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26 Abstract

27 Genome-wide association studies (GWAS) have implicated 58 loci in coronary artery 

28 disease (CAD). However, the biological basis for these associations, the relevant genes, and 

29 causative variants often remain uncertain. Since the vast majority of GWAS loci reside outside 

30 coding regions, most exert regulatory functions. Here we explore the complexity of each of 

31 these loci, using tissue specific RNA sequencing data from GTEx to identify genes that exhibit 

32 altered expression patterns in the context of GWAS-significant loci, expanding the list of 

33 candidate genes from the 75 currently annotated by GWAS to 245, with almost half of these 

34 transcripts being non-coding. Tissue specific allelic expression imbalance data, also from GTEx, 

35 allows us to uncover GWAS variants that mark functional variation in a locus, e.g., rs7528419 

36 residing in the SORT1 locus, in liver specifically, and rs72689147 in the GUYC1A1 locus, 

37 across a variety of tissues.  We consider the GWAS variant rs1412444 in the LIPA locus in 

38 more detail as an example, probing tissue and transcript specific effects of genetic variation in 

39 the region. By evaluating linkage disequilibrium (LD) between tissue specific eQTLs, we reveal 

40 evidence for multiple functional variants within loci. We identify 3 variants (rs1412444, 

41 rs1051338, rs2250781) that when considered together, each improve the ability to account for 

42 LIPA gene expression, suggesting multiple interacting factors. These results refine the 

43 assignment of 58 GWAS loci to likely causative variants in a handful of cases and for the 

44 remainder help to re-prioritize associated genes and RNA isoforms, suggesting that ncRNAs 

45 maybe a relevant transcript in almost half of CAD GWAS results. Our findings support a multi-

46 factorial system where a single variant can influence multiple genes and each genes is 

47 regulated by multiple variants.  

48

49 Introduction  
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50 Genome-wide association studies (GWAS) have identified dozens of genetic variants 

51 (SNPs) associated with cardiovascular disease risk and related clinical phenotypes (e.g., blood 

52 pressure, lipid levels) (1–3).  However, these findings do not necessarily translate to 

53 understanding of heritability, likely because we do not fully understand the link between 

54 significant loci, causative genetic variants and complex phenotypes (4).  Moreover, the 

55 functional variant and even the relevant gene close to a significant locus in many cases remain 

56 uncertain.  The majority of statistically significant SNPs reside in non-coding regions with poorly 

57 defined biological functions and a complex architecture of multiple genes and transcripts (5).  

58 Gene assignment is largely based on proximity, usually with little consideration for non-coding 

59 transcripts in the locus or the possibility of chromatin looping that places distant regions in close 

60 proximity (6), with regulatory domains often interacting with multiple genomic target regions (9).  

61 Additionally, localization to non-coding regions means the mechanisms remain unknown as the 

62 function is not immediately obvious, while implicating epigenetics and other regulatory 

63 processes (5,7).  This uncertainty limits the utility of GWAS findings.  To interpret and refine 

64 GWAS results for coronary artery disease (CAD), we use RNA expression, in addition to 

65 physical position, to prioritize the variants and gene(s) most likely to be relevant.

66 Although largely thought of in a single SNP – single protein-coding gene paradigm, 

67 GWAS variants mark regions with various degrees of complexity often including several protein-

68 coding and non-coding RNAs (ncRNAs).  SNPs located within RNA exons may not only alter the 

69 protein sequence but also influence RNA structure and function in a transcript specific manner 

70 (8).  Some of these GWAS loci consist of gene clusters that are coordinately regulated (9), and 

71 almost all include multiple RNA isoforms expressed from a given gene, including splice 

72 isoforms. Within such multi-gene regions, a single variant may affect more than one gene, both 

73 protein-coding and non-coding, via chromatin looping between multiple sites or by regulating 

74 DNA accessibility for the entire region (9,10). Therefore, a critical question for interpreting 
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75 GWAS associations is which gene(s), and what specific transcript(s), are affected within each 

76 significant locus.

77 The potential for multiple variants to affect a single gene is also critical to the 

78 interpretation of GWAS.  Such interactions between variants, either linear or dynamic (epistasis) 

79 and dictated by linkage disequilibrium (LD), may remain hidden in GWAS because of the 

80 restrictive nature of multiple hypotheses corrections; however targeted analysis of loci reveals 

81 multiple interacting variants modulating gene expression (9,11,12).  Failure to identify all main 

82 functional variants in a gene locus and their interactions results in false estimates of the genetic 

83 influence of a locus, and further impedes discovery of dynamic interactions that are sensitive to 

84 partial or confounded estimates (13–18).

85 Detailed analysis of RNA expression to evaluate GWAS results is increasingly employed 

86 to evaluate co-localization of GWAS and eQTL signals (19–21).  However, most methods rely 

87 on the a priori assumptions that variants are independent of each other (e.g., eCAVIAR), while 

88 COLOC assumes that there is only one functional variant per GWAS locus. These assumptions 

89 do not allow for a multifactorial system, where a single variant can influence multiple genes and 

90 each gene can be regulated by multiple variants.  Accordingly, we search for overlap between 

91 variants marking GWAS associations and those marking eQTLs rather than using existing 

92 methods to co-localize signals. Although this approach limits our power to detect overlap as it 

93 requires a single variant appear as a marker in both GWAS and eQTL analysis, we posit it 

94 facilitates functional exploration of a multi-factorial system. 

95 A recent CAD GWAS used 1000 genomes to impute insertions/deletions, rare variants 

96 and common variants that were not directly genotyped as part of a large-scale meta-analysis of 

97 185 thousand cases and controls (1).  While confirming 47 of the 48 previously identified loci, 

98 this study identified an additional 10 at genome-wide significance, bringing the total count of 

99 CAD associated loci to 58.  Each of these loci are based on robust statistical associations for 

100 one or more SNPs in the locus.  Furthermore, each locus has been assigned one or more 
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101 genes based largely on proximity as part of the GWAS annotation.  We consider each of these 

102 58 loci in detail, using QTL and position to re-prioritize candidate genes and focusing on a 

103 subset of loci, to begin resolving inherent complexities of genomic architecture.

104

105 Materials and Methods

106 Data

107 1000 Genomes  

108 Genotypes for calculating LD between SNPs of interest were downloaded from: 

109 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/. 

110 Individuals of the ‘EUR’ superpopulation were selected for LD calculations.

111 CATHeritization GENetics (CATHGEN)

112 Expression, genotypes, and clinical phenotypes were acquired via dbGaP Project #5358 

113 (dbGaP accession phs0000703).  Expression levels had been determined using Illumina 

114 HumanHT-12-v3 in RNA from whole blood. We considered variables recorded in pht003672: 

115 age (phv00197199), gender (phv00197207), hypercholesterolemia (phv00197204), smoking 

116 (phv00197208), number of diseased vessels (phv00197295), and history of myocardial 

117 infarction (MI) (phv00197212). We restricted analysis to Caucasians (race (phv00197206)) for 

118 sample size considerations (862 Caucasians; 259 African Americans). The approach developed 

119 here can be extended to other ethnic groups as these datasets become available. Data access 

120 was approved by the Ohio State University IRB (Protocol #2013H0096).

121 Genotype and Tissue Expression Project (GTEx)  

122 Tissue-specific RNAseq data was acquired via dbGaP Project #5358 (dbGaP accession 

123 phs000424). For details see Lonsdale et al. and 

124 http://www.gtexportal.org/home/documentationPage (22). MI was defined as recorded history of 
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125 heart disease (MHHRTDIS) or heart attack (MHHRTATT).  Data access was approved by the 

126 Ohio State University IRB (Protocol #2013H0096).

127 Gene Information

128 Transcripts, coding status, GO Ids, number of publications indexed in PubMed, 

129 gene/transcript expression, GWAS hits, GTEx eQTLs (expression quantitative trait loci) and 

130 sQTLs (splicing quantitative trait loci) including tissue specific expression, and allelic ratios in 

131 DNAse hypersensitivity sites were obtained for each gene using the package ‘mglR’ 

132 implemented in R (https://cran.r-project.org/web/packages/mglR/index.html). Protein-coding 

133 transcripts were defined as those annotated by BiomaRt as "IGC gene", "IGD gene", "IG gene", 

134 "IGJ gene", "IGLV gene", "IGM gene", "IGV gene", "IGZ gene", "nonsense_mediated_decay", 

135 "nontranslating CDS", "non stop decay", "polymorphic pseudogene", "TRC gene", "TRD gene", 

136 "TRJ gene", "protein_coding", "TEC". The remaining designations were considered non-coding 

137 and include "disrupted domain", "IGC pseudogene", "IGJ pseudogene", "IG pseudogene", "IGV 

138 pseudogene", "processed_pseudogene", "transcribed_processed_pseudogene", "transcribed 

139 unitary pseudogene", "transcribed_unprocessed_pseudogene", "translated processed 

140 pseudogene", "TRJ pseudogene", "unprocessed_pseudogene", "unitary_pseudogene", "3prime 

141 overlapping ncrna", "ambiguous orf", "antisense", "antisense RNA", "lincRNA", "ncrna host", 

142 "processed_transcript", "sense intronic", "sense overlapping", "lncRNA", "retained_intron", 

143 "miRNA", "miRNA_pseudogene", "miscRNA", "miscRNA_pseudogene", "Mt rRNA", "Mt tRNA", 

144 "rRNA", "scRNA", "snlRNA", "snoRNA", "snRNA", "tRNA", "tRNA_pseudogene", and 

145 "rRNA_pseudogene". A gene was considered non-coding only if all transcripts were non-coding.

146 Linkage Disequilibrium (LD)

147 R2 was calculated for 1000 genomes ‘EUR’ super population using the ‘ld’ function from 

148 the package ‘snpStats’ implemented in R and using LDlink. 
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149 Association Testing

150 Additive logistic models to account for LIPA expression and MI using different 

151 combinations of variants were compared using ANOVA with a likelihood ratio test (LRT) 

152 implemented in R. Gender and age were included as covariates in models explaining LIPA gene 

153 expression, while sex, age, hypercholesterolemia, smoking, and number of diseased vessels 

154 were included as covariates in models explaining MI.  Differences in LIPA expression between 

155 those with or without a history of MI were calculated using the wilcoxin.test function in R. 

156 Bonferroni multiple hypothesis correction was implemented.

157 Allelic Expression Imbalance (AEI)

158 Allelic RNA expression imbalance (AEI) was assessed using data from GTEx 

159 (phe000039.v1.GTEx_v8_ASE.expression-matrixfmt-ase.c1). Candidate variants were 

160 subsetted from each individual file, and the deviation of the “REF_RATIO” from the 

161 “NULL_RATIO” was plotted for each variant in a given tissue type. Tissue types with 5 or more 

162 samples were considered.

163

164 Results and discussion

165 Expanding candidate gene lists using QTL and position

166 As many functional variants marked by GWAS likely have regulatory functions affecting 

167 RNA expression or processing, the same SNPs appearing in GWAS may also mark expression 

168 Quantitative Trait Loci (eQTLs) or splicing Quantitative Trait Loci (sQTLs) for their target gene. 

169 To assign GWAS hits to target genes, we determine for each of the GWAS SNPs whether it 

170 appears as an eQTL or sQTL reported by GTEx, searching all available tissues.  Recognizing 

171 that often multiple SNPs exist over a genomic region as significant GWAS hits, we consider 

172 each one individually in assigning candidate genes and separately assess concordance. We opt 
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173 not to use COLOC and other existing tools that search for overlapping signal between GWAS 

174 variants and QTLs because they make assumptions about the genetic model that are not in line 

175 with the multi-factorial system we test here (23);  namely, these methods assume a single 

176 causative variant or that each variant acts independently.  Instead, although we recognize it 

177 limits the overlap we are able to detect and biases our sample to variants that are ideal markers 

178 (i.e. frequent), we search for exact matches between GWAS and QTL marker variants.  In 

179 addition to evaluating associations with gene expression and splicing, we consider the physical 

180 position of each GWAS variant as SNPs within the RNA sequence are expected to impact RNA 

181 folding, stability, function, etc.  Specifically, we consider the corresponding gene for any 

182 transcript that physically overlaps the GWAS variant regardless of strand, thus incorporating 

183 coding, non-coding, and antisense genes.  Using these three approaches (cis-eQTLs, cis-

184 sQTLs, position), we expand the list of potential candidate genes for the 58 GWAS loci from 75 

185 to 245 (Fig 1A, S1 File, comprehensive table is included in S3 File, S1 Fig).

186

187 Fig 1. Summary of CAD GWAS loci. (A) For each of the 58 loci identified by GWAS, 

188 number of candidate genes annotated by GWAS and additional genes added by eQTL, then 

189 sQTL, and finally position based reprioritization, if implicating genes other than those annotated 

190 previously by GWAS (See S1 Fig for further details about the approach and S3 File for a 

191 comprehensive table). Tier 1 (n = 7) denotes those loci where a GWAS annotated gene is 

192 supported by QTL-based re-prioritization or position and no other candidate genes are 

193 introduced; Tier 2 (n = 50) where QTL-based reprioritization or position introduces new 

194 associated genes while supporting all candidates at this locus (Tier2A), only some including the 

195 GWAS gene (Tier2B) or new genes except the GWAS genes (Tier2C); and Tier 3 (n = 1) where 

196 no eQTLs or sQTLs are identified and no gene physically overlaps the SNP, accordingly 

197 annotation by GWAS is not supported and no other genes are implicated.  (B) For each of the 

198 245 candidate genes displayed along the x-axis (names available in S1 File), the number of 
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199 transcripts assigned to the gene, the number of antisense transcripts (note: antisense genes are 

200 not included among the 245 candidate genes unless their expression is associated with or they 

201 physically overlap a GWAS variant), GO terms, Papers indexed in PubMed, cis-eQTLs and 

202 sQTLs published in v8 of GTEx. Blue bar highlights those genes with only non-coding 

203 transcripts.  

204

205 In an effort to identify those loci where a target gene(s) is clearly supported by functional 

206 markers, we consider the agreement between the gene assignment given by GWAS studies 

207 and that derived by eQTL and sQTL analysis as well as by physical position.  We group each of 

208 the 58 GWAS loci as follows: GWAS annotation is supported by QTL-based re-prioritization or 

209 position and no other candidate genes are introduced (Tier 1); QTL-based reprioritization or 

210 position introduces new genes, while supporting all (Tier2A), some (Tier2B), or none (Tier2C) of 

211 the genes annotated by GWAS so that multiple genes are implicated; no eQTLs or sQTLs are 

212 identified and no gene or annotated RNA transcript physically overlaps the SNP, accordingly 

213 annotation by GWAS is not supported (but also not negated) and no other genes are implicated 

214 (Tier 3), see Fig 1, S2 Fig, S3 File.

215 In some instances, the number of candidate genes implicated changes substantially with 

216 the particular GWAS SNP considered (S3 File). Nikpay et al. report both the SNP originally 

217 identified in CAD GWAS studies and the most promising SNP in the same locus they identified 

218 in a large-scale meta-analysis using 1000 genomes imputation to incorporate variants with 

219 lower minor allele frequency (1). We consider both in our analysis, and for 11 of 32 loci with 

220 multiple SNPs find the tier classification changes depending on the SNP considered (S3 File). 

221 For example, locus 10 - rs2252641 and rs17678683 (ZEB2, AC074093.1), rs2252641, which 

222 was implicated in historic GWAS studies, is annotated as ZEB2 and AC074093.1, but based on 

223 QTL and position is not associated with any gene and would be considered as Tier3 while 

224 rs17678683, identified by Nikpay et al. is an eQTL in skeletal muscle for ZEB2 and an sQTL in 
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225 subcutaneous adipose also for ZEB2 and would thus be considered as Tier1.  The two SNPs 

226 have an R2 < 0.2.

227 This discordance between variants in the same locus may represent a weakness of our 

228 approach that looks for overlap with an individual SNP rather than considering ‘colocalization’ 

229 more broadly.  However, it occurs almost exclusively among SNPs that are in relatively poor LD 

230 (frequently R2 < 0.2) and would not be expected to serve as good markers for one another nor 

231 be part of the same haplotype.  Alternatively, this discordance may represent multiple functional 

232 variants in the locus with different target genes.  Regardless, our results emphasize the 

233 complexity in elucidating functional variants from GWAS results.

234

235 Tier 1: No new candidate genes introduced – GWAS annotation supported 

236 For 7 loci, QTL-based reprioritization and/or position supports the GWAS annotation 

237 without introducing new candidate genes, supporting all or some of the gene(s) annotated by 

238 GWAS: locus 16 - rs6903956 (ADTRP), locus 32 - rs11203042 and rs1412444 (LIPA), locus 38 

239 - rs9319428 (FLT1), locus 42 - rs17514846 (FURIN, FES), locus 54 - rs7212798 (BCAS3), 

240 locus 57 - rs11830157 (KSR2), and locus 8 - rs6544713 (ABCG8; however ABCG5 also 

241 annotated by GWAS is not supported by QTL or position) (Table 1).  

242

243 Table 1. Tier 1 CAD GWAS loci

Locus SNP OR Risk 
Allele 
(Freq)

Gene eQTL 
Tissue(s)

sQTL 
Tissue(s)

Position

16 rs6903956 1.65a 
(1.44-1.90)

A 
(0.08a)

ADTRP Testis ADTRP 
(intron)
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32 rs11203042 1.04
(1.02-1.06)

T 
(0.45)

LIPA Adipose (subq)
Adipose (visceral) 
Colon (transverse) 

Heart (atrium)
 Lung

Pancreas
Skin (sun exp)

Spleen
Thyroid
Blood

Adipose (subq)
Fibroblasts

Lung

LIPA 
(intron)

32 rs1412444 1.07
(1.05-1.09)

T
(0.37)

LIPA Adipose (subq)
Adipose (visceral)

Adrenal Gland
Artery (aorta)

Brain (cerebellum)
Colon (sigmoid)

Colon (transverse)
Heart (atrium)

Heart (LV)
Lung

Skeletal Muscle
Nerve

Pancreas
Skin (not sun exp)
Skin (sun exposed)

Spleen
Stomach
Thyroid
Blood

Adipose (subq)
Adipose (visceral)

Adrenal Gland
Artery (aorta)
Artery (tibial)

Brain (spinal cord)
Breast 

Fibroblasts
Lymphocytes

Lung
Tibial Nerve

Pancreas
Skin (sun exposed)

Small Intestine 
Spleen

Stomach
Blood

LIPA
(intron)

38 rs9319428 1.04 
(1.02-1.06)

A 
(0.31)

FLT1 Nerve (tibial) FLT1 
(intron)

FES Adipose (subq)
Adipose (visceral)

Adrenal Gland
Artery (aorta)
Artery (tibial)

Fibroblast
Colon (transverse)
Esophagus (musc.)

Heart (atrium)
Lung

Nerve (tibial)
Pancreas
Pituitary
Prostate

Skin (not sun exp)
Skin (sun exposed)

Stomach
Thyroid
Blood

Adipose (subq)
Adipose (visceral)

Artery (aorta)
Artery (tibial)

Breast 
Fibroblasts

Colon (sigmoid)
Esophagus (GEJ)

Esophagus (musc.)
Heart (atrium)

Heart (LV)
Lung

Salivary Gland
Nerve (tibial)

Prostate
Skin (not sun exp)
Skin (sun exposed)

Small Intestine
Spleen
Thyroid
Blood

42 rs17514846 1.05
(1.03-1.07)

A
(0.44)

FURIN Artery (aorta)
Artery (tibial)

Esophagus

FURIN
(intron)

54 rs7212798 BCAS3 BCAS3
(intron)

57 rs11830157 KSR2 KSR2
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(intron)
08b rs6544713 1.05 

(1.03-1.07)
T 

(0.32)
ABCG8 Colon (transverse) ABCG8

(intron)
244

245 Tissue names in grey font indicate GWAS SNP is associated with a decrease in gene 
246 expression (eQTL) or normalized intron-excision ratio (sQTL), while those in black font are 
247 associated with increased expression/normalized intron-excision ratio.
248
249 a values reported from original publication (24) in Han Chinese population. rs6903956 was not 
250 significant in Nikpay et al. (1).
251 b ABCG8 and ABCG5 were both annotated by GWAS. ABCG5 was not supported by QTL or 
252 position
253
254 For four of the loci (16-ADTRP, 32-LIPA, 38-FLT1, 42-FURIN, 8-ABCG8), GWAS 

255 annotation of candidate gene assignment is supported by both QTL and position.  In one 

256 instance, locus 42 - rs17514846 (FURIN, FES), more than one gene is annotated by GWAS and 

257 supported by our reprioritization. rs17514846, which falls in an intron of FURIN, serves as an 

258 eQTL and an sQTL for FES in 23 tissues and an eQTL for FURIN in 3 tissues, two of which 

259 (aorta and tibial artery) overlap with FES.  In aorta and tibial artery, rs17514846 is associated 

260 with decreased expression of FES as opposed to increased expression of FURIN – a possible 

261 example of competing interactions between regulatory and promoter regions.  Evidence for 

262 multiple candidate genes in a locus may represent a paradigm in which a single SNP exerts an 

263 impact through more than one gene.  

264 In some instances the same variant in the same tissue is associated with both 

265 expression and splicing. For example, rs141244 in blood is associated with increased 

266 expression of LIPA and decreased splicing, a scenario that is consistent with greater stability of 

267 the un-spliced transcript. Thus, in considering potential mechanisms of action for the variant, it 

268 is important to evaluate not only the implications of increased levels of LIPA mRNA, but also 

269 increased levels of the un-spliced transcript.

270

271 Tier 2: New candidate genes implicated 
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272 Variants in 50 loci are associated with expression of one or more genes or physically 

273 overlap with another gene in addition to all (39 loci), some (7 loci), or none (4 loci) of the genes 

274 annotated by GWAS.  Loci where additional candidate genes are introduced are classified as 

275 Tier 2 (S3 File).  Candidate genes for these 50 GWAS loci are expanded by an average of 4.3 

276 genes per locus for a total of 170 genes: 116 from eQTL based reprioritization, 17 from sQTL 

277 based reprioritization, 5 from physical position, and 32 from some combination of these features 

278 (S3 Fig). 

279 While about a third of the loci (21) have two or fewer candidate genes, others have 

280 substantially more: e.g., locus 33 - rs12413409 and rs11191416 ( CYP17A1-CNNM2-NT5C2) 

281 are associated with expression of twelve genes: ARL3, AS3MT, ATP5MD, BORCS7, CALHM2, 

282 CNNM2, CYP17A1-AS1, MARCKSL1P1, MFSD13A, NT5C2, SFXN2, and WBP1L. Importantly, 

283 these multi-gene eQTLs cannot be explained solely by co-expression between genes.  These 

284 eQTLs are often associated with expression of different genes in different tissues and for those 

285 associations in the same tissue the genes are not necessarily co-expressed (25). Possible 

286 mechanisms accounting for these relationships include a co-regulated gene cluster with master 

287 regulator regions affecting all genes in that region (26,27). While we cannot exclude trans-acting 

288 effects, these are typically smaller in size; allelic expression imbalance can serve to distinguish 

289 between cis and trans effects, but robust RNA allelic ratios are often not available in GTEx. 

290 Notably, ncRNAs are candidate genes for 33 of the 58 loci expanded from 6 loci prior to 

291 re-prioritization. For no loci are all candidate genes non-coding.  The greatest percent of non-

292 coding candidate genes (80%) is observed for locus 20 - rs12190287 and rs12202017 (TCF21). 

293 The protein-coding gene TCF21 annotated by GWAS is supported by eQTLs in 24 different 

294 tissues while 4 additional non-coding genes are introduced based on eQTL and sQTL analysis. 

295 The candidate ncRNAs are located within a 500KB region, with TARID being antisense to 

296 TCF21, and like many non-coding genes generally have lower expression levels. 
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297 For Tier 2C loci, there is no evidence to support the GWAS annotation. For example, 

298 locus 46 - rs1122608 and rs56289821 LDLR is annotated by GWAS, a gene well-recognized for 

299 its role in lipid metabolism; yet, rs1122608 falls within an intron of SMARCA4 and is both an 

300 eQTL and sQTL for SMARCA4 as well as an eQTL for CARM1 and YIPF2 but not LDLR. The 

301 alternative SNP identified by GWAS, rs56289821, also does not point to LDLR but rather 

302 implicates RGL3, SLC44A2, and again SMARCA4. These 4 Tier 2C loci critically require future 

303 work, both mechanistic and computational, to explore relevant gene targets. 

304

305 Tier 3: No genes implicated 

306 The remaining GWAS locus, locus 55 - rs663129 (MC4R, PMAIP1), classified as Tier 3, 

307 did not show any association with expression of nearby genes and is not physically overlapping 

308 any transcripts (S3 File).  This locus and 3 others (locus 27 - rs2954029 (TRIB1), locus 54 - 

309 rs7212798 (BCAS3), and locus 57 - rs11830157 (KSR2)) that are without any eQTL 

310 associations may have more subtle or context-dependent effects on gene expression that 

311 remain undetectable in GTEx.  In particular, non-polyadenylated transcripts are not in GTEx as 

312 poly-dT priming was used, leaving countless ncRNAs as additional candidates. Furthermore, 

313 these SNPs may affect gene expression in trans (although we do not find such evidence in the 

314 GTEx trans-eQTL dataset) or exert their effect without altering RNA levels measured by 

315 RNAseq (e.g. by controlling the chromatin structure or co-translationally alter RNA 

316 modifications). Additionally, variants affecting RNA functions and processing (structural RNA 

317 SNPs) (8,28), may not be visible as eQTLs, or they may selectively affect translation by 

318 changing polysomal loading (29).

319 Given GWAS variants are expected to mark functional variants rather than themselves 

320 being functional, we test SNPs within a 1MB window in LD (R2 > 0.8) with each of the 4 GWAS 

321 variants lacking annotations, expanding the number of SNPs to 200.  Using this approach, we 
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322 find significant eQTLs, but no significant sQTLs, for three of the four loci. For locus 57, we were 

323 unable to find additional candidate SNPs with an R2 > 0.8 to mark the haplotype.

324 For locus 55, without any candidate genes identified by our original re-prioritization, 

325 eighteen variants (mean R2 0.95 with the GWAS variant rs663129) are eQTLs in testis for 

326 MC4R, also annotated by GWAS.  Seven of these variants have an R2 of 1 with the GWAS 

327 variant. Five of these 18 SNPs fall within a non-coding RNA (AC090771.2) approximately 200kb 

328 downstream of MC4R.  

329 For locus 27, two variants (rs10808546 and rs2954031 with R2 of 0.87 and 0.91 with the 

330 GWAS variant rs2954029) are eQTLs in lung for a non-coding RNA (AC100858.3) almost 400kb 

331 downstream and on the opposite strand to TRIB1. These two SNPs and 15 others in high LD 

332 with the GWAS variant fall within an intron of a different non-coding RNA (AC091114.1), located 

333 immediately upstream of TRIB1.  

334 For locus 54, we find 83 variants (mean R2 0.96 with the GWAS variant rs7212798) are 

335 eQTLs in tibial artery and nerve for genes BCAS3, AC005884.1, and RP11-136H19.1.  Five of 

336 these variants with an R2 of 1 with the GWAS variant serve as eQTLs for AC005884.1 in tibial 

337 nerve, and are physically located within BCAS3, the protein-coding gene that has been 

338 annotated by GWAS. A different five variants are eQTLs for BCAS3; they are identified in tibial 

339 artery and have a mean R2 with the GWAS variant of 0.81. Such long-range high LD values 

340 imply evolutionarily conserved LD blocks with biological selectable functions.

341 Thus, by expanding the candidate SNP list to include other variants in strong LD with 

342 that identified by GWAS over long genomic distances, we find additional candidate genes 

343 supported by eQTL and physical position. 

344

345 Survey of CAD GWAS loci
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346 The genomic loci for each these 245 candidate genes often harbor multiple protein-

347 coding and non-coding transcripts arranged on both the sense and antisense strands (S2 File). 

348 They express an average of 9 transcripts per gene and a maximum of 189 (TEX41- locus 10 - 

349 rs2252641, rs17678683), with 47% of all transcripts being non-coding (Fig 1B).  More than half 

350 of the gene loci (161) also contain one or more antisense genes (i.e., located on the opposite 

351 strand and overlapping). 

352 Using GTEx data, we find RNA expression is associated with one or more genetic 

353 variant in the locus with a median of 4 eQTLs (max 32230) among 50% of the 245 candidate 

354 genes in 48 different tissues (Fig 1B).

355 With a median of 26 publications and a maximum of 27,497 (APOE), only a handful of 

356 these 245 candidate genes have been well studied to date (Fig 1B).  Twenty percent (51) of 

357 genes do not have a single paper indexed in PubMed. There are on average 20 gene ontology 

358 (GO) terms, which are manually curated based on the literature, assigned to each gene; 

359 however, 62 (25%) of the candidate genes have no associated GO terms.  We find those genes 

360 without GO terms and with limited publications do not have fewer markers of functionality 

361 (eQTLs, splicing QTLs, etc.), but are almost exclusively non-coding, indicative of a recognized 

362 bias in the literature toward protein-coding genes (Fig 1). 

363 Each implicated locus displays an astoundingly complex architecture with multiple 

364 candidate genes implicated by RNA expression and physical location, each with a number of 

365 overlapping coding and non-coding transcripts including those in antisense orientation. The 

366 complexity of these loci emphasizes the need for targeted molecular studies and computational 

367 approaches to determine the relevant gene and transcript(s).  The distribution of PubMed 

368 articles and GO ids across candidate genes suggests that this targeted work has touched on 

369 only a handful of genes thus far, with more recent studies beginning to focus on ‘neglected’ 

370 CAD candidate genes (30). 

371
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372 Allelic RNA expression imbalance reveals functional 

373 variation 

374 To evaluate potential functionality for each of the 58 GWAS loci, we ask whether each 

375 candidate SNP is associated with allelic expression imbalance (AEI), a specific indicator of cis-

376 acting regulatory variation. Whereas comparing expression of the two alleles at a heterozygous 

377 variant, various external/trans-acting influences on gene expression are shared and the cis-

378 acting effect of the heterozygous variant can be isolated. In the absence of a functional variant 

379 altering RNA expression, the anticipated distribution between the alleles is 0.5 (ratio=1)(8,31).

380 Using data released by GTEx, we evaluate AEI at each of 104 candidate variants across 

381 54 tissue types. Only 55 of the SNPs are represented in the data. The remainder likely are in 

382 intergenic regions and poorly captured by RNA sequencing, while obtaining accurate AEI ratios 

383 requires rather robust expression (>30 RPM)(32). Of the 55, many are present in only a few 

384 samples making it difficult to infer differential expression. However, several SNPs show 

385 surprisingly robust data – thousands of samples and counts for each allele in the dozens-

386 hundreds. A majority of these SNPs fail to reveal allelic expression imbalance, with near normal 

387 distribution of deviation from the expected ratio, suggesting no correlation between the GWAS 

388 variant and allelic expression imbalance. This implies that the GWAS candidate SNPs 

389 represented in the data are actually relatively poor markers for functional cis-acting variants in 

390 the locus; however, splicing events generating RNA isoforms with similar turnover are one 

391 example where allelic expression imbalance would fail. 

392 A number of SNPs do display consistent allelic expression imbalance (Fig 2). Locus 3 – 

393 rs7528419 (SORT1), which falls in the 3’UTR of CELSR2 exhibits AEI in 53/57 liver samples.  

394 Overall low expression of CELSR2 in liver tissue, however means that these ratios are for the 

395 most part based on low coverage (median total count 13).  Despite the relative consistency from 

396 sample to sample, large allelic ratios derived from relatively low counts, as observed here, 
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397 raises suspicion for systemic sources of bias, e.g. preferential amplification of one allele. To 

398 evaluate this further, we considered allelic ratios at nearby SNPs in strong LD (R2 > 0.9) and 

399 weak LD (R2 < 0.1).  As these SNPs are co-located, systemic sources of bias should affect all 

400 SNPs in the locus while ‘true’ biological AEI would be expected only for those variants in strong 

401 LD with a functional SNP. We observe AEI for those SNPs in strong LD with the GWAS marker, 

402 but not for those in the same region in weak LD, a pattern that is suggestive of ‘true’ biological 

403 AEI and a functional cis-acting variant.

404

405 Fig 2. Allelic expression imbalance at GWAS variants mark functional SNPs. 

406 Deviation in the observed from the expected ratio for individuals heterozygous for given GWAS 

407 variant. (A) Locus 3 – rs7528419 (SORT1) exhibits AEI in 53/57 liver samples. Subcutaneous 

408 adipose, also shown, demonstrates near normal distribution of deviation from the expected 

409 allelic ratio and is representative of the 46 other tissues with at least 5 samples. (B)  Locus 14 - 

410 rs72689147 (GUCY1A3) exhibits AEI in 114/121 samples across 10 different tissues.

411

412 Importantly, even one sample without AEI suggests the variant might itself not be 

413 functional but rather in high LD with a functional variant and serving as a marker. With only a 

414 few samples not exhibiting AEI, rs7528419 can be considered an excellent marker in tight LD 

415 with the functional SNP. Furthermore, that this pattern is only found in liver suggests that the 

416 regulatory variant is tissue specific. In contrast, the bidirectional ratios observed in adipose 

417 tissue suggests that either the marker SNP is in low LD with a functional variant, or low 

418 expression is leading to ratio deviations from unity in a random fashion.  The counts in adipose 

419 are relatively low (median total count 11), however it is not substantially different from liver with 

420 a median count of 13.

421 The Locus 14 SNP rs72689147 (GUCY1A3), which falls within an intron of GUCY1A3, 

422 exhibits AEI in 114/121 samples across 10 different tissues. Again, this SNP does not appear to 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.21.423751doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423751
http://creativecommons.org/licenses/by/4.0/


19

423 be functional as not all samples display AEI, but it is a robust marker. While located in an intron, 

424 expression is sufficient to extract allelic ratios; as these are consistently below unity, this results 

425 suggests a gain of function. 

426

427 Resolving number of signals in a locus using LD

428 Focusing on the 7 loci where eQTL-based reprioritization pointed to a single gene as 

429 well as the two examples of AEI discussed above, we find dozens of other significant eQTLs for 

430 each gene.  To determine whether these eQTLs represent one or more functional variants, we 

431 plot the effect size (beta) of the variant on RNA expression for each eQTL against its LD (R2) 

432 with the top scoring (most significant p-value) eQTL in each tissue where eQTLs are detectable. 

433 Assuming one functional variant in the locus, the beta for each eQTL should correlate with its R2 

434 relative to the highest scoring SNP (33).  

435 This approach reveals that the observed eQTLs for a gene often represent more than 

436 one regulatory variant, with the exception of FLT1 in Tibial Nerve – represented by only one 

437 cluster of variants marked by the GWAS SNP (Fig 3). This result is critical to the correct 

438 interpretation of GWAS that would otherwise rely on a single variant rather than considering the 

439 combined effect of more than one causative variant.

440

441 Fig 3. Number of eQTL signals. Correlation plots show absolute value of beta for 

442 variant effects on RNA expression versus R2 with the top eQTL (most significant p-value), 

443 including all significant eQTLs in the given gene-tissue combination. Blue dots represent the top 

444 eQTL (most significant p-value), red dots represent GWAS variant(s). (A) FLT1 in Tibial Nerve: 

445 eQTLs are accounted for by a single eQTL marked by the GWAS variant (all eQTLs display a 

446 linear correlation with R2). CELSR2 (liver), GUCY1A3 (tibial artery), and LIPA (blood), 

447 correlation between beta and R2 suggests multiple functional variants. (B) At least three distinct 
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448 LD blocks represented by LIPA eQTLs in whole blood. Correlations are shown left to right 

449 between the absolute value of beta and R2 with rs142444 (GWAS SNP), rs1051338, or 

450 rs2250781. Tightly linked SNPs (D’ > 0.9; R2 > 0.9) are shown in the same color. 

451

452 As an example, we consider the number of distinct eQTLs needed to maximally account 

453 for LIPA expression in blood.  The most significant eQTL consists of a group of SNPs in high LD 

454 marked by the GWAS variant (red dot in Fig 3), while two additional clusters of SNPs (marked 

455 by rs1051338 and rs2250781) have equally or even more robust beta and p-values but show 

456 relatively poor linkage with the GWAS cluster (R2 ~ 0.5) (Fig 3B).  These SNPs are more 

457 significant eQTLs than predicted by their LD with the trait-associated variant and may mark 

458 additional functional variants in the locus.  To test the significance of any additional regulatory 

459 variants, we used a separate dataset (CATHGEN) to evaluate whether including an additional 

460 marker variant in a regression model improves the ability to account for LIPA expression in 

461 blood.  Including additional markers improved the eQTL model, while adding a marker in strong 

462 LD with the original variant did not (Table 2), indicating there are likely multiple functional 

463 variants, incompletely represented by the GWAS variant alone, that contribute to LIPA 

464 expression in blood.  

465

466 Table 2. Assessing multiple regulatory variants for LIPA

Variable of interest ANOVA 
p-value

Model 1 Model 2

rs1412444 8.8e-16 XP ~ sex + age XP ~ rs1412444 + sex + age

rs13332328 8.8e-16 XP ~ sex + age XP ~ rs13332328 + sex + age

rs1051338 8.8e-16 XP ~ sex + age XP ~ rs1051338 + sex + age

rs2250781 8.8e-16 XP ~ sex + age XP ~ rs2250781 + sex + age

rs1412444 in context of 
rs13332328 

1.0 XP ~ rs1412444 + sex + age XP ~ rs1412444 + rs13332328+ 
sex + age
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rs1412444 in context of 
rs1051338

0.23 XP ~ rs1412444 + sex + age XP ~ rs1412444 + rs1051338 + sex 
+ age

rs1412444 in context of 
rs2250781

0.04 XP ~ rs1412444 + sex + age XP ~ rs1412444 + rs2250781 + sex 
+ age

rs1412444 & rs2250781 
in context of rs1051338  

0.19 XP ~ rs1412444 + rs2250781 
+ sex + age

XP ~ rs1412444 + rs2250781 + 
rs1051338 + sex + age

rs1412444 & rs1051338 
in context of rs2250781

0.04 XP ~ rs1412444 + rs1051338 
+ sex + age

XP ~ rs1412444 + rs1051338 + 
rs2250781 + sex + age

rs1412444 1e-3 MI ~ covariates MI ~ rs1412444 + covariates

rs13332328 1e-3 MI ~ covariates MI ~ rs13332328 +covariates

rs1051338 6e-4 MI ~ covariates MI ~ rs1051338 + covariates

rs2250781 4e-4 MI ~ covariates MI ~ rs2250781 + covariates

rs1412444 in context of 
rs13332328

0.79 MI ~ rs1412444 + covariates MI ~ rs1412444 + rs13332328+ 
covariates

rs1412444 in context of 
rs1051338

0.36 MI ~ rs1412444 + covariates MI ~ rs1412444 + rs1051338 + 
covariates

rs1412444 in context of 
rs2250781

0.56 MI ~ rs1412444 + covariates MI ~ rs1412444 + rs2250781 + 
covariates

rs1412444 & rs2250781 
in context of rs1051338  

0.11 MI ~ rs1412444 + rs2250781 
+ covariates

MI ~ rs1412444 + rs2250781 + 
rs1051338 + covariates

rs1412444 & rs1051338 
in context of rs2250781

0.17 MI ~ rs1412444 + rs1051338 
+ covariates

MI ~ rs1412444 + rs1051338 + 
rs2250781 + covariates

467

468 ANOVA comparing ability of models with different SNP combinations to account for LIPA 
469 expression and MI. Covariates in CATHGEN include sex, age, hypercholesterolemia, smoking, 
470 and number of diseased vessels.  
471

472 Testing these additional variants with MI instead of LIPA expression did not yield 

473 significant associations (Table 2).  However, LIPA expression itself is not associated with MI 

474 except when rs1412444 is homozygous minor, which may explain the discrepancy. In looking 

475 separately at the associations between the GWAS hit and LIPA expression and the GWAS hit 

476 and MI, we find that rs1412444 is associated with increased risk of MI and increased expression 

477 of LIPA, but counterintuitively those with two minor alleles and MI exhibit lower rather than 
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478 higher expression, a pattern that also holds in GTEx although it is only statistically significant in 

479 CATHGEN (Fig 4, S4 Figure). 

480

481 Fig 4. LIPA expression, MI, and genotype. Comparison of LIPA expression in 

482 CATHGEN for those with and without MI based on rs142444 genotype. LIPA exhibits higher 

483 expression only in those without MI in the homozygous minor group (p-value = 0.02).

484

485 Context – Tissue & Transcript specific eQTLs

486 Genetic variation exists and functions within a context – the surrounding sequence, the 

487 tissue type and its preferred transcription factors, etc. In an effort to resolve the functional 

488 variation behind statistical associations observed in GWAS, it is essential to consider these 

489 contexts. As highlighted by the tissue specific AEI patterns above, if these relationships are not 

490 considered in a context specific manner (e.g., on a tissue by tissue basis), many robust effects 

491 will remain hidden. In an effort to evaluate some of these contextual features, we consider 

492 tissue and transcript specific eQTLs.

493 eQTL analysis may focus the search on a relevant tissue.  However, eQTLs are 

494 detectable only where expression and sample size are sufficiently high; accordingly tissue-

495 specific differences in eQTLs reflect overall patterns of tissue selective expression and sample 

496 size, in addition to the influence of genetic variation. 

497 To consider how eQTLs for a given gene compare across different tissues, we cluster 

498 genome-wide significant eQTLs reported by GTEx for LIPA in a heatmap organized by their 

499 pairwise LD (R2), using a colored bar at the top of the heatmap to denote tissue type (Fig. 5A).   

500 eQTL SNPs generally cluster by tissue, suggesting distinct regulatory variants in different 

501 tissues.  However, there are two LD blocks that contain eQTLs in more than half of tissues 

502 indicative of genetic variation that acts across different tissue types. Variants detected by 
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503 GWAS for LIPA appear as a significant eQTLs in a subset of tissues (Table 1), some of which fit 

504 with our understanding of CAD pathology (heart, aorta, adipose), others suggest as yet 

505 unexplained biological consequences (spleen, pancreas).   

506

507 Fig 5. Tissue and transcript specific eQTLs for LIPA.  (A) Heatmap of LD for those 

508 SNPs reported by GTEx as genome-wide significant eQTLs for LIPA. Lighter-colored squares in 

509 the heatmap represent LD blocks, with SNPs clustered by R2 and not by genomic position. 

510 Colored bars at top eQTLs in each tissue with more significant p-values denoted by darker 

511 color. (B) Local Manhattan plot for LIPA in blood. Position is denoted on the x-axis; black bar 

512 indicates gene start and stop. Negative log(p-value) for association with RNA expression is 

513 denoted on the y-axis. Each transcript and the gene overall are marked by a different color (see 

514 legend). Inset zooms in on the regions carrying rs1412444, rs1051338, rs2250781 identified as 

515 distinct top scoring eQTLs each contributing to LIPA gene expression (see Fig 3). 

516

517 To consider transcript-specific eQTLs more specifically, for 1mb upstream and 

518 downstream of LIPA, we calculated the association between each SNP and expression of both 

519 overall mRNA and individual isofoms.  The resulting local Manhattan plot displays the 

520 association p-values for LIPA transcripts in blood (Fig 4B).  Five transcripts with no expression 

521 (zero-values) in 90% or more of individuals were excluded (ENST00000428800, 

522 ENST00000282673, ENST00000487618, ENST00000463623, ENST00000489359).  Whereas 

523 the overall eQTL patterns are similar between the gene and individual transcripts, divergent 

524 SNPs indicate the presence of transcript-specific eQTLs. Remarkably, robust eQTLs distribute 

525 over the entire 2 MB region, with the most distant eQTLs associated with individual transcripts 

526 rather than overall gene expression.  The most significant eQTLs form a peak of multiple SNPs 

527 close to the transcribed region, topped by an eQTL for the gene level summary of expression 
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528 (ENSG00000107798) rather than any specific isoform. Tissue selectivity and functionality of 

529 each transcript requires separate studies.  

530

531 Conclusions

532 We consider each of 58 loci implicated in CAD by GWAS to better understand the 

533 biological meaning of the underlying statistical associations. In evaluating each of these loci, we 

534 find numerous candidate genes that were not included in the original annotation by GWAS.  

535 Many of these are non-coding. Non-coding RNAs, now well-recognized for their role as 

536 regulators, have historically been dismissed and continue to be difficult to study, a trend that is 

537 apparent in their poor representation in the literature, among GO annotations, and as annotated 

538 by GWAS (26).  We find no evidence to suggest these non-coding RNAs are less likely to 

539 account for the observed associations in GWAS and would advocate for their inclusion in further 

540 mechanistic and computational work examining these loci. In addition to broadening candidate 

541 gene lists to include non-coding transcripts, we would urge reconsideration of current 

542 assignments, especially for those loci categorized as Tier2C where expression, splicing, and 

543 physical position do not support the gene annotated by GWAS. LDLR is a particularly prominent 

544 example. Given our understanding of the critical role lipid metabolism plays in CAD, it is 

545 counterintuitive not to assign a CAD GWAS variant to LDLR when it lies within 15kb of the 

546 LDLR locus (34). However, RNA expression and splicing data do not support this annotation, 

547 instead supporting the notion that such genetic variation affects the function of other nearby 

548 genes including SMARCA4, CARM1, YIPF2, RGL3, SLC44A2 (29).

549 Using allelic ratios built from tissue-specific RNA sequencing data available through GTEx, 

550 we were able to identify two loci where the GWAS variant served as a robust marker for a 

551 functional cis-acting regulatory variant. Locus 3 – rs7528419 (SORT1) falls in the 3’UTR of 

552 CELSR2, exhibits AEI exclusively in liver, and is in nearly perfect LD with rs12740374 which 
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553 was shown by Musunuru et al. through a series of molecular experiments to create a C/EBP 

554 binding site increasing expression of SORT1, a multiligand sorting receptor which they 

555 concomitantly showed to be associated with LDL-C and VLDL levels (35). This work revealed a 

556 single functional variant for a single target gene with a substantial effect size, the authors 

557 estimated a ~40% difference in MI risk. Our work suggests additional eQTLs not explained by 

558 their LD with the LD block marked by GWAS variant rs7528419. As we begin to identify 

559 functional variation behind GWAS associations, an important next step will be resolving 

560 additional functional variants within the loci that may modify these associations and better 

561 account for disease risk (36).

562 This work emphasizes that the linear presentation of GWAS results as a single variant tied 

563 to a single gene fails to capture the complexity of these loci. Many loci contain several SNPs 

564 identified by GWAS, and for each of these, multiple candidate genes are implicated by RNA 

565 expression and splicing associations as well as physical proximity. LD alone rarely accounts for 

566 the observed eQTLs, suggesting multiple functional variants within these loci. Extending the 

567 search for functional variants implicated by GWAS over a larger genomic region (1 Mb) can 

568 further reveal novel candidate loci.  Although some GWAS associations may ultimately implicate 

569 single variants that alter expression of individual genes, this work indicates that true genetic 

570 effect size of a gene locus is accounted for by a multi-factorial system that allows for multiple 

571 functional variants regulating one or more genes. The approach presented here must be 

572 expanded to include functional variants that are undetectable by RNAseq of whole tissues, 

573 including cell type specific expression, effect on RNA-protein interactions, distribution in sub-

574 cellular domains, alteration of translational processes, and of course variants that change 

575 protein functions.  

576
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741 S1 File. Fig 1 Gene Names. Gene names corresponding to bar plot presented in Fig 1 

742 B. 

743 S2 File. Example locus. Example of a locus (LIPA) implicated by GWAS taken from 

744 ensemble.org. There are numerous annotated protein-coding and non-coding transcripts in 

745 close proximity and overlapping one another.

746 S3 File. 58 CAD GWAS loci. Table of 58 GWAS loci including tier designation, SNPs 

747 considered, GWAS annotation, and genes introduced by eQTL, sQTL, and position.

748 S1 Fig. Expanding candidate genes process. Flowchart portraying process of 

749 expanding candidate gene list from 75 to 245 using eQTL, sQTL, and physical position.

750 S2 Fig. Tier assignment process. Flowchart portraying process of assigning tiers to 

751 CAD GWAS loci.

752 S3 Fig. eQTL, sQTL, position Venn diagram. Venn diagram showing overlap in 

753 candidate genes derived from eQTL, sQTL, and position-based re-prioritization.

754 S4 Fig. LIPA expression, CAD, and genotype in GTEx. Comparison of LIPA 

755 expression in GTEx for those with and without heart disease based on rs142444 genotype. 

756 LIPA exhibits higher expression in those without heart disease only in the homozygous minor 

757 group (p value = 0.22).
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