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Abstract 13 

Speech-in-noise comprehension difficulties are common among the elderly population, yet 14 

traditional objective measures of speech perception are largely insensitive to this deficit, 15 

particularly in the absence of clinical hearing loss. In recent years, a growing body of research in 16 

young normal-hearing adults has demonstrated that high-level features related to speech 17 

semantics and lexical predictability elicit strong centro-parietal negativity in the EEG signal 18 

around 400 ms following the word onset. Here we investigate effects of age on cortical tracking 19 

of these word-level features within a two-talker speech mixture, and their relationship with 20 

self-reported difficulties with speech-in-noise understanding. While undergoing EEG recordings, 21 

younger and older adult participants listened to a continuous narrative story in the presence of 22 

a distractor story. We then utilized forward encoding models to estimate cortical tracking of 23 

three speech features: 1) “semantic” dissimilarity of each word relative to the preceding 24 

context, 2) lexical surprisal for each word, and 3) overall word audibility. Our results revealed 25 

robust tracking of all three features for attended speech, with surprisal and word audibility 26 

showing significantly stronger contributions to neural activity than dissimilarity. Additionally, 27 

older adults exhibited significantly stronger tracking of surprisal and audibility than younger 28 

adults, especially over frontal electrode sites, potentially reflecting increased listening effort. 29 

Finally, neuro-behavioral analyses revealed trends of a negative relationship between 30 

subjective speech-in-noise perception difficulties and the model goodness-of-fit for attended 31 

speech, as well as a positive relationship between task performance and the goodness-of-fit, 32 

indicating behavioral relevance of these measures. Together, our results demonstrate the utility 33 

of modeling cortical responses to multi-talker speech using complex, word-level features and 34 

the potential for their use to study changes in speech processing due to aging and hearing loss. 35 

 36 

Keywords: speech perception; aging; speech-in-noise; electroencephalography; temporal 37 

response function; lexical surprisal; semantic processing 38 

 39 

1. Introduction 40 

 41 
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Speech perception is fundamentally important for human communication. While speech signals 42 

are often embedded in complex sound mixtures that can interfere with speech perception via 43 

energetic and informational masking, the auditory system is remarkably adept at utilizing 44 

attentional mechanisms to suppress distractor information and enhance representations of the 45 

target speech (e.g., Ding and Simon, 2012a; Mesgarani and Chang, 2012; O’Sullivan et al., 46 

2019). However, the robustness of speech perception, particularly in the presence of noise, is 47 

vulnerable to deterioration through both noise-induced and age-related hearing loss (Dubno et 48 

al., 1984; Helfer and Wilber, 1990; Fogerty et al., 2015, 2020) as well as age-related cognitive 49 

decline (van Rooij and Plomp, 1990; Akeroyd, 2008; Dryden et al., 2017). Additionally, a small 50 

but significant portion of the population experiences speech-in-noise (SIN) perception 51 

difficulties, without exhibiting clinical hearing loss (Saunders, 1989; Zhao and Stephens, 2007; 52 

Tremblay et al., 2015). Together, these SIN perception difficulties can lead to significant 53 

impairment in quality of life (Dalton et al., 2003; Chia et al., 2007), and in older adults they may 54 

result in increased social isolation (Chia et al., 2007; Mick et al., 2014; Pronk et al., 2014), 55 

potentially exacerbating loss of cognitive function (Loughrey et al., 2018; Ray et al., 2018). 56 

Although subjective SIN perception difficulties are relatively common in older 57 

individuals, objective tests for quantifying these deficits, such as identification of words or 58 

sentences in noise (e.g., QuickSin; Killion et al., 2004), often do not strongly correlate with the 59 

degree of subjective deficit (Phatak et al., 2018), particularly in cases with little-to-no clinical 60 

hearing loss. Smith and colleagues (2019) recently reported that only 8% of their sample of 194 61 

listeners exhibited deficits in objective SIN tasks, while 42% of listeners indicated experiencing 62 

subjective SIN perception difficulties. A likely reason for this mismatch is that objective speech 63 

perception tests do not accurately reflect real world scenarios where SIN difficulties arise. For 64 

example, while existing tests generally require identification of isolated words or sentences 65 

embedded in noise (e.g., speech-shaped noise or a competing talker), real world speech 66 

perception often requires real-time comprehension of multi-sentence expressions, embedded 67 

in a reverberant environment, in the presence of multiple competing speakers at different 68 

spatial positions. In these scenarios, listeners who need to expend additional time and cognitive 69 

resources to identify the meaning of the incoming speech may “fall behind” in comprehension 70 

of later parts of the utterance. Moreover, even if the listener can correctly piece together the 71 

meaning of the utterance, their subjective confidence may be diminished, potentially “blurring” 72 

the predictive processes thought to facilitate perception of upcoming speech (Pickering and 73 

Gambi, 2018). As such, behavioral measures that more accurately reflect subjective SIN 74 

perception difficulties may require utilization of more realistic, narrative stimuli, and focus on 75 

quantifying comprehension, as opposed to simple word or sentence identification (e.g., Xia et 76 

al., 2017). 77 

While development of behavioral paradigms focusing on characterizing SIN perception 78 

difficulties is an important goal, a complementary and potentially more sensitive approach to 79 

quantifying these deficits may be provided by neural measures of continuous-speech tracking. 80 

In recent years, non-invasive methodologies for measurement of neural representations of 81 

continuous speech in humans have become increasingly popular (Lalor and Foxe, 2010; Crosse 82 
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et al., 2016), particularly in application to young normal-hearing (YNH) populations. One 83 

important result of this work has been the demonstration of profound attentional modulation 84 

of speech whereby temporal dynamics of neural responses to attended and ignored speech 85 

differ considerably, both in representation of lower-level features such as the speech envelope 86 

(Ding and Simon, 2012; Power et al., 2012; Kong et al., 2014; Fiedler et al., 2019), and higher-87 

level features related to lexical and semantic content of speech (Brodbeck et al., 2018; 88 

Broderick et al., 2018). Indeed, while lower-level features produce robust responses even when 89 

speech is ignored, features related to linguistic representations only show robust responses for 90 

attended speech, suggesting that they are tightly linked with speech comprehension. 91 

Responses to higher-level features may therefore be particularly sensitive to SIN perception 92 

difficulties, which are likely associated with impaired comprehension performance. In fact, SIN 93 

perception difficulties could potentially manifest themselves not only in terms of poorer 94 

tracking of higher-level features in attended speech, but also in increased tracking of features in 95 

ignored speech, when facing difficulties with suppression of distractor information. 96 

Changes in neural processing of continuous speech in aging populations, compared to 97 

young adults, are relatively poorly understood. Several studies have utilized magneto- and 98 

electroencephalography (M/EEG) to address this question. Studies comparing envelope-related 99 

cortical responses have revealed a pattern of amplified envelope representations in older 100 

populations (Presacco et al., 2016; Decruy et al., 2019; Zan et al., 2020), potentially reflecting 101 

changes in the utilization of cognitive resources during speech comprehension. More recently, 102 

Broderick et al. (2020) compared higher-level representations of speech in younger and older 103 

populations. They estimated EEG responses to 5-gram surprisal, reflecting the predictability of 104 

words given the preceding sequence of four words, as well as semantic dissimilarity, reflecting 105 

the contribution of each word to the semantic content of a sentence. While younger listeners 106 

showed strong responses to both of these features, older adults exhibited a delayed surprisal 107 

response and a near-absent response to semantic dissimilarity. These findings demonstrate 108 

that representations of higher-level features of speech may indeed reveal robust effects of age. 109 

However, because Broderick et al. (2020) did not report behavioral measures related to speech 110 

comprehension, nor measures of subjective speech perception difficulties among their 111 

participants, it is unclear whether these metrics would correlate with the reported EEG-based 112 

findings. Moreover, participants in that study were presented with clear speech without any 113 

distractors (e.g., competing speakers), making it unclear how speech representations differ in 114 

complex listening scenarios where speech perception difficulties are most commonly reported. 115 

The goal of this study was to compare higher-level neural representations of two-talker 116 

speech mixtures between younger and older adults, and to explore how these measures relate 117 

to comprehension performance and self-reported SIN perception difficulties. In particular, we 118 

examined representations related to word dissimilarity relative to short-term preceding 119 

context, lexical surprisal based on multi-sentence context, and word-level audibility. We chose 120 

to pursue this paradigm for several reasons. First, a multi-talker paradigm was chosen because 121 

subjective SIN perception difficulties commonly arise in aging listeners in the context of 122 

competing speech. If age-related changes in neural representations are confirmed, then these 123 
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neural signatures could potentially be further explored as a candidate objective correlate for 124 

subjective SIN difficulties. Second, we chose to characterize responses to word-level features 125 

linked to meaning and lexical predictability because existing evidence indicates that responses 126 

to higher-level features are tightly linked to speech comprehension (Broderick et al., 2018). As 127 

such, we anticipated that responses to these features are more likely to exhibit differences as a 128 

function of age and SIN perception difficulties. Although neural representations reflecting the 129 

end-goal of speech perception may allow for only limited inference about the underlying causes 130 

of SIN perception difficulties, which can range from peripheral changes in acoustic 131 

representations to more central changes in cognitive processes, these representations may 132 

offer increased sensitivity due to capturing the combined effects of the various etiologies 133 

underlying the deficit. 134 

 135 

2. Materials and Methods 136 

 137 

2.1 Participants 138 

 139 

In total, 45 adult volunteers completed the experiment, and data from 41 participants were 140 

used due to a methodological change implemented early in data collection. The participant 141 

pool was divided into two groups, younger adults (YA) and older adults (OA), with participants 142 

who were 18-39 years included in the former, and participants who were 40-70 years included 143 

in the latter. The YA group consisted of 20 participants (6 male, 14 female; mean ± s.d. age: 144 

29.40 ± 6.40 years), while the OA group included 21 participants (9 male, 12 female; mean ± 145 

s.d. age: 53.48 ± 8.68 years). Participants were recruited via email advertisement from a pool of 146 

students, staff, and alumni of the University of Minnesota. All participants provided informed 147 

written consent and received either course credit or monetary compensation for their 148 

participation. The procedures were approved by the Institutional Review Board of the 149 

University of Minnesota. 150 

 151 

2.2 Audiometry 152 

 153 

An air-conduction audiogram was measured in each ear for each participant prior to beginning 154 

the EEG procedures. Detection thresholds were measured at octave frequencies in the 250 – 155 

8000 Hz range, and frequencies for which thresholds exceeded 20 dB HL were deemed to be 156 

affected by hearing loss (HL). This procedure resulted in the detection of 2 participants in the 157 

YA group, and 16 participants in the OA group as having mild-to-moderate high-frequency HL. 158 

The skewed distribution of HL towards the older population was expected, as peripheral 159 

frequency sensitivity naturally diminishes with age (see reviews by Huang and Tang, 2010; 160 

Yamasoba et al., 2013).  161 

 162 
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For participants with any hearing loss, all experimental audio materials were amplified in the 163 

frequency regions of hearing loss, as described in section 2.4 below. Under these conditions, we 164 

observed no association between task performance and high-frequency hearing loss. 165 

 166 

2.3 Modified SSQ questionnaire 167 

 168 

Prior to the EEG procedures, all participants completed a modified version of a subset of 169 

Speech, Spatial and Qualities of Hearing Scale (SSQm). The original version of SSQ (Gatehouse 170 

and Noble, 2004) was designed to measure subjective hearing challenges faced by listeners in 171 

various situations of daily life. In our version, we specifically probed participants about 172 

difficulties with and frustrations related to hearing speech in noisy situations, such as cafes and 173 

social gatherings. Each of the 14 items was presented on a computer screen along with four 174 

graded choices of frequency, difficulty, or discomfort related to the presented listening 175 

scenarios. E.g., 176 

 177 

Item 1: 178 

I find it difficult to talk with staff in places such as shops, cafes, or banks, due to struggling to 179 

hear what they are saying. 180 

 181 

Item 10: 182 

In group conversations I worry about mishearing people and responding based on incorrect 183 

information. 184 

 185 

Response choices:  186 

1) Not at all  187 

2) Rarely  188 

3) Often  189 

4) Very often 190 

 191 

 192 

2.4 Stimuli 193 

 194 

Stimuli were four public domain short story audiobooks (Summer Snow Storm by Adam Chase; 195 

Mr. Tilly's Seance by Edward F. Benson; A Pail of Air by Fritz Leiber; Home Is Where You Left It 196 

by Adam Chase; source: LibriVox.org), spoken by two male speakers (two stories per speaker). 197 

Each story was about 25 min in duration and was pre-processed to truncate any silences 198 

between words that exceeded a 500-ms interval to 500 ms. On a block-by-block basis (see 199 

section 2.5 below), each audiobook was root-mean-square (RMS) normalized and scaled to 65 200 

dB SPL. Stimuli were presented to participants using ER1 Insert Earphones (Etymotic Research, 201 

Elk Grove Village, IL), shielded with copper foil to prevent electrical artifacts in the EEG data.    202 

 203 
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In order to minimize the odds of finding age-related differences in neural responses that could 204 

be attributed to reduced audibility in participants with hearing loss, all audio materials were 205 

custom-filtered for each participant with HL using a FIR filter implemented in MATLAB 206 

(Mathworks, Natick, MA) via the designfilt and filter functions. The filter was designed to apply 207 

half gain, amplifying all frequency bands by half the amount of the hearing loss: 208 

 209 

𝐴(𝑓) = 0.5 × (𝑇(𝑓) − 20)   when T(f) > 20 dB HL,  210 

𝐴(𝑓) = 0     otherwise, 211 

 212 

where T(f) is the detection threshold in dB HL at frequency f. Note that half gain amplification is 213 

a commonly used strategy to mitigate reduced audibility due to hearing loss, while preventing 214 

discomfort from loudness recruitment, whereby loudness growth for frequencies affected by 215 

cochlear hearing loss is steeper than that observed in normal hearing (Fowler, 1936; Steinberg 216 

and Gardner, 1937).  217 

 218 

2.5 Experimental procedures 219 

 220 

The experimental setup was implemented using the Psychophysics Toolbox (Brainard, 1997; 221 

Pelli, 1997; Kleiner et al., 2007) in MATLAB. Two experimental runs were completed by each 222 

study participant. In each run, a pair of audiobooks read by different male speakers (Fig. 1A) 223 

was presented diotically (the mixture of the two audiobooks in each ear) to the participant. One 224 

of the stories served as the attended story, while the other was the ignored story, with these 225 

designations being counter-balanced across participants. A run was broken up into 24-27 blocks 226 

(variation was due to small differences in durations of audiobooks used in each of the two 227 

runs). Each block contained a roughly 1-minute segment of audio, followed by a series of 228 

questions, detailed below. Block duration was allowed to exceed 1 minute in order to ensure 229 

that each block concluded at the end of a sentence in the attended story. The attended story 230 

remained the same throughout the run. To cue the participants to follow the correct story, the 231 

audio of the attended story started 1 sec prior to the onset of the ignored story. This was 232 

further aided by making this initial 1-sec portion of the attended story in each block (except 233 

block #1) correspond to the final 1-sec of the attended story from the previous block. These 234 

repeated segments with the attended story alone were excluded from statistical analyses. 235 

Throughout each block, participants were instructed to stay as still as possible, and to keep 236 

their gaze on a central fixation marker presented on a computer display in front of the 237 

participant. The purpose of this was to minimize EEG artifacts caused by muscle activity.  238 

Following each block, participants were presented on a display with a series of Yes/No 239 

questions about the audio from that block, including:  240 

 241 

1) Four comprehension questions about the contents of the attended story 242 

2) Confidence ratings for each of the comprehension questions 243 

3) Intelligibility judgment about the attended speaker 244 
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4) Subjective attentiveness rating 245 

 246 

As each behavioral question had binary answer choices (e.g., for attentiveness, 247 

participants answered “Were you able to stay focused on the target story?” Yes/No), the main 248 

purpose of these questions was to gather information about participants’ comprehension and 249 

subjective experience throughout the run, and to make sure that they were attending to the 250 

correct story.  251 

Participants were given 10 seconds to answer each question using a key press. If 10 252 

seconds elapsed without a response, the question was marked as no-response. After answering 253 

each block’s questions, participants were allowed to request a short break to ensure that they 254 

remained comfortable throughout the experiment. These breaks were limited to up to two 255 

minutes, during which participants remained seated. The next block started as soon as the 256 

break was terminated by the participant with a key press, or two minutes elapsed. 257 

Furthermore, between the two experimental runs, participants were offered an extended break 258 

inside the booth. The EEG cap and the insert phones were not removed during the breaks. 259 

The second experimental run was procedurally identical to the first one, except a 260 

different pair of stories was presented, neither of which was used in the first run. Additionally, 261 

the attended and ignored speakers were switched, so that the speaker that narrated the 262 

ignored story in the first run was attended in the second run, while the attended speaker from 263 

the first run became the ignored speaker in the second run. Participants were explicitly 264 

informed of this switch, and the purpose of this was to balance any possible speaker effects on 265 

each participant’s EEG data.  266 

 267 
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 268 
Figure 1. Experimental procedures. (A) Participants listened to a mixture of two speakers, while 269 

attending to one of them. Meanwhile, 64-channel EEG was recorded from their scalp. (B) Three 270 

word-level features (dissimilarity, surprisal, and audibility) were extracted from the speech for 271 

both the attended and ignored stories, and used to generate regressors containing impulses 272 

that were time-aligned to the word onsets scaled by the amplitude of each feature. These 273 

features were regressed against the EEG signals recorded during the experiment, resulting in 274 

TRF and model fit contributions for each of the features. These TRFs and goodness-of-fit values 275 

were averaged across groups of frontal (yellow) and parietal (blue) electrodes for use in group-276 

level analyses. 277 

 278 

2.6 EEG procedures 279 

 280 

While engaging in the experimental task described above, each participant’s EEG activity was 281 

sampled at 4096 Hz from their scalp using a Biosemi ActiveTwo system (BioSemi B.V., 282 

Amsterdam, The Netherlands), with 64 channels positioned according to the international 10-283 

20 system (Klem et al., 1999). Additional external electrodes were placed on the left and right 284 

mastoids, and above and below the right eye (vertical electro-oculogram, VEOG). Prior to the 285 

beginning of the recording, and between the two runs, the experimenter visually inspected 286 
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signals in all electrodes, and for any electrodes with DC offsets exceeding ± 20 mV, the contact 287 

between the electrode and scalp was readjusted until the offset fell below ± 20 mV. 288 

 289 

2.7 EEG preprocessing  290 

All pre-processing analyses were implemented via the EEGLAB toolbox (Delorme and Makeig, 291 

2004) for MATLAB, unless otherwise stated. To reduce computational load, the raw EEG data 292 

were initially downsampled to 256 Hz, and band-pass filtered between 1 and 80 Hz using a 293 

Hamming windowed sinc FIR filter implemented in the pop_eegfiltnew function of EEGLAB. 294 

Subsequently, data were pre-processed using the PREP pipeline (Bigdely-Shamlo et al., 2015). 295 

These steps included line noise removal, detection of disproportionately noisy channels via an 296 

iterative robust referencing procedure, interpolation of noisy channels, and referencing the 297 

data using the final “clean” estimate of the global mean activation. The benefit of this 298 

procedure is that it minimizes the risk of signal contamination from electrodes with abnormal 299 

signals (e.g., due to faulty hardware) during the referencing stage.  300 

Next, activations from all experimental blocks were epoched and independent 301 

component analysis (ICA; Jutten and Herault, 1991; Comon, 1994) was applied to the data using 302 

the infomax ICA algorithm (Bell and Sejnowski, 1995) implementation in EEGLAB. This 303 

procedure decomposes the EEG signal into statistically independent sources of activation, some 304 

of which reflect sensory and cognitive processes, while others capture muscle-related signal 305 

contributions and other sources of noise. We removed all components that matched eye-blink 306 

related activity in component topography, amplitude, and temporal characteristics, as well as 307 

other high-amplitude artifacts that reflected muscle activity. This, on average, led to the 308 

removal of 2.52 (SD: 0.97) components. 309 

The cleaned EEG signals were then band-pass filtered between 1 and 8 Hz with a 310 

Chebyshev type 2 filter designed using MATLAB’s designfilt function (optimized to achieve 80 311 

dB attenuation below 0.5 Hz and above 9 Hz, with pass-band ripple of 1 dB), and applied to the 312 

data using the filtfilt function. Afterwards, the data were z-scored in order to control for inter-313 

subject variability in the overall signal amplitude due to nuisance factors such as skull thickness 314 

or scalp conductivity, as well as to improve efficiency in the cross-validated regression and ridge 315 

parameter search for deriving the temporal response function (TRF), described below (section 316 

2.9.1). Finally, because run duration varied slightly due to unequal lengths of the two pairs of 317 

audiobooks (i.e. 24-27 minutes), in order to equalize contributions from each run to the overall 318 

analysis results, only blocks 2-23 from each run were used in the remaining analyses. The first 319 

block was excluded in order to minimize effects of initial errors in attending to the target story, 320 

which happened to a very small number of participants (less than 5), but was quickly corrected 321 

after initial comprehension questions were presented.  322 

 323 

2.8 Word timing estimation 324 

Word onset timings for all words within each story were estimated using the Montreal Forced 325 

Aligner (McAuliffe et al., 2017). Prior to running the aligner, the audiobook text was 326 

preprocessed to remove punctuation, typographic errors and abbreviations, and both the text 327 
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and audio were divided into roughly 30-sec segments. This segmented alignment approach was 328 

used in order to prevent accumulation of alignment errors for later portions of the audio. All 329 

alignments were subsequently manually inspected for timing errors, and when noticeable 330 

alignment errors were detected, the aligner was re-run on further-shortened (15 sec) segments 331 

of the affected audio. While forced alignment routinely results in some degree of timing errors, 332 

these are typically small, with a median of about 15 ms for the aligner used here. As such, only 333 

a small degree of temporal smearing of estimated neural responses should occur due to these 334 

errors.  335 

 336 

2.9 Data analysis 337 

 338 

2.9.1 TRF analyses 339 

Time courses of cortical responses to different speech features, known as the TRFs, were 340 

extracted from preprocessed EEG activity using cross-validated regularized linear regression, 341 

implemented via the mTRF toolbox (Crosse et al., 2016). Briefly, deconvolution of a TRF for a 342 

given feature from the EEG signal is accomplished by first constructing a regressor containing a 343 

time series, sampled at a rate matching the EEG signal, of that feature’s amplitudes. By 344 

including multiple time-lagged copies of the regressor for each feature, the effect of a given 345 

feature on the neural activity at different latencies relative to the word onset can be estimated, 346 

resulting in a time course of neural response. Regressors for all features are combined into a 347 

full design matrix, and this matrix is then regressed against the EEG signal to yield the impulse 348 

responses (i.e., TRFs) for each of the included features at each electrode site.   349 

In practice, this procedure was implemented through 11-fold cross-validation, with each 350 

fold involving three steps. First, the data and regressors were split into a training set, composed 351 

of 40 blocks of the data (~40 minutes), and a testing set, containing the remaining 4 blocks of 352 

the data (~4 minutes). Next, the training set was used to determine the ridge parameter, λ, by 353 

iteratively fitting the cortical-response model using a range of ridge parameters. The TRF 354 

estimates were obtained for the λ parameter that produced the best model fit to the training 355 

data, as determined by the highest Pearson’s correlation coefficient between the predicted and 356 

actual EEG signal. The TRF estimates were then used to assess the model fit for the test data. 357 

This was done by convolving the estimated TRFs with the corresponding word-feature 358 

regressors for the test data set, and computing the Pearson’s correlation between the 359 

predicted and actual test data. Following cross-validation, average TRFs for each feature and an 360 

average model goodness-of-fit were computed from results of all cross-validation folds for use 361 

in group-level analyses. 362 

 363 

2.9.1.1 Regression features 364 

Word features used in the regression analyses included semantic dissimilarity, surprisal, and 365 

word audibility (Fig. 1B).  366 

 367 

2.9.1.1.1 Semantic dissimilarity 368 
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Semantic dissimilarity, reflecting approximately the degree to which each word adds new 369 

information to a sentence, was computed as described in Broderick et al., (2018). Briefly, we 370 

used Google’s pre-trained word2vec neural network (Mikolov et al., 2013a, 2013b), 371 

implemented using the Gensim library (Rehurek and Sojka, 2010) for Python, to compute a 300-372 

dimensional vector representation (otherwise known as an embedding) of each word within 373 

our stimuli. An important property of these vector representations is that in the 300-374 

dimensional vector space, vectors of words with similar meanings point in similar directions. 375 

Computing correlation between vectors representing any two words approximates their 376 

semantic similarity. Because EEG response to incongruent words has been shown to elicit a 377 

strong N400 component (Kutas and Hillyard, 1980), for regression purposes these similarity 378 

values were subtracted from 1 to convert them to dissimilarity. 379 

To construct semantic dissimilarity regressors, we computed the dissimilarity between 380 

each word’s vector, and the average of vectors for all preceding words in a given sentence. In 381 

the case of the first word in a sentence, we computed dissimilarity from the average vector for 382 

words in the previous sentence. These dissimilarity values were then used to construct the 383 

regressor consisting of unit-length impulses aligned to word onsets that were scaled by each 384 

word’s dissimilarity value and zeros between these impulses. Although neural responses to 385 

semantic content of words may not be strictly time-locked to word onsets, potentially leading 386 

to some degree of temporal smearing in the estimated TRFs, word onset timings have been 387 

successfully used as timestamps for characterizing higher-order lexical and semantic processes 388 

(e.g., Broderick et al., 2018; Weissbart et al., 2019).    389 

 390 

2.9.1.1.2 Lexical surprisal 391 

Surprisal regressors were constructed in an identical way to dissimilarity, except the feature 392 

values were computed using OpenAI’s GPT-2 (Radford et al., 2019; 12-layer, 117M parameter 393 

version) artificial neural network (ANN), similar to the approach demonstrated by Heilbron et 394 

al. (2019). These procedures were implemented in Python using the Transformers library (Wolf 395 

et al., 2020) for PyTorch (Paszke et al., 2019). GPT-2 is a transformer-based (Vaswani et al., 396 

2017) ANN that, using a “self-attention” mechanism, is capable of effectively using hundreds of 397 

words worth of preceding context in order to generate seemingly realistic sequences of text. As 398 

a result, it can be used as a proxy for computing the predictability of words within a sequence. 399 

Surprisal is calculated based on a much longer time scale (a large number of words in the 400 

preceding context) than semantic dissimilarity. Specifically, by providing GPT-2 with a segment 401 

of text and then generating the distribution over the next word, it is possible to assess the 402 

relative probability of the actual next word within GPT-2’s distribution of possibilities. 403 

Generation of all probabilities involves iteratively adding words into the context, and computing 404 

the probability of each successive word. In practice, GPT-2 utilizes a tokenized representation of 405 

text, whereby GPT-2’s vocabulary corresponds to a combination of whole words (particularly in 406 

the case of shorter words) and word fragments.  407 

As a result, the probability of the i-th word wi was computed as a product of conditional 408 

probabilities of the constituent word tokens t, with each token’s probability being computed 409 
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with the model’s knowledge of the preceding tokens (i.e. preceding text plus current word’s 410 

tokens whose probabilities were already estimated): 411 

 412 

𝑝(𝑤𝑖) =  ∏ 𝑝(𝑡𝑘+𝑗 | 𝑡𝑘+𝑗−512, … 𝑡𝑘+𝑗−1)𝑛
𝑗=1 , 413 

 414 

where j indexes the n tokens of word wi , k is the absolute index of the last token in the 415 

preceding word (relative to text beginning), and 512 is the maximum number of tokens utilized 416 

for prediction. For token indices less than 512 (i.e., early portions of the text), all of the 417 

available context was used. Furthermore, in cases where one or more tokens from the word at 418 

the far boundary of the context window did not fit into the 512 token limit, that word’s tokens 419 

were excluded from being used for prediction. Note that although GPT-2 is capable of utilizing 420 

up to 1024 tokens for prediction, we utilized a context length of 512 tokens due to limited 421 

computational resources. Across the 4 stories, when full predictive context was utilized for 422 

prediction, it contained on average 393.3 [s.d. = 31.1] words.  423 

Because brain mechanisms underlying lexical prediction respond more to unexpected 424 

than to expected words (Kutas and Hillyard, 1984), surprisal was computed by taking the 425 

negative log of the conditional probabilities of each word, leading to less expected words 426 

receiving higher surprisal values: 427 

 428 

𝑆(𝑤𝑖) =  −log (𝑝(𝑤𝑖)) 429 

 430 

2.9.1.1.3 Audibility 431 

Word audibility regressors were constructed separately for the attended and ignored stories to 432 

capture the degree of masking of each word in one story by the speaker of the other story. In 433 

contrast to dissimilarity and surprisal, this value reflects the information at the shortest, word-434 

by-word time scale, with higher signal-to-noise ratio (SNR) values reflecting greater peripheral 435 

fidelity of target speech, leading to lower uncertainty in speech identification on the basis of 436 

the bottom-up signal. For each word wi in a given story, its audibility was defined in dB SNR 437 

units: 438 

 439 

𝐴𝑢𝑑(𝑤𝑖) = 20 log 
𝑅𝑀𝑆(𝑦(𝑤𝑖))

𝑅𝑀𝑆(𝑧(𝑤𝑖))
,  440 

 441 

where y(wi) is the acoustic waveform of a word wi spoken by one speaker, and z(wi) is the 442 

acoustic waveform of the other speaker at the same time. Because neural responses have 443 

limited dynamic range while the audibility measure ranged from –inf to inf, the audibility values 444 

were rescaled to range from 0 to 1. In order to do this, audibility values were first clipped above 445 

10 dB and below -10 dB, and then scaled to the 0-1 range by: 446 

 447 

𝐴𝑢𝑑𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐴𝑢𝑑 + 10

20
 448 
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 449 

Finally, because the distributions of regressor values had distinct means for different 450 

features, we normalized each feature’s non-zero regressor values to have an RMS of 1. Bringing 451 

different features into similar amplitude ranges was done in order to make the amplitudes of 452 

corresponding TRFs more similar to each other, thus improving regularization performance.   453 

It is notable that although neither dissimilarity, nor surprisal correlated with audibility (r 454 

= 0.03 and -0.02, respectively), there was a modest correlation between dissimilarity and 455 

surprisal (r = 0.22), suggesting that both features captured some aspects of speech 456 

predictability. Nevertheless, the fact that the correlation was relatively low suggests that much 457 

of the variance in each of the two features captured distinct aspects of the linguistic content in 458 

the speech stimuli. 459 

 460 

2.9.2 Feature-specific model performance 461 

 462 

After fitting the full three-feature model as described above, we computed the unique 463 

contribution of each feature to the overall model fit using procedures described in Broderick et 464 

al. (2020). Briefly, on each cross-validation fold, we estimated each feature’s contribution to the 465 

overall fit by comparing the goodness-of-fit for the full model to a null model, in which that 466 

feature’s contribution was eliminated. This was done by permuting regressor values of that 467 

feature, while maintaining their original timing. For all other features, the original regressors 468 

were used. Null model fits were computed by convolving the estimated TRFs with these 469 

regressors and correlating the predicted EEG waveform with the test data. This procedure was 470 

repeated 10 times to estimate the average null-model performance. Each feature’s model 471 

contribution was then computed as the difference between the goodness-of-fit metrics for the 472 

full model and its null model.  473 

 474 

2.9.3 Regions of interest 475 

 476 

To strengthen our statistical analyses in light of inter-subject variability due to nuisance 477 

variables such as head shape and electrode cap placement, all analyses were performed on two 478 

regions of interest (ROI) derived by averaging model goodness-of-fit and TRFs from subsets of 479 

frontal and parietal electrodes (Fig. 1B). The parietal ROI was chosen because of prior evidence 480 

that responses to higher-level features such as dissimilarity or surprisal tend to peak over 481 

parietal sites near electrode Pz (e.g., Broderick et al., 2018; Weissbart et al., 2019). The frontal 482 

ROI was included because we hypothesized that recruitment of frontal regions may aid 483 

prediction and disambiguation of the speech signals, particularly in challenging listening 484 

scenarios such as in the presence of a competing speaker.  485 

 486 

 487 

2.9.4 Statistical analysis 488 

 489 
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Group-level statistical analyses were applied to pooled outputs of single subject TRF analyses. 490 

Prior to performing statistical tests, outliers were detected using a two-stage approach, applied 491 

separately to samples from each age group to minimize the influence of true between-group 492 

differences on this procedure. First, full model goodness-of-fit values that were more than 1.5 493 

inter-quartile ranges (IQR) below the goodness-of-fit corresponding to the lower quartile, or 1.5 494 

IQR above the value corresponding to the upper quartile were detected as outliers. No 495 

participant met this criterion. Second, for each feature’s TRF for the attended stories (which 496 

were generally more robust compared to the ignored stories), we used the same 1.5 IQR 497 

criterion to detect outliers at each time point of the TRF. Subsequently, we computed the 498 

proportion of outlier time points for each subject. We set the outlier-proportion criterion to 499 

0.15, so that participants with more than 15% of outlier time points were detected as outliers. 500 

This led to the exclusion of 2 participants (1 YA, and 1 OA), leaving a total of 39 participants (19 501 

YA and 20 OA, including 17 with HL) in the analysis. 502 

A mixed-design ANOVA with a between-subjects factor of age group (YA vs. OA), and 503 

within-subject factors of ROI (frontal vs. posterior), model feature (dissimilarity, surprisal, and 504 

audibility), and attention (attended vs. ignored story) was used to assess how these factors 505 

related to the feature-specific contributions to the model fit. Post-hoc tests were conducted 506 

using two-tailed t-tests or the analogous non-parametric test, depending on the outcome of an 507 

Anderson-Darling test of normality on the data.  508 

Comparisons of TRFs for the attended and ignored stories were performed for each time 509 

point of the TRFs using two-tailed, paired-samples t-tests. Because this involved hundreds of 510 

statistical comparisons, we applied the false discovery rate (FDR; Benjamini and Hochberg, 511 

1995) correction to control for the proportion of false positives among all significant 512 

discoveries. Similarly, between-group comparisons (i.e., younger vs. older adults) were 513 

performed on TRF time courses, with two-sample t-tests applied separately to the attended and 514 

ignored TRFs and corrected using the FDR method.  515 

Finally, exploratory correlation analyses were performed on different combinations of 516 

neural (e.g., full model goodness-of-fit, feature-wise model contributions, TRF amplitudes) and 517 

behavioral metrics (e.g., comprehension, confidence, and SSQm scores). In these analyses we 518 

corrected each set of correlations using the Bonferroni correction. Importantly, we used less 519 

stringent multiple comparisons correction (i.e., not correcting by the total number of 520 

comparisons across all combinations of correlated variables), because of the large number of 521 

comparisons performed.  522 

 523 

3. Results 524 

 525 

3.1 Behavioral measures of speech understanding 526 

 527 

Following each 1-minute block of listening to a two-talker speech mixture, participants 528 

responded to four true/false questions about the content of the attended story and indicated 529 

their confidence about their response. The average performance on this comprehension task 530 
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was 83.2% (SD: 6.8%, 65.9 - 94.2% range), significantly above the 50% chance level [t(38) = 531 

30.48, p < 0.001], indicating that participants were successfully able to attend to the target 532 

speaker and comprehend the content of the story. We found a significant effect of age on 533 

performance [t(37) = -3.04, p = 0.004], with older participants performing better than younger 534 

participants (YA: mean ± s.d. = 80.1 ± 7.5%, OA: 86.1% ± 4.6%). A correlation analysis with age 535 

used as a continuous variable showed the same association with the proportion of correct 536 

responses (r = 0.33, p = 0.043). Confidence measures showed the same general pattern of 537 

results as the comprehension scores and the two measures were positively correlated [r = 0.69, 538 

p < 0.001], indicating that participants had good awareness of their performance.  539 

Because hearing loss was more common among the older participants, and we 540 

compensated for it by amplifying the audio in frequency ranges of elevated thresholds (see 541 

Methods), we assessed whether this amplification could account for the difference in 542 

performance. As expected, in the portion of participants who received amplification (n = 17), 543 

there was no relationship between average high-frequency audiogram (2-8 kHz range), and 544 

comprehension-performance (r = 0.06, p = 0.81) or confidence (r = 0.2, p = 0.44) measures. The 545 

same pattern was observed when using the average of the entire 0.25-8 kHz range of 546 

audiometry. As such, there was no evidence that amplification had an impact on performance, 547 

or that it could account for between-group differences in performance. 548 

Prior to the experimental session, each participant filled out a modified subset of the 549 

SSQ (SSQm) questionnaire to assess their subjective difficulties with speech-in-noise perception. 550 

We found no difference in these measures between younger and older participants (z = -0.42, p 551 

= 0.67, Mann-Whitney U-test), and no correlation between SSQm score and the proportion of 552 

correct responses from the behavioral task (r = -0.17, p = 0.29), or between SSQm and high-553 

frequency hearing loss (r = 0.03, p = 0.91). 554 

 555 

3.2 Cortical measures of speech-mixture processing 556 

 557 

In order to characterize cortical responses to semantic content of speech, we applied 558 

computational models to EEG responses measured while participants listened to a mixture of 559 

two distinct narrative stories, while attending to one of them. The features included in the 560 

model were word audibility reflecting word-by-word fidelity of the incoming acoustic signal, 561 

semantic dissimilarity reflecting short-term (sentence timescale) dissimilarities between the 562 

word2vec vector characterizing each word and its immediately preceding context, and word 563 

surprisal reflecting long-term predictability of each word given the preceding multi-sentence 564 

context.  565 

 566 
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 567 
Figure 2. The three-feature model explained a significant amount of variance in responses to 568 

both attended and ignored speech. Box plots (top) represent distributions of goodness-of-fit 569 

values averaged over electrodes across all participants. The topographic plots (bottom) depict 570 

the distribution of goodness-of-fit values for attended and ignored speech across the scalp. 571 

 572 

Linear regression of these features against the EEG signal produced responses that 573 

explained a significant amount of variance in the data pooled across participant groups and 574 

electrodes, as reflected by a significant positive correlation between the full-model EEG 575 

prediction and held-out data for both attended [t(38) = 20.87, p < 0.001] and ignored [t(38) = 576 

8.75, p < 0.001] speech, with a significantly stronger fit for the former (t(38) = 10.60, p < 0.001;  577 

Fig. 2). The same pattern of results was observed when examining model fits in frontal and 578 

parietal ROIs. Figure 3 depicts the average attended (green) and ignored (purple) TRFs in the 579 

two ROIs for each of the features included in the model. We observed robust responses to the 580 

attended story for each of the features included in the model, with prominent early (~ 100 ms) 581 

and late (~ 400 ms) peaks in neural activity. In contrast, the ignored story elicited comparatively 582 

flatter responses, with predominantly early peaks in neural activity. Indeed, most features 583 

showed extensive periods in the early and late portions of the TRFs where attended and 584 

ignored responses differed significantly, as depicted by black horizontal bars at the bottom of 585 

each TRF plot (indicating FDR-corrected significant time points).  586 

 587 
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 588 
Figure 3. Attentional modulation of feature-specific responses. Each plot depicts the 589 

comparison of TRFs averaged across all participants for attended (green) and ignored (purple) 590 

speech for each of the features (panel rows) and ROIs (panel columns). The upper and lower 591 

bound of each curve represents ± 1 standard error (SE) of the mean. Black and gray horizontal 592 

bars at the bottom of the plots indicate time intervals over which attended and ignored TRFs 593 

differed significantly at the FDR-corrected and uncorrected level, respectively, with α = 0.05.  594 

 595 
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Contributions of each feature to the overall model fit for both age groups are plotted in 596 

Fig. 4. Model fit contribution values represent the difference in goodness-of-fit for the held-out 597 

EEG data between the full model and null models in which a given feature's regressor was 598 

selectively disrupted by shuffling its feature amplitudes (see section 2.9.2). Thus, for a 599 

particular feature, a model fit contribution exceeding 0 represents the scenario where the EEG 600 

responses scaled, to some degree, with that feature's regressor values. To compare how these 601 

model contributions differed in the two age groups, we performed a mixed-design ANOVA with 602 

within-subject factors of ROI, model feature, and attention, and a between-subjects factor of 603 

age group (Table 1). As expected, we found a main effect of attention [F(1,37) = 34.28, p < 604 

0.001, ηp
2 = 0.48] reflecting generally stronger tracking of high-level features within the 605 

attended than ignored speech stream. We also found main effects of ROI [F(1,37 = 8.89, p = 606 

0.005, ηp
2 = 0.19],  feature [F(2,74) = 18.48, p < 0.001, ηp

2 = 0.33], and age group [F(1,37 = 7.92, 607 

p = 0.008, ηp
2 = 0.18].  608 

 609 
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 610 
Figure 4. Feature-specific contributions to the model fit for attended (top) and ignored 611 

(bottom) responses. Each panel depicts the box plot of model fit contributions for each of the 612 
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three features in the younger (red) and older (blue) adult groups. Left and right panels 613 

represent results for frontal and parietal ROIs, respectively. Note that some points are depicted 614 

with red + signs as outliers in order to better depict where the bulk of the points lie within the 615 

fit contribution distributions. However, all data points were utilized in statistical analyses 616 

described in the text. 617 

 618 

In addition to these main effects, we detected a number of significant interactions. 619 

There was a significant interaction between attention and age group [F(1,37 =  7.64, p = 0.009,  620 

ηp
2 = 0.17], reflecting an overall greater difference between attended and ignored fits in older 621 

than younger participants [t(37) = -2.76, p = 0.009]. A significant interaction between ROI and 622 

age group [F(1,37 =  7.24, p = 0.011,  ηp
2 = 0.164] was associated with significantly stronger 623 

contributions to model fits across features at the frontal compared to the parietal ROI in older 624 

adults (p = 0.007; Mann-Whitney U-test). Third, we found a significant interaction between 625 

feature and age group [F(2,74 =  4.09, p = 0.021,  ηp
2 = 0.10], and a post hoc analysis revealed 626 

this was due to greater difference in contributions to model fit between word audibility and 627 

dissimilarity in older than younger participants [t(37) = -3.01, p < 0.005; Bonferroni corrected 628 

with α = 0.017].  629 

Several interactions did not involve age group, including a significant interaction 630 

between attention and feature [F(1.8,66.63) = 8.55, p = 0.001, ηp
2 = 0.19], a trend towards an 631 

interaction between feature and ROI [F(1.68, 62.18] = 3.2, p = 0.056, ηp
2 = 0.08], and a three-632 

way interaction between attention, feature, and ROI, [F(2,74 =  13.05, p < 0.001,  ηp
2 = 0.21].  633 

Because the latter interaction was a combination of factors from the former two, we only 634 

pursued post hoc analyses for the three-way interaction. These indicated that in the frontal 635 

ROI, the contribution of audibility to the model fit was greater for the attended than the 636 

ignored story, and that this differential was greater than that for both dissimilarity and surprisal 637 

[t(38) = -3.38, p = 0.002, and t(38) = -3.61, p < 0.001, respectively; Bonferroni corrected with α = 638 

0.017]. Comparison of dissimilarity and surprisal showed no difference [t(38) = 1.38, p = 0.18].  639 

Although the goodness-of-fit analyses above indicate that there are significant 640 

differences in processing of attended and ignored speech between younger and older 641 

participants, they do not provide insight into the timing and amplitude of the underlying neural 642 

responses. To explore if our data contain evidence of age-related differences in neural 643 

responses, we statistically compared TRF amplitudes between the two age groups at each time 644 

point in the 0 to 800 ms range.  Because these analyses involved hundreds of point-by-point 645 

comparisons between groups, we corrected for false discovery rate (FDF), and focused on 646 

comparisons at the level of individual features, rather than utilizing more complex interaction 647 

metrics. As such, these analyses were relatively rudimentary, and should be considered as 648 

exploratory in their nature.  649 
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 650 
Figure 5. Between-group comparison of TRFs for attended speech. Each plot depicts a 651 

comparison of TRFs between younger (red curves) and older (blue curves) participants, for 652 

different features (panel rows) and ROIs (panel columns). Black and gray horizontal bars at the 653 

bottom of the plots indicate time points at which the two age groups differed significantly at 654 

the FDR-corrected and uncorrected level, respectively, with α = 0.05. 655 

 656 

Figure 5 depicts the differences in responses to the attended speech between younger 657 

(red lines) and older (blue lines) participants, separately for each feature (plot rows) and ROI 658 
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(plot columns). Two-tailed statistical outcomes at the p < 0.05 level are depicted at the bottom 659 

of each plot in both uncorrected (gray horizontal bars) and FDR-corrected (black horizontal 660 

bars) forms. At the FDR-corrected level, we only found two clusters of significant time points in 661 

the frontal TRFs for dissimilarity, with older participants showing a significantly more negative 662 

response between approximately 260-300 ms, and a significantly more positive response in the 663 

620-675 ms time range. While surprisal and audibility showed no robust differences at the FDR-664 

corrected level, several clusters of time points were suggestive of group differences at the level 665 

of uncorrected statistics. For surprisal, we found that older adults had a greater negative 666 

deflection in the 225-260 ms time range and a pair of positive deflections around 390-430 and 667 

515-580 ms that were absent in the TRF of the young adults at the frontal ROI. We also found a 668 

single cluster of time points with greater negative deflection for older than younger adults 669 

between 395-435 ms in the parietal ROI. For word audibility, we found a prolonged elevated 670 

response with portions between 415-480 ms exhibiting larger positive deflection in older than 671 

younger participants, at the frontal ROI. Older adults also showed a greater negative deflection 672 

in the word-audibility TRF frontally, and a greater positive deflection parietally around 550-600 673 

ms.  674 

Between-group comparison of TRFs for ignored speech are shown in Figure 6. Unlike 675 

responses to attended speech, most features, with the exception of frontal TRFs for surprisal, 676 

show largely flat response patterns that do not differ between groups. Several time points 677 

showed a difference in uncorrected statistics for each of the features, the most notable of 678 

which was a more negative response of younger adults to audibility between 590-660 ms in the 679 

frontal ROI. However, given the low amplitude of the TRFs, and long latencies of most of the 680 

potential differences, we believe these are likely to simply reflect false discoveries due to 681 

hundreds of comparisons. Indeed, fewer than 5% of comparisons for ignored speech were 682 

significant at the uncorrected level.   683 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423513
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aging Effects on Speech Tracking 
 

23 
 

 684 
Figure 6. Between-group comparison of TRFs for ignored speech. Subplot arrangement and 685 

statistical comparisons are as in Fig. 5.  686 

 687 

To complement these exploratory point-by-point analyses, we also conducted between-688 

groups analyses specifically targeted at comparing responses in the time range of the N400 689 

response. To this end, we compared each feature’s average TRF amplitudes in the 300-500 ms 690 

range. Because previous work found little to no evidence of N400 for ignored speech, these 691 

comparisons were only done for attended speech. Although we found both a significantly more 692 
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negative parietal N400 for the older group to surprisal [t(37) = 2.03, p = 0.05], and a significantly 693 

elevated frontal response in the older group for audibility [t(37) = -2.72, p = 0.01], neither of 694 

these results remained significant with Bonferroni  correction (α = 0.008, given the total 695 

number of 6 comparisons). 696 

 697 

 698 

3.3 Neuro-behavioral correlations 699 

 700 

We next sought to examine how our electrophysiological measures related to behavioral 701 

responses during the experiment, and the SSQm scores obtained prior to this experiment. To 702 

this end, we conducted a number of exploratory analyses, including correlations between 703 

behavioral measures and the overall model goodness-of-fit, feature-specific model 704 

contributions, and the average TRF amplitudes in the 300-500 ms time range. Given the number 705 

of these analyses, and our limited sample size, we focused our analyses on full participant 706 

samples, rather than age group comparisons. Because of the less stringent multiple 707 

comparisons correction procedure (only correcting by the number of statistical tests within 708 

each analysis), significant effects in this section should be interpreted as trends rather than true 709 

statistical effects.  710 

 711 

 712 
Figure 7. Scatterplots showing the relationship between the full model goodness-of-fit and the 713 

proportion of correct responses on the comprehension questions. Pearson’s correlation 714 

coefficients and the corresponding uncorrected p-values are shown for frontal (left plot) and 715 

parietal (right plot) ROIs. Symbols represent data from individual participants pooled across the 716 

two age groups, YA and OA.  717 

 718 

Figure 7 depicts the relationship between the proportion of correct responses on 719 

comprehension questions during the experiment, and the overall model goodness-of-fit in the 720 

frontal (left panel) and parietal (right panel) ROIs. While we observed no relationship in frontal 721 

regions (r = 0.21, p = 0.19), there was a marginally significant positive association between the 722 

two measures (r = 0.35, p = 0.027, Bonferroni corrected α = 0.025) in the parietal ROI. A similar 723 
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pattern of results was observed when average confidence ratings for the comprehension 724 

questions were used instead of the performance itself. Relationships between the proportion of 725 

correct responses and feature-specific contributions to the model fit are depicted in Figure 8. 726 

We observed a trend towards a positive association for word audibility in both the frontal (r = 727 

0.29, p = 0.07) and parietal ROIs (r = 0.4, p = 0.011), although neither correlation reached 728 

significance after correcting for multiple comparisons (α = 0.008). None of the other features 729 

showed a significant association with comprehension scores.  730 

 731 

 732 
Figure 8. Scatterplots of comprehension scores and feature-specific model contributions. 733 

Different rows of panels refer to different features and different columns correspond to the 734 
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two ROIs.  Pearson’s correlations and the corresponding uncorrected p-values are shown in the 735 

upper portion of each panel. 736 

 737 

 738 
Figure 9. Scatterplots of comprehension scores and mean TRF amplitudes between 300-500 ms. 739 

Figure layout is as in Fig. 8.  740 

 741 

Next, we explored the possible relationship between the comprehension scores 742 

(proportion correct) and the average TRF amplitude in the 300-500 ms time range, when N400 743 

effects generally appear parietally. These analyses, shown in Figure 9, revealed trends towards 744 
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a positive relationship in frontal regions for surprisal (r = 0.33, p = 0.037) and audibility (r = 0.31, 745 

p = 0.059), as well as a trend towards a negative relationship for surprisal in parietal ROI (r = -746 

0.29, p = 0.075). As before, none of these associations were significant when correcting for 747 

multiple comparisons. Although this analysis focused broadly on the time range of N400, two of 748 

the frontal trends were associated with positive, rather than negative deflections in the TRF.  749 

 750 

 751 
Figure 10. Scatterplots of SSQm scores and overall model goodness-of-fit for frontal (left panel) 752 

and parietal (right panel) ROIs. Note that a higher score on SSQm questionnaire reflects a 753 

greater difficulty with understanding speech in noise. 754 

 755 

Correlation analyses examining the relationship between subjective SIN perception 756 

difficulties, captured by the SSQm scores, and the full model goodness-of-fit metric (Fig. 10) 757 

revealed trends towards a negative relationship in both the frontal (r = -0.30, p = 0.064) and 758 

parietal ROIs (r = -0.32, p = 0.044). However, analyses of relationships with feature-specific TRF 759 

amplitudes and model contributions revealed no feature for which these trends were apparent. 760 

Finally, because a portion of the participants had mild hearing loss at high frequencies 761 

(which was compensated for by amplifying speech in the corresponding frequency ranges; see 762 

Methods), we examined if and how high-frequency (2-8 kHz) hearing thresholds related to the 763 

overall model fits (Fig. 11). Although we found no relationship between the average hearing 764 

thresholds over the 2-8 kHz range and model goodness-of-fit for attended speech (Frontal ROI: 765 

r = -0.04, p = 0.87; Parietal ROI: r = -0.02, p = 0.95), there was a significant negative correlation 766 

for ignored speech both frontally (r = -0.59, p = 0.013) and parietally (r = -0.62, p = 0.008). At 767 

the level of feature-specific contributions to the model fit, there was no indication that this 768 

negative correlation was driven by any particular feature, as most features showed low, non-769 

significant negative correlations.  770 

 771 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423513
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aging Effects on Speech Tracking 
 

28 
 

 772 
Figure 11. Scatterplots of average high-frequency hearing thresholds (2-8 kHz) and overall 773 

model goodness-of-fit as a function of attention (panel rows) and ROI (panel columns).  774 

 775 

4. Discussion 776 

 777 

Speech perception is a fundamental capability of the human auditory and language systems, 778 

facilitating our abilities to learn and engage in various types of social interaction. However, 779 

deficits in SIN perception are commonly experienced by the aging population (e.g., van Rooij 780 

and Plomp, 1990; Goossens et al., 2017) and are reported surprisingly frequently even among 781 

the younger and nominally normal hearing population (Saunders, 1989; Zhao and Stephens, 782 

2007; Tremblay et al., 2015). Importantly, while subjective SIN perception difficulties may 783 

indicate a significant adverse impact on quality of life (Dalton et al., 2003; Chia et al., 2007), 784 

existing objective (laboratory and clinical) measures of speech perception have shown 785 

surprisingly poor correlations with the self-reported difficulties as measured, for example, by 786 

SSQ scores (Phatak et al., 2018; Smith et al., 2019).  787 

In the present study, we measured EEG responses to continuous two-talker speech 788 

mixtures in younger (< 40 y.o.) and older (> 40 y.o.) participants. Participants’ cortical responses 789 

in the 1-8 Hz range were predicted by modeling TRFs for three speech features, short-timescale 790 

semantic dissimilarity, long-timescale lexical surprisal, and word-level audibility. We also 791 

collected behavioral measures, including participants’ subjective ratings of their difficulties with 792 
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SIN understanding (modified SSQ), and comprehension scores for attended speech during the 793 

experiment and the associated confidence ratings.  794 

Our three-feature model was able to explain significant variance in the EEG data, 795 

especially in responses to attended speech, where each of the features contributed to the 796 

neural responses (Fig. 4). The evidence for this was particularly strong for surprisal and 797 

audibility, suggesting that these model features captured stimulus characteristics that were 798 

actively tracked by our participants’ auditory systems. Moreover, we found that participants’ 799 

performance on the comprehension task (Fig. 7), as well as the associated confidence ratings, 800 

showed a trend towards a positive correlation with the goodness of the overall model fit for the 801 

attended speech, suggesting that successfully tracking these features is related to speech 802 

comprehension. Although our data does not support a strong association between 803 

performance and model contributions, or TRF magnitudes, for any one of the model features, 804 

we did find trends towards an association between word audibility and performance in both 805 

ROIs (for both model fit contributions, and TRF magnitudes), and in the frontal region between 806 

the surprisal TRF magnitude and performance. Speculatively, these trends suggest that 807 

improved comprehension may be related to at least two cognitive processes. First, the 808 

association with audibility suggests that improved performance may stem from more effective 809 

weighing of word-level information by word reliability, as reflected by the word SNR. Second, 810 

the association with surprisal suggests that high performance may be related to increased 811 

sensitivity to lexical and/or semantic associations between different segments of speech. 812 

Consistent with previous work on neural representations of two-talker speech (Ding and 813 

Simon, 2012; Mesgarani and Chang, 2012; Broderick et al., 2018; O’Sullivan et al., 2019) we 814 

found robust differences between responses to attended and ignored speech both in the 815 

goodness of model fits and the TRFs. In general, model fits were better for attended than 816 

ignored speech (Fig. 4) and the associated TRFs for attended speech showed complex, multi-817 

peaked morphologies, whereas the responses to ignored speech were flatter and contained 818 

fewer prominent peaks (Fig. 3). Thus, our results indicate that responses to a speech mixture 819 

preferentially reflect attended speech, while representations of distractor speech are largely 820 

suppressed. 821 

Comparisons of EEG responses between age groups revealed a complex pattern of age-822 

related differences, captured particularly by model fit measures.  Specifically, we found that 823 

older participants exhibited on average greater differences in feature-specific model-fit 824 

contributions between attended and ignored speech. This age effect was driven primarily by 825 

better fits for attended speech in the frontal ROI (see Fig. 4). Although to a weaker degree, 826 

these differences were mirrored in attended TRFs, in that older adults showed generally 827 

stronger TRF deflections from 0 compared to younger participants (Fig. 5). In most cases, 828 

however, these TRF differences did not reach statistical significance when controlling for false 829 

discovery rate, possibly due to nuisance factors such as inter-subject variability in cortical 830 

geometry, and/or inadequate sample size.  831 

With respect to the modelled features, we found that surprisal and audibility both 832 

showed stronger frontal contributions in older adults, whereas parietal contributions were 833 
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relatively similar between the two groups. We speculate that the stronger fits in the frontal 834 

region in older adults may be indicative of heightened reliance in this group on both lexical 835 

prediction, as reflected by increased accuracy of surprisal fits, and on words with better 836 

audibility. Higher word SNRs may have been more important for disambiguation of the masked 837 

portions of speech for older compared to younger adults. Although audibility itself reflects a 838 

relatively low-level aspect of our stimuli, its frontal TRF profile showed a prolonged positive 839 

deflection in the 250-550 ms latency range.  Such a long latency is consistent with the 840 

possibility that this audibility-related response may reflect engagement of higher-level 841 

processes, such as retrospective disambiguation, or prospective prediction. 842 

It is notable that participants in the older group exhibited significantly better 843 

performance on the comprehension task than younger adults, despite having greater 844 

prevalence of hearing loss (15 out of 17 participants with HL were in the older group and the 845 

degree of HL was not significantly correlated with performance). This difference in performance 846 

difference complicates the interpretation of age-related differences in neural responses. It may 847 

be the case that older adults in our participant sample were either more engaged, or exerted 848 

greater effort in the task, which in turn led to stronger speech tracking in their EEG data, as well 849 

as better performance. This is plausible, since more participants in the older group (12/20 older 850 

vs 8/19 younger participants) indicated having a subjective sense of experiencing greater 851 

difficulty with SIN understanding compared to their peers. The sense of greater difficulty may 852 

have motivated at least some of the older participants to exert greater effort to perform well. 853 

However, while the average performance of participants with self-reported SIN difficulties was 854 

slightly better than that in participants who did not report such difficulties, these differences 855 

were not significant. Despite this, the possibility that differences between the two age groups in 856 

effort, attentiveness, or another factor may underlie the neural differences discussed above, 857 

deserves further attention in future work. 858 

 859 

4.1 Relationship to existing work on age-effects on electrophysiological measures of speech 860 

processing 861 

 862 

Several studies have examined effects of age (Presacco et al., 2016; Decruy et al., 2019; Zan et 863 

al., 2020) and hearing loss (Millman et al., 2017; Decruy et al., 2020) on continuous speech 864 

processing in the context of envelope tracking. Generally, these studies have demonstrated 865 

that older adults and those with hearing loss exhibit exaggerated cortical tracking of speech 866 

envelope both in quiet and in the presence of a competing speaker, as reflected by higher 867 

envelope reconstruction accuracies from delta-band EEG or MEG responses in these 868 

populations. Our analyses show a similar pattern of amplified feature tracking in the aging 869 

population, albeit for word-level features. Responses to the audibility feature, in particular, may 870 

reflect similar underlying processes as those involved in envelope processing. However, 871 

audibility in our study was defined as the word-by-word ratio between the acoustic energy in 872 

the two speech waveforms, rather than the absolute amplitude of each speech signal, making 873 

direct comparisons of the two measures difficult. Distinct from envelope TRFs, the audibility 874 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423513
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aging Effects on Speech Tracking 
 

31 
 

TRF in our study contained prolonged deflections from 0 in the 300-500 ms latency range, 875 

suggesting that our measure may tap into additional higher-level processes. Although lexical 876 

surprisal is seemingly unrelated to speech envelope, it is possible that predictive processes may 877 

interact with lower-level stimulus encoding via feedback processes, as has been demonstrated 878 

for dissimilarity (Broderick et al., 2019). 879 

While measures of envelope tracking have provided important insights into speech 880 

processing, they are largely uninformative about the nature of higher-level processes involved 881 

in speech perception. In recent years, an increasing number of studies have investigated  the 882 

relationship of electrophysiologically-measured cortical responses to both intermediate speech 883 

representations such as those evoked by different phoneme categories (Di Liberto, 2015; 884 

Lesenfants, 2020; Teoh & Lalor, 2020; but cf. Daube et al. 2019) or phonotactics (Di Liberto, 885 

2019), and word-level representations related to lexical (e.g., Brodbeck et al., 2018), as well as 886 

syntactic and semantic (Broderick et al., 2018;  Weissbart et al., 2019; Heilbron et al., 2019; 887 

Donhauser & Baillet, 2020) processing. Nevertheless, relatively little is known about how these 888 

representations change as a function of age, particularly in challenging listening conditions. 889 

Recently, Broderick et al. (2020) compared representations of semantic dissimilarity and 5-gram 890 

lexical surprisal derived from responses to clean speech in younger and older adults. They 891 

showed that although younger adults exhibited robust responses to each feature, older adults 892 

only showed strong responses to lexical surprisal (albeit with a delayed peak response), with a 893 

nearly absent response to semantic dissimilarity. These results were interpreted as potentially 894 

reflecting lesser reliance of older adults on semantic predictive process, thought to be captured 895 

by the dissimilarity feature, due to age-related cognitive decline. Consistent with this, older 896 

participants with greater semantic verbal fluency, a measure related to the ability to engage in 897 

semantic prediction, showed greater contribution of semantic dissimilarity to the model of 898 

cortical responses to speech.  899 

Because our experimental design involved listening to a more challenging, two-speaker 900 

mixture, direct comparisons of our results with those of Broderick et al. (2020) are not possible. 901 

Nevertheless, there are marked differences between the patterns of results observed in their 902 

study compared to ours. In particular, we observed stronger tracking of both lexical surprisal 903 

and word audibility in older than younger adults, and generally weak but otherwise similar 904 

tracking of dissimilarity in the two groups. Notably, this was observed predominantly at the 905 

frontal ROI, with the posterior ROI showing a smaller difference (albeit in the same direction as 906 

the frontal results). In contrast, Broderick et al. focused their analyses on posterior electrode 907 

sites, making it unclear how tracking of their features behaved at more frontal sites that are 908 

involved in tasks relying on working memory (e.g., Gevins et al., 1997; Onton et al., 2005).  909 

In Broderick et al. (2020), the greatest age-related differences were shown for semantic 910 

dissimilarity, whereas our goodness-of-fit results showed relatively weak contributions from 911 

this feature (compared to surprisal and word audibility) that did not differ significantly between 912 

the younger and older age groups. However, we did observe greater frontal TRF deflections in 913 

the older group for dissimilarity, with significant group differences around 250 and 600 ms, 914 

suggesting an increased gain for this feature in the older population. This underscores the 915 
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importance of analyzing both model fits and the corresponding TRFs, as morphological 916 

differences in the latter may be possible even in the absence of differences in the model 917 

goodness-of-fit. The most notable difference in our results with respect to dissimilarity is that 918 

we did not observe posterior N400 response in either group, in contrast to the significant 919 

parietal N400 in the TRF for dissimilarity in older but not younger adults reported by Broderick 920 

et al. Although this discrepancy is puzzling given the use of nearly identical methods for 921 

computing dissimilarity, it raises the possibility that the utility of dissimilarity may be limited if 922 

other features, which better capture neural responses that would otherwise be attributed to 923 

dissimilarity, are included in the model.  924 

Another important difference between the two studies pertains to the role of surprisal 925 

in the models fitted to the data. Specifically, unlike the relatively simple 5-gram surprisal used 926 

by Broderick et al., which was intended to capture responses related to the knowledge of word 927 

co-occurrence within 5-word neighborhoods, the surprisal features utilized in our study were 928 

computed using an advanced natural language model (GPT-2; Radford et al., 2019) that uses 929 

preceding context of up to several hundred words (i.e., dozens of sentences) in order to 930 

estimate each upcoming word. As such, surprisal in our study likely captured responses related 931 

to higher-level lexical and/or syntactic predictions. Thus, although responses to these two 932 

surprisal measures cannot be directly compared, the stronger tracking of surprisal by older 933 

adults in our study is consistent with increased reliance on predictive processes in this 934 

population. This is in agreement with behavioral results demonstrating greater reliance on 935 

semantic context in populations with compromised representations of speech, such as those 936 

with hearing loss (Benichov et al., 2012; Lash et al., 2013) and cochlear implants (Amichetti et 937 

al., 2018; Dingemanse and Goedegebure, 2019; O’Neill et al., 2019).  938 

Importantly, the seemingly conflicting pattern of results between these studies could in 939 

fact reflect two distinct contributors to speech perception difficulties in older adults, namely 940 

decreases in the fidelity of lower level representations, and cognitive decline. Prevalence of 941 

mild high-frequency hearing loss in our sample of older adults was quite high, making it likely 942 

that decreased fidelity of peripheral representations had an effect on our results. While 943 

Broderick et al. did not report audiogram measures for their sample of older adults, the mean 944 

age was considerably greater in their study (mean ± s.d. = 63.9 ± 6.7 years vs 53.5 ±  8.7 years in 945 

this study), making it likely that similar or greater hearing difficulties may have impacted their 946 

participants. However, because of the age difference in the two samples, the effects of 947 

cognitive decline may have contributed more significantly to the results of Broderick et al., and 948 

may potentially explain why measures related to predictive processes showed opposite effects 949 

in the two studies. This exemplifies the complex combination of etiologies that may underlie 950 

speech perception difficulties, and the distinct ways in which they may affect speech 951 

processing. Future work should attempt to quantify these factors and use multivariate analyses 952 

to better characterize if and how they may relate to different neural measures of speech 953 

processing.   954 

 955 

4.2 Higher-level speech feature tracking as an index of speech in noise perception difficulties 956 
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 957 

A key reason for our choice to study responses to lexical and semantic features is their 958 

potentially greater sensitivity to SIN perception difficulties, compared to responses driven by 959 

lower-level features such as the speech envelope. Specifically, because dissimilarity and 960 

surprisal (but not audibility) depend on preceding lexical and semantic context, in order for 961 

language processing mechanisms to accurately track them, each word within the sequence 962 

needs to be recognized and integrated with the preceding context. Lower-level SIN processing 963 

impairments may thus disproportionately impact tracking of these features. This is because 964 

missing a given word may potentially distort neural computations of surprisal and lexical 965 

predictions for a large number of subsequent words. This distortion could result in a mismatch 966 

between the objectively computed sequences of these features (used in the model) and their 967 

internal estimates.  968 

Dissimilarity, in particular, depends on local word context (limited to one sentence, in 969 

our model). Misperception of individual words may thus greatly distort the internal estimates 970 

of the semantic relationships between words within this short-term context, leading to poor 971 

correspondence with the objectively computed dissimilarity values. Spectrally degraded speech 972 

has previously been shown to elicit weaker N400 responses, and a reduced difference in N400 973 

between sentences with high and low cloze probabilities (Aydelott et al., 2006; Obleser and 974 

Kotz, 2011; Carey et al., 2014). Similarly, our results showed weak model contributions of 975 

dissimilarity with N400 responses essentially absent in the posterior ROI, consistent with the 976 

possibility that challenging listening scenarios may indeed disrupt representations related to 977 

relationships between words in a local context. Notably, however, we did not observe a reliable 978 

association between individual differences in the tracking of this feature, or the magnitude of 979 

N400, and performance on the comprehension task, the associated confidence measures, or 980 

the SSQm. As such, the magnitude of dissimilarity tracking, or the associated TRFs, may not 981 

actually reflect the degree of SIN perception difficulties, as we hypothesized it would. Thus, it is 982 

possible that weak tracking of dissimilarity in our study may reflect that dissimilarity, as 983 

computed here, is a relatively unimportant feature for characterizing cortical speech 984 

processing. Note that although our results appear to be at odds with Broderick et al. (2018), 985 

who demonstrated robust dissimilarity-related N400 responses for both clean and two-talker 986 

speech, that study used dissimilarity as the sole feature. It is, therefore, possible that their 987 

estimated TRFs may have captured contributions from other features time-locked to word 988 

onsets (e.g., ones related to lexical and syntactic processing). Indeed, in a recent reanalysis of 989 

cocktail party data from Broderick et al. (2018), Dijkstra et al. (2020) showed that replacing 990 

dissimilarity values in a regressor with unit-amplitude impulses leads to estimation of 991 

essentially identical TRFs to those obtained with the impulses scaled by dissimilarity features.  992 

This insensitivity to impulse scaling calls into question the extent to which said TRFs reflect 993 

dissimilarity-related processing. Comparisons of single-feature TRFs derived from our data using 994 

word onset and dissimilarity regressors (analyses not shown here) mirrored these observations, 995 

suggesting that the utility of dissimilarity in explaining EEG responses to continuous speech may 996 

be limited.   997 
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In contrast to dissimilarity, our observation of robust model contributions and posterior 998 

N400 responses for surprisal suggests that this feature may be relatively robust to challenging 999 

listening scenarios. This may be the case because surprisal, as defined in the present study, 1000 

reflects predictability of each word given a multi-sentence preceding context (vs. single-1001 

sentence context for dissimilarity), potentially making misperception of individual words have 1002 

relatively low impact on lexical predictions. In other words, failure to recognize individual words 1003 

may have a relatively small impact on the internal predictions, as these may be highly 1004 

constrained in natural speech by the successfully identified words within the longer-term 1005 

context. Admittedly, the apparent robustness of surprisal to adverse listening conditions may 1006 

be specific to longer narratives where long-term semantic dependencies exist, such as 1007 

audiobooks used in our study. In contrast to dissimilarity, we did observe weak trends 1008 

suggesting an association between the amplitude of the surprisal TRF in the N400 latency 1009 

range, and the performance on the comprehension questions. As such, it is possible that 1010 

surprisal responses may indeed reflect the extent of SIN perception difficulties. However, 1011 

because these trends were not statistically robust to multiple-comparisons correction, and 1012 

because similar trends were not observed for SSQm, it remains unclear if this neuro-behavioral 1013 

association is reliable. A replication study with a larger sample size, improved EEG denoising 1014 

algorithms, and/or more sensitive behavioral measures may be needed to further explore this 1015 

link.  1016 

It is notable that the correlations between SSQm or task performance and feature-1017 

specific model contributions were overall relatively weak in this study. Although this implies 1018 

that none of the features utilized in our study can on their own predict the degree of SIN 1019 

perception difficulties, it is possible that such deficits may be better characterized in terms of a 1020 

multi-dimensional pattern of feature-specific neural responses. In other words, it may be the 1021 

case that in order to predict the extent of SIN perception difficulties, a combination of neural 1022 

measures across multiple lower- and higher-level speech features needs to be taken into 1023 

account. Along these lines, Lesenfants et al. (2019) showed that speech reception thresholds 1024 

can be predicted from EEG responses to speech more accurately using a model that contains 1025 

both spectrogram and phonetic features, compared to models containing only one of the 1026 

features. Furthermore, because SIN perception difficulties can have different underlying 1027 

etiologies, with different relative contributions from peripheral damage and cognitive factors, it 1028 

may be the case that distinct patterns of feature-specific responses characterize different 1029 

underlying causes of SIN deficits.  1030 

 1031 

4.3 Behavioral correlates of self-reported SIN difficulties 1032 

 1033 

Our data revealed a trend towards a negative association between SSQm and the overall model 1034 

goodness-of-fit for attended speech. This is not surprising, as higher SSQm scores reflect greater 1035 

subjective difficulty with SIN perception, which would be expected to be related to poorer 1036 

tracking of attended speech in the presence of competing speech. However, we found no 1037 

correlation between SSQm and performance on the comprehension task (r = -0.17, p = 0.29), 1038 
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suggesting that even participants with potentially more deteriorated representations of 1039 

attended speech had sufficient fidelity of speech representations to achieve high task 1040 

performance. The lack of a relationship between subjective SIN perception difficulties and 1041 

performance is unintuitive, but mirrors similar results showing only a weak relationship 1042 

between subjective and objective measures of SIN difficulties (Phatak et al., 2018; Smith et al., 1043 

2019). 1044 

While statistical associations between subjective and objective measures of speech 1045 

perception have generally been poor in past work, it is possible that these outcomes are a 1046 

result of insufficiently sensitive methods for measuring speech perception. Specifically, typically 1047 

used methods for objectively measuring speech perception involve presentations of isolated 1048 

sentences, and having participants repeat them back, usually without time constraints (i.e., 1049 

allowing participants to deliberate and piece together their percept). While these measures are 1050 

simple and effective in measuring speech perception deficits in populations with moderate and 1051 

severe hearing loss (e.g., Phatak et al., 2018), the external validity of these measures may be 1052 

limited at best, as they do not reflect real-world listening scenarios. Specifically, real-world 1053 

spoken communication generally requires real-time comprehension of complex, multi-sentence 1054 

expressions embedded in noisy and reverberant backgrounds, in order to allow for continuous 1055 

flow of interaction. Unlike the commonly used speech understanding tasks, these realistic 1056 

scenarios allow little time for deliberation about individual words, as new information is 1057 

continuous, creating the possibility of falling behind if speech processing is impaired or slowed. 1058 

Indeed, Xia et al. (2017) demonstrated marked differences in performance between tasks 1059 

involving simple word identification and answering comprehension questions about the 1060 

content of narrative stories, with the latter showing a weaker benefit from hearing aids. This 1061 

highlights the possibility that traditional speech recognition tasks may indeed be missing 1062 

important, behaviorally relevant aspects of speech perception.  1063 

In the present study, a continuous multi-talker design with a behavioral task focused on 1064 

assessing comprehension was selected in an attempt to mimic some aspects of real-world 1065 

speech perception scenarios. Nevertheless, there were important differences that may have 1066 

contributed to our failure to detect a relationship between subjective SIN perception difficulty 1067 

(reflected in SSQm) and behavioral performance. First, although we utilized co-located target 1068 

and distractor speakers, which are generally more challenging to parse out than spatially-1069 

separated speakers (Marrone et al., 2008; Kidd et al., 2010), their fixed location, predictable 1070 

temporal characteristics (e.g., lack of sudden offsets and onsets in speaking), and relatively 1071 

monotone speaking styles likely facilitated participants’ ability to suppress unwanted 1072 

processing of the ignored speaker. In contrast, realistic conversational settings such as 1073 

restaurants or bars generally contain distractor signals that vary less predictably in location, 1074 

intensity, emotional content, and other characteristics, likely contributing to greater distraction 1075 

and informational masking. It is possible that suppression of these types of distractor 1076 

information becomes impaired with age due to deterioration of attentional and other cognitive 1077 

resources. Second, although we attempted to quantify comprehension, as opposed to mere 1078 

word identification, of the content spoken by the target speaker via multiple-choice questions, 1079 
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it is possible that the implementation of this task lacked sensitivity to detect speech 1080 

comprehension deficits. Specifically, the fact that the target story spanned many minutes may 1081 

have allowed the participants to utilize much longer semantic context to aid the interpretation 1082 

of incoming information, compared to real-world interactions where topics often change more 1083 

rapidly. This was compounded by the fact that, for practical purposes, the questions were 1084 

framed in a Yes/No format, only requiring participants to identify the more likely of the two 1085 

options, rather than to demonstrate their own understanding of the story. While the main 1086 

purpose of the comprehension questions was to verify that participants followed the task 1087 

instructions, future work should take steps towards optimizing behavioral measures of 1088 

comprehension. For example, questions carefully calibrated to require roughly constant reading 1089 

time could be used to measure reaction times in addition to mere percent correct measures, 1090 

possibly revealing significant response delays in people with self-reported SIN difficulties.  1091 

 1092 

4.4 Limitations 1093 

 1094 

Although our work provides evidence of age-related differences in cortical tracking of word-1095 

level features, a notable limitation of our method is that it does not establish the source of this 1096 

difference. Specifically, it is unclear from our data if the distinct patterns of feature-tracking 1097 

were a result of higher-order linguistic mechanisms receiving inputs with differing fidelities 1098 

from lower-level processes, or they reflected age-related changes in the higher-order 1099 

mechanisms themselves, or some combination of the two. Furthermore, differential 1100 

engagement in cognitive resources (e.g., due to differential effort) may also have contributed to 1101 

the observed differences, even in the absence of actual changes in the underlying mechanisms. 1102 

Thus, an important goal for future work is to characterize speech representations more 1103 

thoroughly at multiple levels of the processing hierarchy in order to elucidate the mechanisms 1104 

implicated in the differences in speech processing. Furthermore, the measurement of speech 1105 

representations at multiple stages of the language processing hierarchy may be critical for 1106 

explaining individual differences in speech perception performance, and subjective measures 1107 

such as the SSQm. 1108 

The use of artificial neural networks (ANNs) to extract abstract features related to lexical 1109 

and semantic content of speech has become increasingly common in studies of language 1110 

processing (Huth et al., 2016; Broderick et al., 2018; Weissbart et al., 2019; Donhauser and 1111 

Baillet, 2020). While powerful in characterizing brain responses to speech, an important 1112 

limitation in the use of these features is that it can be difficult to interpret what aspects of 1113 

language they actually capture. Specifically, ANNs are usually trained on a task such as text 1114 

prediction on the basis of preceding context, and as such, ANNs may utilize any number of 1115 

statistical regularities in the training corpus in order to optimize their performance. Thus, 1116 

depending on the ANN architecture, aspects of language including the syntactic structure, 1117 

lexical frequency, semantic relationships, and others may all contribute to the performance of 1118 

ANNs.  Without knowing the language aspects learned by ANNs, it is difficult, and may be even 1119 

impossible, to parse out the relative contributions of the different variables. Consequently, 1120 
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when cortical responses are found to track these features, as is the case in the present study, it 1121 

may remain unclear what linguistic processes underlie this tracking. Thus, improving the 1122 

interpretability of neural analyses that utilize complex natural language models remains an 1123 

important challenge for future work. 1124 

 1125 

5 Conclusions 1126 

 1127 

The present study extends upon the existing body of work demonstrating the plausibility of 1128 

measuring cortical tracking of high-level features related to speech meaning and predictability. 1129 

The results show evidence of age-related amplification in tracking of these features in 1130 

competing speech streams. Moreover, our exploratory analyses showed trends of correlations 1131 

between these measures and behavioral measures including comprehension performance and 1132 

subjective SIN perception difficulty scores, indicating their potential behavioral relevance. 1133 

Taken together, our work demonstrates the utility of modeling cortical responses to multi-1134 

talker speech using complex, word-level features and the potential for their use to study 1135 

changes in speech processing due to aging and hearing loss. 1136 
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significance: * p < 0.05, ** p < 0.01, *** p < 0.001  1415 

 1416 

 
df F ηp

2  

Attention 1, 37 34.3*** 
0.48 

Feature 2, 74 18.5*** 
0.33 

ROI 1, 37 8.9** 
0.19 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423513
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aging Effects on Speech Tracking 
 

44 
 

Age 1, 37 7.92** 
0.18 

Attention × Age 1, 37 7.6** 
0.17 

Feature × Age 2, 74 4.1* 
0.10 

ROI × Age 1, 37 7.2* 
0.16 

Attention × Feature 1.8, 66.6 8.5** 
0.19 

Attention × ROI 1, 37 2 
0.05 

Feature × ROI 1.7, 62.2 3.2 
0.08 

Attention × Feature × Age 2, 74 2 
0.05 

Attention × ROI × Age 1, 37 1.6 
0.04 

Feature × ROI × Age 2, 74 0.7 
0.02 

Attention × Feature × ROI 2, 74 9.7*** 
0.21 

Attention × Feature × ROI × Age 2, 74 2.4 
0.06 
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