., 2019). Correlation is one 7 

of the most common measures of co-expression. For example, differential correlation analysis 8 

(DiffCorr) (Fukushima, 2013) and gene set co-expression analysis (GSCA) (Choi and 9 

Kendziorski, 2009) are two-sample tests of Pearson’s correlation coefficients. However, studies 10 

report that protein expression levels have greater variability than gene expression levels because 11 

of the regulatory mechanism of post-translational modifications (Gunawardana et al., 2015; Liu 12 

et al., 2016). This variability can affect the estimation of co-expression as an outlier and can 13 

significantly impact DC results. 14 

We developed a robust DC framework, called Robust Differential Co-Expression Analysis 15 

(RoDiCE), via two-sample randomization tests with empirical copula. The notable advantage of 16 

RoDiCE is noise robustness. Our main contributions are as follows: 1) we develop an efficient 17 

algorithm for robust copula-based statistical DC testing; 2) we overcome the computational 18 

hurdles of the copula-based permutation test by incorporating extreme value theory; 3) we 19 

demonstrate the effective application of copula to cancer complexome analysis; and 4) we 20 

develop a computationally efficient multi-thread implementing as R package.  21 

1.1 Motivational example from the CPTAC / TCGA dataset 22 

First, using an actual dataset, we explain why there is a need for robustness in protein co-23 

expression analysis. We analyzed a cancer proteome dataset of clear renal cell carcinoma from 24 

CPTAC/TCGA with 110 tumor tissue samples. We measured co-expression using Pearson’s 25 

correlation coefficient. We compared the correlation coefficients before and after removing the 26 

outliers. To identify outlier samples, we applied robust principal component analysis using the R 27 

package ROBPCA (Hubert et al., 2005) with default parameters. Among 49,635,666 pairs of 28 

9,964 proteins, the correlation coefficients of 7,541,853 (15.2%) pairs were deviated by more 29 

than 0.2 after removing outlier samples (Figure 1). This result implied that a non-negligible 30 

proportion of protein co-expression would be overestimated or underestimated. To compare the 31 

structures of co-expression correctly, it is necessary to compare them while minimizing the over-32 

/under-estimation of co-expression. 33 

2 Methods 34 
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Figure 2 describes the outline of RoDiCE. We decompose the expression level of subunits in 1 

the protein complex into a structure representing a co-expression and one representing the 2 

expression level of each subunit, using a function called an empirical copula (Nelsen, 2010); the 3 

empirical copula rank-converts the scale of the original data. Comparing the empirical copula 4 

functions with the conditions of statistical hypothesis testing, we derive the 𝑝-value as the 5 

difference in co-expression structures. We describe our method in detail in the following sections. 6 

2.1 RoDiCE model 7 

Suppose there are 𝑛 samples, and 𝑔(𝑔	 = 	𝑔', 𝑔)) represents each condition. We compare 8 

two conditions and assume that 𝑔'  and𝑔)  represent the normal group and the tumor group, 9 

respectively. Let 𝐗, 	= 	 -𝑋',,𝑋),,… , 𝑋0,1 be abundances of 𝑃 subunits in group 𝑔. Given a 10 

protein complex, we represent the entire behaviors of subunits with a joint distribution 11 

𝐗,	~	𝐻,(𝑥', 𝑥), … , 𝑥0). The distribution function 𝐻, has two pieces of information as follows: 12 

subunit expression levels and the structure of co-expression between subunits. The copula 𝐶, is 13 

a function that can decompose those two pieces of information into a form that can be handled 14 

separately, as follows: 15 

𝐻,(𝑥', 𝑥), … , 𝑥0) = 𝐶, 7𝐹',(𝑥'), 𝐹),(𝑥)), … , 𝐹0,(𝑥0)9 (1) 16 

The behavior of each subunit 𝐹;,-𝑥;1is represented by a distribution function. The copula 17 

function itself is a multivariate distribution with uniform marginals. The copula function includes 18 

all dependency information among the subunits (Nelsen, 2010; Rémillard and Scaillet, 2009; Seo, 19 

2020).  20 

We use the empirical copula to non-parametrically estimate the copula 𝐶,	since it could be 21 

widely applicable to various situations. It can be represented using pseudo-copula samples 22 

defined via rank-transformed subunit abundance 𝑢=; =
>-?@A1
B

(𝑖 = 1,2, … , 𝑛);   23 

𝐶E,-𝑢', 𝑢), … , 𝑢;1 =
1
𝑛
F𝐼-𝑈', ≤ 𝑢', 𝑈), ≤ 𝑢),… , 𝑈;, ≤ 𝑢;1
=

	 (2) 24 

where 𝑅(⋅) is a rank-transform function, and we represent transformed pseudo-sample variables 25 

as 𝑅-𝐗,L1 = 𝐔,L  and 𝑅-𝐗,N1 = 𝐔,N . The empirical copula is robust to noise because it 26 

represents co-expression structures based on rank-transformed subunit expression levels, which 27 

is the so called scale invariant property in the context of copula theory (Nelsen, 2010). 28 

To perform DC analysis between group 𝑔  and 𝑔O , we consider the following statistical 29 

hypothesis: 30 

ℋQ: 𝐶,L = 𝐶,N
ℋ': 𝐶,L ≠ 𝐶,N

(3) 31 
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We derive the following Cramér-von Mises type test statistic to perform statistical hypothesis 1 

testing (Rémillard and Scaillet, 2009): 2 

𝒔(𝑔, 𝑔O) = V
1

𝑛,L + 𝑛,N
X
Y'

Z
1
𝑛')
F F [ max 71 − 𝑢=;

(,L), 𝑢 ;
(,L)	9

0

;a'

BbL

`a'

BbL

=a'

−
2

𝑛,L𝑛,N
F F [ max 71 − 𝑢=;

(,L)	, 𝑢 ;
(,N)	9

0

;a'

BbN

`a'

BbL

=a'

+
1
𝑛,N
) F F [ max 71 − 𝑢=;

(,N)	, 𝑢 ;
(,N)9

0

;a'

BbN

`a'

BbN

=a'
c

(4) 3 

where 𝑢=;
(,)-𝑖 = 1,2, …𝑛,1  represents pseudo-observation in group 𝑔 . Note that the 4 

computational cost is 𝑛) , where 𝑛) ≤ 𝑛,L𝑛,N; 	𝑛 = min-𝑛,L, 𝑛,N1. For testing the test statistic 5 

(4) , we also derived the 𝑝 -value using an algorithm based on Monte Carlo calculations 6 

(Rémillard and Scaillet, 2009); however, the computational complexity of the algorithm makes it 7 

difficult to apply it to proteome-wide co-expression differential analysis (see the results of the 8 

simulation experiments described below). 9 

2.2 Derivation of statistical significance 10 

Using a permutation test, we derive the p-value using the following steps:  11 

(1) Randomizing concatenated variable from the two groups; 𝐖 = -𝐔,L, 𝐔,N1 12 

(2) Constructing a new randomized variable 𝐔,L
O = -𝑊j('),𝑊j()), … ,𝑊j(BL)1  and 𝐔,N

O =13 

-𝑊j(BLk'),𝑊j(BLk)), … ,𝑊j(BLkBN)1 with randomized index 𝑟(𝑖). 14 

(3) Replacing copula functions 𝐶,L  and 𝐶,N  in (3) with re-estimated empirical copula 15 

function 𝐶,L
O  and 𝐶,N

O  from the randomized samples 𝐗,L
O  and 𝐗,N

O . 16 

(4) Deriving test statistics 𝒔O(𝑔', 𝑔))based on (4) with 𝐶,L
O  and 𝐶,N

O . 17 

(5) Steps 2 and 3 are indispensable for deriving the null distribution correctly. Deriving the 18 

null distribution by randomizing 𝐖O = -𝐔,L, 𝐔,N1 alone will distort the distribution, and 19 

we will be unable to control for the type I error correctly (Seo, 2020).  20 

2.3 Approximation of 𝒑-value 21 

The empirical 𝑝-value is derived as follows: 22 

𝑝(𝑀) = 1 −
∑ 𝐈-𝑆= ≤ 𝑠,,,s1
t
=a'

𝑀
(5) 23 

where 𝑀 is the number of randomization and 𝑆= is the test statistic from the null distribution 24 

of the 𝑖-th (𝑖 = 1,2, … ,𝑀) randomization trials. The accuracy of 𝑝-value in (5) is bounded by 25 

𝑝(𝑀) ≥ 1/𝑀. As mentioned, calculating the test statistic requires a computational cost of 26 
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𝑂(𝑛)); therefore, an efficient computational algorithm is needed to derive accurate 𝑝-values in 1 

data with a large number of samples. For instance, proteomic cohort projects such as CPTAC / 2 

TCGA have more than 𝑛 =100 samples. To address this problem, we introduced an 3 

approximation algorithm for 𝑝-values based on extreme value theory (Knijnenburg et al., 2009) 4 

and devised a way to calculate accurate 𝑝-values even with a small number of trials.	5 

The test statistic that exceeds the range of the accuracy with randomization trials 𝑀 is regarded 6 

as an “extreme value,” and its tail of the distribution could be estimated via a generalized Pareto 7 

distribution (GPD), as follows: 8 

𝑝y;;jz? =
𝑁O

𝑁
-1 − 𝐺(𝑠(𝑔, 𝑔O) − 𝑡)1 (6) 9 

where 𝑁’	is the number of the randomized test statistic exceeding the threshold 𝑡 that has to be 10 

estimated via a goodness-of-fit (GoF) test (Knijnenburg et al., 2009) and 𝐺 is the cumulative 11 

distribution function of the generalized Pareto distribution, 𝐺(𝑥) = 1 − 71 − �?
y
9
L
�  for 𝑘 ≠12 

0	and 𝐺(𝑥) = 1 − 𝑒Y
�
� for 𝑘 = 0. To estimate the threshold 𝑡 in (6), the GoF test determines 13 

whether the excess comes from the distribution 𝐺(𝑥) via bootstrap based maximum likelihood 14 

estimator (Villaseñor-Alva and González-Estrada, 2009). As we do not know a priori the number 15 

of samples sufficient to estimate the underlying GPD with threshold 𝑡, we must decide the initial 16 

number of samples to use. We begin with a large number of samples and increase this number 17 

until the GoF test is not rejected, according to (Knijnenburg et al., 2009). As initial samples, we 18 

start with those above 80% of quantiles and decrease samples by 1% while the GoF test is rejected.	19 

2.4 Identification of protein complex alteration	20 

As protein complexes show co-expression among multiple subunits (Kerrigan et al., 2011), we 21 

hypothesized that the difference in the co-expression structure of the tumor group compared to 22 

the normal group is a characteristic quantity of the protein complex abnormality. In previous 23 

studies of the cancer transcriptome, differential co-expression analysis has revealed abnormalities 24 

associated with protein complexes (Amar et al., 2013; Srihari et al., 2014). Therefore, we define 25 

a protein complex as an abnormal protein complex when it is co-expressed in at least one pair of 26 

subunits. Thus, we applied RoDiCE to all protein complexes for each subunit pair (𝑝 = 2) and 27 

identified protein complexes that showed a statistically significant difference in at least one 28 

subunit pair as abnormal.  29 

2.5 Protein membership with protein complex 30 

As we do not know which proteins belong to which protein complexes, we must predict the 31 

membership via some method. There are two main approaches. One is membership prediction 32 
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focusing on the modular structure in PPI networks (Adamcsek et al., 2006; Nepusz et al., 2012) 1 

and the other is a knowledge-based method using a curated database. We adopt the latter 2 

approach, which is based on already validated protein complex membership information, using 3 

CORUM (ver. 3.0)(Giurgiu et al., 2019) as a database (see the Supplementary Data for details). 4 

2.6 R implementation with multi-thread parallelization 5 

To further accelerate the computation of test statistic (4) in the randomization steps, we used 6 

RcppParallel (Allaire J, 2019). We utilize the portable and high-level parallel function 7 

“parallelFor,” which uses Intel TBB of the C++ library as a backend on systems that support it 8 

and TinyThread on other platforms. 9 

2.7 Copula-based simulation model for protein co-expression 10 

We provide the outline of a method for simulating co-expressed structures using a copula. We 11 

simulated protein expression levels that showed differential co-expression patterns with outliers 12 

in the tumor group and the normal group. We represented the co-expression structure by the 13 

covariance parameter in the following bivariate Gaussian copula: 14 

𝐶,(𝑢', 𝑢)) = Φ, 7𝜙Y'(𝑥'), 𝜙Y'(𝑥)); Σ;a)
(,) 9 (7) 15 

where Φ, is the 𝑝 dimensional Gaussian distribution parameterized by a  16 

𝑝 × 𝑝 covariance matrix (or correlation matrix) in the group 𝑔, denoted as Σ;
(,) = �𝑟=`

(,)� and 17 

𝜙(𝑥=) is a univariate distribution. Using the model, we generate the dependency structure with 18 

two groups; one group has high correlations and the other has low ones, 𝑟=`
(,L)~𝑈(0.8, 0.9) and 19 

𝑟=`
(,N)~𝑈(0.1, 0.2), respectively. We then generated co-expression structure using a Gaussian 20 

copula with 𝜙(𝑥) = 𝑁(0, 1). We obtained protein expressions via  21 

𝐻,(𝑥', 𝑥)) = 𝐶, 7𝐹',(𝑥'), 𝐹),(𝑥))9 (8) 22 

where we simply set as 𝐹=,~𝑁(𝜇, 𝜎) for 𝑖 = 1,2 and 𝑔 = 𝑔', 𝑔) with 𝜇~𝑁(2,1) and 23 

𝜎~𝑔𝑎𝑚𝑚𝑎(2,1). Furthermore, we added outliers that could affect the co-expression structure. 24 

Using the model in (6) and (7), we set the outlier population in both group as 25 

𝑟O=`
(,L)~𝑈(0, 0.05) and 𝐹=,O ~𝑁(2,4) for 𝑖 = 1,2 and	 𝑔 = 𝑔', 𝑔)	 (Fig3).	26 

3 Results 27 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.22.423973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423973
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

3.1 Benchmarking RoDiCE with simulation dataset 1 

We now describe the features of RoDiCE using a simulation model. First, to confirm whether 2 

RoDiCE could correctly derive the 𝑝 -value, we performed a test on two groups, with no 3 

differences in co-expression structure without outliers, and confirmed the null rejection rate. We 4 

performed 100 tests with the proposed method and calculated the null rejection rate at the 1%, 5 

5%, and 10% levels of significance. The same simulation was repeated 10 times to calculate the 6 

standard deviations. The results show that the proposed method can control type I errors (Table 7 

1).  8 

Table 1.  Type I error controls of the proposed method 9 

Significance Level Mean SD 

1% 0.03 0.02 
5% 0.05 0.02 

10% 0.09 0.02 
 10 
We then simulated a case in which the co-expressed structure between the two groups was 11 

different and included outliers, and we examined the sensitivity of the method to identify a broken 12 

co-expressed structure in tumor tissue relative to normal tissue. To demonstrate the advantages 13 

of the proposed method, we examined the sensitivity of increasing the percentage of outliers in 14 

2% increments from 0% to 20% and compared it further with DiffCorr and GSCA, a two-group 15 

co-expression test method based on Pearson's linear correlation (Figure 4). For outliers, the 16 

proposed method showed robust co-expression test results, with an accuracy of more than 85% 17 

up to a percentage of outliers of approximately 15%. Conversely, the sensitivity of the method 18 

based on linear correlation starts to decline from the level of 2% of outliers, and for data 19 

containing 15% of outliers, the sensitivity drops to around 30%. 20 

To investigate the relationship between sample size and identification accuracy, we simulated 21 

the sensitivity of RoDiCE, as we increased the number of samples in increments of 10 from 30 to 22 

100 samples. All other settings were the same as those in Figure 5, except that the percentage of 23 

outliers was set at 5%. 24 

 Finally, we also examined the computational speed, comparing it with the R package TwoCop, 25 

which implements the Monte Carlo-based method (ref) used for the two-group comparison of 26 

copulas (Table 2). The proposed method is 68 times faster than TwoCop and is sufficiently 27 

efficient as a copula-based two-group comparison test method. In contrast, the estimation of the 28 
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 8 

copula function required more computational time than the linear correlation coefficient-based 1 

method because of the computational complexity of estimating the copula function. 2 

Table 2.  Computation time for 10 replicates 3 

Method #Replications Execution time (s) Relative time 

DiffCorr 10 0.001 1 
GSCA 10 0.152 152 

RoDiCE 10 0.373 373 
TwoCop 10 25.301 25301 

3.2 Application to cancer complexome analysis 4 

We demonstrate RoDiCE with actual data using the clear renal cell carcinoma (ccRCC) 5 

published by CPTAC/TCGA (Clark et al., 2019). The data are available from the CPTAC data 6 

portal (https://cptac-data-portal.georgetown.edu) in the CPTAC Clear Cell Renal Cell Carcinoma 7 

(CCRCC) discovery study. The data labeled 8 

"CPTAC_CompRef_CCRCC_Proteome_CDAP_Protein_Report.r1" were used. In the following 9 

analysis, only protein expression data that overlap with protein groups in human protein 10 

complexes in CORUM and in CPTAC were used. Missing values were completed based on 11 

principal component analysis, and the missing values were completed by 10 principal components 12 

using the pca function in pca Methods. 13 

For the complete data, RoDiCE was applied to the normal and cancer groups for each protein 14 

complex. FDR was calculated by correcting the p-value for each complex using the Benjamini–15 

Hochberg method. We identified anomalous protein complexes in protein expression data from 16 

110 tumor and 84 normal samples; out of 3,364 protein complexes in CORUM, 1,244 complexes 17 

contained at least one co-expression difference between subunits with FDR ≤ 5 % 18 

(Supplementary Data).  19 

The proposed method has identified several protein complexes containing driver genes on 20 

regulatory signaling pathways in ccRCC (Figure 6a) (Li et al., 2019). The identified pathways 21 

included known regulatory pathways important for cancer establishment and progression, starting 22 

with chromosome 3p loss, regulation of the cellular oxygen environment (VHL), chromatin 23 

remodeling, and disruption of DNA methylation mechanisms (PBRM1, BAP1). They also 24 

included abnormalities in regulatory signals involved in cancer progression (AKT1). Moreover, 25 

several identified complexes also included key proteins, for example, MET, HGF, and FGFR 26 

proteins, which could be inhibited by targeting them with drugs such as Cabozantinib and 27 

Lenvatinib directly. Because a previous study reported that sensitivity to knockdowns of several 28 
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 9 

genes was well associated with expression levels of protein complexes (Nusinow et al., 2020), 1 

co-expression information on protein complexes containing druggable genes might be useful to 2 

optimize drug selection.  3 

A close examination of the above identified protein complexes allows us to partially 4 

understand how the dysregulation of protein was a co-expression abnormality between VHL 5 

and TBP1. The upregulation of TBP1 is known to induce dysregulation of downstream HIF1A 6 

molecules in a VHL-dependent manner (Corn et al., 2003). In fact, the protein expression of 7 

TBP1 increased in the tumor group. We also examined the PBAF complex containing the driver 8 

gene PBRM1, which is thought to occur following VHL abnormalities. Along with a decrease 9 

in PBRM1 protein expression, there was a loss of tumor group-specific co-expression structure 10 

among many subunits involved with PBRM1 levels. 11 

4 Discussion 12 

In this study, we developed an algorithm of robust identification for protein complex aberrations 13 

based on differential co-expression structure using protein abundance. Protein expression data 14 

measured through LC/MS/MS contains a non-negligible percentage of outliers due to technical 15 

limitations and variation due to biological reasons such as post-translational modifications. This 16 

causes the problem of over- (or under-) estimation of co-expression. The copula-based DC 17 

approach is a powerful statistical framework as a solution to this problem. 18 

In addition to noise robustness, this study does not include several other key properties of the 19 

copula that are important in capturing the co-expression structure. The first is self-equitability 20 

(Chang et al., 2016; Ding et al., 2017). Copulas can capture nonlinear structures between 21 

variables, and self-equitability allows us to evaluate the degree of dependency equally between 22 

variables in linear and nonlinear relations. Therefore, copula allows us to compare a much broader 23 

range of co-expressed structures than conventional linear and nonlinear correlations. 24 

Second, we can also model simultaneous co-expression structures between three or more 25 

proteins. Although this study only identified pairwise co-expression differences, equation (4) 26 

allows the identification of simultaneous co-expression differences across three or more proteins. 27 

However, high-dimensional estimation of the copula remains limited, and at present, in our 28 

simulations, the comparison of simultaneous co-expressed structures of 15 proteins is a 29 

performance limitation for about 100 samples.  30 

As described, the copula-based co-expression analysis approach is a powerful modeling method 31 

for data sets where noise is expected, although there remain challenges in high-dimensional 32 

estimation. In particular, it could be useful for modeling proteome-wide protein expression 33 

patterns. The proposed approach is useful for understanding the abnormalities in the protein 34 
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complexes of cancer. Studies focusing on protein complexes in large-scale cancer proteomics are 1 

in their infancy. We believe that this approach will provide valuable insights into the molecular 2 

mechanisms of cancer and the search for new drug targets. 3 
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 1 

Fig 1. Actual example of effects of outliers on co-expression. Difference in Pearson’s correlation 2 

before and after removing outlier samples; the left panel shows a histogram of the difference in 3 

correlation differences. The right panel shows a scatter plot of the original correlation against one without 4 

outlier samples.  5 

 6 

Fig 2.  Overview of RoDiCE. a) Objective of the analysis via RoDiCE. The proposed method aims to 7 

identify abnormal protein complexes by comparing two abnormal groups. An abnormal complex is one 8 

where the co-expressed structure is different in at least two subunits. b) Protein co-expression and outliers. 9 

The protein expression levels measured through LC/MS/MS contain some outliers because of the addition 10 

of noise from several sources. These can cause over- (or under-) estimation in the co-expression structure. 11 

c) Copula decomposition. The RoDiCE model decomposes the observed joint distributions of protein 12 

expression into a marginal distribution representing the behavior of each protein and an empirical copula 13 

function representing the latent co-expression structures between proteins. This allows us to extract 14 

potential co-expressed structures and compare them robustly against outliers. The figure shows an example 15 

where the co-expressed structure estimated by copula is actually the same for two apparently different joint 16 

distributions of protein expression. d) Copula robustness. A copula is a function that expresses a 17 

dependency on a rank-transformed space of data scales. One advantage of transforming the original scale 18 

into a space of rank scale is that it is robust to outliers. The example in the figure compares Pearson's linear 19 

correlations with Pearson's linear correlations in the space converted to a rank scale by a copula function 20 

(Spearman's linear correlations). Pearson's linear correlation underestimates from 0.74 to 0.44 due to 21 

outliers, whereas the linear correlation on the rank scale has a relatively small effect (0.72 to 0.62). e) 22 

RoDiCE is a copula-based two-sample test. RoDiCE is an efficient method for testing differences in 23 

copula functions between two groups. Rather than a summary measure such as correlation coefficients, we 24 

compare copula functions expressing overall dependence between groups. This allows us to robustly 25 

identify differences in complex co-expression structures between two groups of protein complexes to 26 

outliers. 27 

 28 

 29 

Fig 3.  Simulated dataset. Generated samples in the numerical experiments for the bivariate case. 30 

To mimic the noises in proteome abundance dataset, the outlier population was assumed other than 31 

the that of tumor and normal population. 32 

 33 

 34 
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Fig 4. Sensitivities and ratio of outliers. The percentage of outliers is taken on the horizontal axis, 1 

and the sensitivity of the co-expression differences by each method (5% level of significance) is 2 

shown on the vertical axis. 3 

 4 

 5 

Fig 5. Sensitivities and sample size. The horizontal axis shows the sample size, while the 6 

vertical axis shows the sensitivity of the co-expression differences by each method (5% level of 7 

significance). 8 

 9 

Fig 6.Identified protein complexome related to driver genes.a) Dysregulated protein 10 

complex with known driver and druggable genes. The red shows the pairs with differential 11 

co-expression between the subunits of the protein complexes (5% level of significance). The 12 

thickness of the line is proportional to -log10(p-value). The blue lines are the non-significant 13 

pairs. The yellow nodes represent proteins whose expression was actually measured by 14 

LC/MS/MS in this study, and the gray ones represent proteins that were not measured. b) 15 

Examples of VHL- TBP1-HIF1A complex and PBAF complex with the co-expression 16 

structure. Blue and red represent the tumor and normal groups, respectively, and the density 17 

distribution of protein expression is shown on the diagonal. In the lower diagonal, the co-18 

expression pattern before copula-transformations is illustrated. The co-expression pattern after 19 

copula-transformations is illustrated in the upper diagonal. 20 

 21 
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