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SUMMARY (150-word max) 25 
High-profile studies claim to assess mental states across individuals using multi-voxel decoders of brain 26 
activity. The fixed, fine-grained, multi-voxel patterns in these “optimized” decoders are purportedly necessary 27 
for discriminating between, and accurately identifying, mental states. Here, we present compelling evidence 28 
that the efficacy of these decoders is overstated. Across a variety of tasks, decoder patterns were not necessary. 29 
Not only were “optimized decoders” spatially imprecise and 90% redundant, but they also performed similarly 30 
to simpler decoders, built from average brain activity. We distinguish decoder performance when used for 31 
discriminating between, in contrast to identifying, mental states, and show even when discrimination 32 
performance is strong, identification can be poor. Using similarity rules, we derived novel and intuitive 33 
discriminability metrics that capture 95% and 68% of discrimination performance within- and across-subjects, 34 
respectively. These findings demonstrate that current across-subject decoders remain inadequate for real-life 35 
decision making. 36 
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INTRODUCTION 38 
A whole body of neuroimaging literature—largely published in highly influential journals—either 39 

explicitly claim, or strongly imply, that thinking is no longer private. By “optimizing” functional magnetic 40 
resonance imaging (fMRI) brain scan results, these studies profess to universally decode mental states: feelings, 41 
thoughts, decisions, intentions, and behaviors 1-3. Thus, neuroscience seems to have broken the code of mental states, 42 
in turn proclaiming the ability to “read the brain” of every human being. Here, we systematically examine the 43 
validity of such claims.  44 

Decodability—how discernable a mental state is, given a brain activity pattern—is predicated both on the 45 
brain activity properties of the task being discerned as well as the goal of the decoding. Intuitively, decodability is 46 
analogous to discerning a breed of dog; breeds that look more similar will be harder to distinguish. The literature 47 
claims “optimized” decoders can (1) discriminate between mental states, (2) identify mental states, and (3) capture 48 
additional state-related measures (stimulus or perception intensities). These goals can be more tangibly elucidated 49 
through the dog breed metaphor: Consider a pug (a decodee) and a French Bulldog (a comparator)—two breeds that 50 
may look alike. If one is familiar with the unique physical features of a pug—small stature, short snout, wrinkled 51 
face, folded ears, curled tail, etc.—then such features can serve as the decoder for a pug. This decoder can then be 52 
used to perform the three decoding tasks. Specifically, discrimination is akin to deciding which dog is a pug when 53 
the pug and French Bulldog are next to one another. Conversely, identification is akin to saying whether a single dog 54 
is a pug when there are no other dogs around. On the other hand, capturing a continuous measure, such as perceived 55 
intensity of a state, is much like trying to judge a dog’s age. While discrimination and capturing continuous 56 
measures have been discussed and illustrated for various mental states, less attention has been given to identify a 57 
certain mental state from a given pattern of brain activity.  58 

The pattern of mental state decoders arises from weights assigned to its constituent voxels; for this reason, 59 
we call them fixed-weight decoders. Voxel weights are derived in three stages. First, general linear models (GLM) 60 
generate a brain activity map (correlation between the activity in each voxel and the task). Second, GLM is used to 61 
contrast the activity maps from a task or state of interest (a decodee; e.g., pain) to one of no interest (a comparator; 62 
e.g., touch), and its results are thresholded (a contrast map). Finally, “machine learning” models are used to tune the 63 
weights in the contrast map to optimize its performance 4,5; the result is a relatively sparse, fixed-weight decoder 64 
with a fine-grained pattern (an “optimized” decoder). It is tacitly assumed that each stage improves performance of 65 
the decoder by uncovering better distributed patterns of neural ensembles related to the mental state, and as a result, 66 
detailed spatial patterns confer predictive value, as explicitly stated, “the pattern of activation, rather than the overall 67 
level of activation of a region, is the critical agent of discrimination” 5. This concept is now expounded for diverse 68 
topics across many labs 3,5-11.  69 

The concept that across-subject “optimized” decoders are able to capture mental states across different 70 
individuals violates basic neuroscientific principles. The technical and biological requirements of such decoders are 71 
quixotic, as they imply the existence of a fixed, exclusive, universal brain activation pattern for each and every 72 
mental state—a one-to-one correspondence between subjectivity and objective brain patterns. Such invariant brain-73 
to-mind models imply a common neuronal firing pattern across billions of neurons, which is unique for every mental 74 
state and shared across all humans. This invariance is purported in spite of large inter-subject variability in gross 75 
brain anatomy, as well as of differences in genetics, lifestyles, lifetime experiences, and associated memory traces 76 
12,13; all of which would carve the individualized brain activity of subjectivity (for a discussion on the topic from the 77 
viewpoint of fMRI analysis, see 14). If a trivial, fixed relationship exists between subjectivity and brain activity, such 78 
“optimized” decoders also raise strong ethical and legal concerns regarding their ability to invade mental privacy 15, 79 
and also would be incongruent with commonly accepted philosophical constructs of subjectivity 16.  80 

Our principal aim was to evaluate the performance and necessity of “optimized” decoders relative to more 81 
parsimonious approaches (e.g., GLM maps). After rigorously evaluating the performance of “optimized” decoders, 82 
we sought to understand fixed-weight decoders from a more general perspective: What determines and constrains 83 
decodability? 84 

 85 
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RESULTS 86 
Overview 87 
Our investigation began with three published pain decoders. Both qualitatively and quantitatively, these decoders 88 
were markedly different from one another (Fig 1). Despite these differences, on average, their ability to discriminate 89 
pain from non-pain states, across four published studies (N=113) 4,5,8,17, was nearly identical. To understand how 90 
disparate decoders could perform similarly, we parametrically perturbed each of the decoders and tested its 91 
performance. Perturbations consisted of 1) searching for brain locations privileged for decoding pain; 2) randomly 92 
using subsets of voxels from select regions; 3) using subsets of voxels based on their weights; and 4) spatially 93 
smoothing (and thereby modifying voxel weights). The analysis demonstrated that the tested decoders were ~90% 94 
redundant in space and, remarkably, that their weights were superfluous for successful discrimination (Fig 2). 95 
Similar results were obtained for stimulus-perception mapping (Fig 3). Overall, we observed that sparse, location-96 
only based decoders were sufficient for discriminating pain.  97 

To further generalize this finding, we examined decoding properties for cognitive domains other than pain, 98 
where dedicated brain tissue is better established; namely, a reading task and a listening task (two publicly available 99 
datasets, n=14 and n=213 subjects, respectively) 18,19. We compared decoding performance between GLM and 100 
“optimized” decoders, before and after constraining to location-only. Our results closely resembled those for 101 
decoding pain (Fig 4).  102 

The brain imaging literature commonly accepts that if a decoder can adequately discriminate between a 103 
decodee and a comparator, then it is also useful for identifying the mental state associated with the decodee. We 104 
tested this concept for both pain and listening tasks. Despite discrimination being possible and robust to 105 
perturbations, all decoders performed poorly and relatively similarly when trying to identify the decodee mental state 106 
(Fig 5). 107 
 The results of our perturbation analyses led us to explore the limits of decoding. If perturbed and simplified 108 
decoders can perform similarly to the original “optimized” decoders, can we further simplify decoders and also 109 
quantitate decodability? To address the former question, we built pain decoders using GLM maps for noxious 110 
stimuli. These GLM decoders performed similarly to “optimized” decoders, with within-study performance being 111 
slightly superior to across-study performance (Fig 6a,b). We extended these findings to quantify within- and across-112 
subject decoding using four different tasks, repeated up to 12 times per subject in 14 subjects 19. This study design 113 
provides the opportunity to calculate discriminability as a function of similarity measures from the decoder, 114 
decodee, and comparator, for both within- and across-subject decoding. Although performance was not consistently 115 
better for within-subject discrimination, variation in performance could be largely explained by within-task 116 
homogeneity and between-task heterogeneity, allowing us to propose decoding rules (Fig 6c,d), which worked 117 
better for explaining within- compared to between-subject discriminability. These results present convergent 118 
evidence that 1) discrimination decoding is limited by GLM results, where sparse location-only maps contain 119 
sufficient information; 2) identification is harder than discrimination; 3) similarity measures almost fully account for 120 
the variance of within-subject discrimination decodability, which degrades in across-subject discrimination.  121 
 122 
Exploring Established Decoders 123 
We started by assessing “optimized” decoders for pain using the Neurologic Pain Signature (NPS, constructed using 124 
LASSO-PCR 5) and Pain-Preferring Voxels (pPV, constructed using SVM 4). In addition, we used a meta-contrast 125 
map as an alternative decoder, Pain-Neurosynth (pNsy), which is the meta-analytic association test result for the 126 
term “pain”. This contrast map is based on 516 studies containing the word “pain” in the abstract, and contrasting 127 
them with the remaining 13,855 neuroimaging studies (using the public tool Neurosynth 20; see Supplementary 128 
Methods). We first compared the spatial and weight properties of these three decoders. Although all decoders cover 129 
approximately the same brain regions (Fig 1A), the distributions of their voxel weights are distinct (Fig S1), the 130 
numbers of their constituent voxels are vastly different, their pairwise correlations are weak, and their spatial 131 
overlaps of voxels are relatively small (Fig 1, B-D).  132 
 133 
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 134 
Figure 1. Spatial properties for three decoders, which are supposed to distinguish pain from other mental states, are distinct from each 135 
other. (A) Location and voxel-wise weight patterns of the three pain decoders (respectively abbreviated NPS, pPV, and pNsy). (B) Weight 136 
distributions of all three decoders are distinct. NPS weight values are distributed around zero; pPV has no negative weights; pNsy has only a few 137 
negative weights. (C) Pairwise correlations between weights of the three decoders. Lines depict total least squares regression fits. All three 138 
correlations are weak (rNPS-pPV = 0.16; rpNsy-NPS = 0.30; rpNsy-pPV = 0.18). (D) Euler diagram depicts relative size of each of, and spatial overlap 139 
between, the three decoders.  140 
 141 
 142 
Discrimination Performance for Pain is Similar Between Diverse Decoders  143 
To enable decoding, we assessed the similarity between the decoder and decodee or comparator using the 144 
normalized dot product (NDP; +1 indicates total/maximal pattern similarity, 0 indicates orthogonal patterns, −1 145 
indicates anti-similarity). Discrimination was assessed using the area under the receiver operating characteristic 146 
curve (AUC) from the two distributions of NDPs. AUC is an indicator of discriminability since it can be interpreted 147 
as the probability of a randomly sampled decodee NDP being greater than a randomly sampled comparator NDP, 148 
implying a direct comparison. Conversely, identifiability was assessed using distributional overlap, with greater 149 
overlaps indicating poorer identifiability. Points contained within the area of overlap are equally likely to be in the 150 
decodee and comparator distributions, and thus, are not identifiable. Together, these metrics served as the basis for 151 
decoding performance throughout this study.  152 

We examined the performance of the three pain decoders for discriminating pain states from control tasks, 153 
and for capturing stimulus/perception properties, in 4 published studies from 3 labs (N=113 subjects). Despite 154 
marked spatial and weight distribution differences, average discrimination performance (meta-analysis, AUCs 155 
pooled across datasets and various comparators) were approximately equivalent (AUC ≈ 0.73 for all three; Fig 2A). 156 
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This equivalence is remarkable and informative: it implies that very different models may nonetheless yield similar 157 
average performance, suggesting that their detailed properties do not constrain decodability. Notwithstanding similar 158 
average performance, the decoders performed differently for particular datasets, indicating that decoding 159 
performance has a specificity component which can likely be explained by brain region-specific dependences.  160 
 161 
Pain Decoders Are Robust to Spatial Perturbations 162 
Search for Brain Locations Privileged for Decoding Pain 163 
To test whether there are privileged locations for decoding pain, we created clusters of voxels using the common 164 
space across the three pain decoders and tested discrimination performance for all three decoders across the four 165 
tasks (Fig S2). For any given study, multiple clusters from multiple decoders performed equally well and matched 166 
the performance of the full decoder. This result suggests that no single cluster was consistently more specific for 167 
decoding pain than other clusters.   168 
 169 
Spatial Smoothing and Voxel Weights 170 
To investigate whether discrimination performance relies on the fixed-weight nature of the voxel patterns, we 171 
measured performance when these patterns were degraded (1) by spatial smoothing and (2) by discarding their 172 
weights. Remarkably, decoding performance was minimally affected by either procedure (Fig 2B, Figs. S3-S6). 173 
This result clearly demonstrates that the fine-grained pattern of weights in “optimal” decoders added no value to 174 
performance (with a few exceptions, Fig S3); rather, voxel locations alone were sufficient for discrimination. 175 
 176 
Number of Voxels  177 
Given the three decoders’ structural differences and yet similar performances, it can be virtually ruled out that all 178 
voxels composing these decoders are necessary to achieve satisfactory discrimination. To characterize the minimum 179 
number of voxels necessary to decode the pain state, we created sets of new decoders by randomly selecting subsets 180 
of voxels from each decoder. Surprisingly, we attained the original decoding performance when only using a 181 
random 10% of the total number of each decoder’s constituent voxels (Fig 2C). We replicated this finding on all 182 
datasets and for all three decoders, both in their original form and when only using their signed voxel locations 183 
(Figs. S4–S6). We further explored the relationship between voxel weights and performance by first binning voxels 184 
by their absolute weights and then constructing a set of decoders using the voxels in each bin (see Fig S7). Again, 185 
we observed only a minimal degradation of performance with decreasing voxel weights for all decoder-dataset 186 
combinations (with some degradation seen mainly for unfiltered NPS at highest binning, Figs. S8–S9). Together, 187 
these results demonstrate that the information within the set of voxels present in the decoder, decodee, and relative 188 
to the comparators was highly redundant and essentially independent of the decoders’ weights.   189 
 190 
Fixed, Multi-voxel Patterns Confer No Added Value to Stimulus/Perception Intensity Decoding 191 
Wager, et al. 5 used an “optimized” decoder, NPS, not only to discern the dichotomous presence of pain, but also to 192 
claim that NPS can capture stimulus intensity and perceptual ratings from brain activity. To this end, we tested the 193 
ability of the three pain decoders to capture stimulus and perception properties. We used data from a study where 194 
nonpainful and painful stimulus, perceptual responses, and their associated brain activity were available 5. All three 195 
decoders (NPS, pPV, and pNsy), whether unfiltered or infinitely filtered (location-only), performed similarly for 196 
capturing perceived pain ratings (Fig 3A,B), for reflecting the intensity of the thermal stimulus (Fig 3C,D), and for 197 
discriminating between pairs of painful stimuli (Fig 3E,F). The similar performance between unfiltered and 198 
location-only decoders demonstrates that response trends arise as a consequence of the intensity changes of the 199 
decodee rather than the weight distribution of the decoder. Moreover, the discordant performance between NDP 200 
(nonmonotonic, Fig 3A, C, and E) and dot product (almost monotonic, Fig 3B, D, and F) suggests that previously 201 
reported results 5 were primarily due to an increase in the magnitude of brain activity in specific regions, but in a 202 
way that becomes less similar to the decoder. Yet, both NDP and dot product were robust to the removal of voxel 203 
weights. These results again refute superiority of “optimal” decoders above that of a meta-contrast map decoder, 204 
which was derived from GLM results. This reinforces the notion that location-only performs sufficiently, and that 205 
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useful information is provided only by the decodee activity within the locations where a decoder has non-zero 206 
weights. 207 
 208 
 209 

 210 
Figure 2. Discrimination performance is similar for all three pain decoders and is a function of voxel locations, not weighted patterns. (A) 211 
Meta-analysis of across-subject discrimination performance (AUC, chance = 0.5) for decoding pain from non-pain mental states for each of the 212 
three decoders, tested only for datasets independent of decoder derivation. On average, all decoders perform similarly. Square sizes indicate 213 
meta-analytic weight. (B-C) Across-subject decoding of pain from touch. (B) performance does not change when decoder pattern weights are 214 
distorted with increasing-size spatial smoothing. Sign = sign of voxel weights with 0 filtering, rendering decoder voxel values to only 0, −1, +1; 215 
filtering σ = 0–20 mm; ∞ = location-only. (C) Decoder performance depends only on a very small number of voxels, indicating information 216 
redundancy. The number of voxels constituting each decoder was systematically increased (from 10 voxels to the full decoder) and performance 217 
assessed for random samples of each size. 10% of each full decoder’s voxel count (black ticks) discriminates pain from touch equivalently to the 218 
full decoders. Shades are standard deviations for spatial uncertainty, ignoring across-subject uncertainty. (D) Decoders were constructed using 219 
10% of the voxels in the full decoders, with voxels selected in order of their absolute magnitude (see Fig S7). The voxels with the highest 220 
absolute weights do not necessarily discriminate better than voxels with lower magnitudes, with the exception of pNsy in this dataset. (E) 221 
Selecting voxels based on their anatomical locations revealed that single regions (e.g., L. insula/parietal lobe) can discriminate similarly to the 222 
full decoders. Bars and shades are the 95% confidence intervals [CI] of means, except in C, where shades indicate standard deviations associated 223 
with permutation variability. In D and E, colored bars indicate the AUC of the full decoders. 224 
  225 

0.50 0.75 1.00

NPS

Dataset 4

Dataset 3

Dataset 2

Dataset 1

pPV

Dataset 4

Dataset 2

Dataset 1

pNsy

Dataset 4

Dataset 3

Dataset 2

Dataset 1

AUC

A

sign 0 10 20 ¥
0.4

0.5

0.6

0.7

0.8

Filtering (mm)

AU
C

B

0.4

0.5

0.6

0.7

0.8

0 5000 10000
Number of voxels

AU
C

C

0.4

0.5

0.6

0.7

0.8

0 25 50 75 100
Percent of decoder

AU
C

D

0.4

0.6

0.8

Inf
. b

rai
ns

tem

Sup
. b

rai
ns

tem

R. in
su

la/
pa

rie
tal

 lo
be

L. 
ins

ula
/pa

rie
tal

 lo
be

L. 
tha

lam
us

R. th
ala

mus
ACC

Cluster

AU
C

E

NPS pPV pNsy

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423495doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 226 
Figure 3. All decoders perform stimulus-perception mapping similarly, both with and without voxel weights. All three pain 227 
decoders perform equivalently, when location-only decoders are compared to the unfiltered-decoders, in mapping pain and heat perception 228 
ratings (A–B), mapping painful stimuli (C–D), and discriminating between pairs of painful stimuli (E–F). Nonmonotonic relationships indicate 229 
that the decoders cannot reliably predict subjective ratings or stimulus intensity. Vertical lines in A and B indicate the transition from heat (< 100) 230 
to pain (> 100). The dot products in B, D, and F were z-scored within each decoder for presentation purposes.  231 
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Cognitive and Auditory Decoders Are Similarly Highly Redundant 232 
So far, we have shown that popular “optimized” pain decoders, as well as a meta-contrast map used as a decoder, are 233 
able to maintain their full performance after being perturbed and degraded, indicating that much of the information 234 
contained within them is superfluous. One worries that the findings may be specific to the modality studied, as pain 235 
and nociception are sensory systems for which no dedicated neocortical tissue has been uncovered in the cortex 21. 236 
As a result, there is long-standing debate as to specific or distributed encoding of pain perception (e.g., 22; cf. 23). To 237 
broaden our findings, we examined whether the uncovered principles apply to decoding for audition and language. 238 
Primary and secondary auditory cortex 24,25 are in close proximity to the somatosensory regions examined above for 239 
pain, while language representation with dedicated and functionally specific tissue is unique to humans 26. We used 240 
data for language 19 and auditory 18 studies to construct decoders using task-specific contrast maps, SVM, LASSO-241 
PCR, and Gaussian processes (our contrast maps closely resemble those reported in the original studies, Fig S10–242 
S11; see Supplementary Methods). Our findings are entirely concordant with those for the pain decoders, in that all 243 
of the constructed decoders show similar performance, which was maintained after extreme perturbations (e.g., sign 244 
or location-only) (Fig 4), with only a few exceptions (see Fig 4 comments). These findings generalize and provide 245 
compelling support for our main result: “optimized” decoders are highly redundant, and decoding primarily exploits 246 
information contained within voxel locations, independent of voxel weights. Moreover, task-specific GLM contrast 247 
maps are sufficient, implying that the meta-contrast maps are also not necessary.  248 
 249 
 250 

 251 
Figure 4. Different implementations of cognitive and auditory decoders perform similarly regarding discrimination 252 
performance and are robust to perturbations.  253 
We constructed decoders using general linear modeling (GLM), least absolute shrinkage and selection operating with principal 254 
components regression (LASSO-PCR), support vector machines (SVM), and Gaussian processes to decode (top) cognitive 19 and 255 
(bottom) auditory tasks 18. Much like the pain decoders, these decoders performed similarly and better than chance (chance = 0.5 256 
in both), and were relatively robust to perturbations. Just 10% of each decoder was enough to capture its full performance, and 257 
even extreme perturbations, such as 10% of the binary decoder or 10% of signed decoder, had little effect on performance. Error 258 
bars are the 95% confidence intervals of the AUCs. Nota bene, in the auditory task, discrimination performance is better with 259 
SVM and Gaussian Process than with GLM or LASSO-PCR. We suspect these differences are a consequence of specific 260 
instantiations of overfitting. We observed similar decoder-dependent performance variations for the pain decoders as well (see 261 
Fig 2A); yet, in further analyses none showed superiority over the others. In the auditory task, and for both SVM and Gaussian 262 
Process decoders, we also observed appreciable performance decrement for location-only and for 10% location-only decoders. 263 
This too was observed in the pain decoders. Like with the pain decoders, here, we also observed that sign-only decoders and 10% 264 
sign-only decoders performed similarly to the full decoders, again suggesting that negative weights at large scales can influence 265 
decoder performance.   266 
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Identification Remains A Challenge 268 
The ability of “optimized” decoders to identify mental states is repeatedly asserted in the literature 3,5-11, but 269 

to our knowledge, remains untested. Specifically, the sensitivity and specificity reported in previous works are 270 
estimated by changing decoder response thresholds for different pain stimuli 5. If “optimized” decoders are used 271 
with the objective of identification, then they should be able to pinpoint the specific mental state solely from the 272 
similarity between the decoder and decodee, and, crucially, in the absence of a comparator and without such a 273 
threshold tuning. In other words, identification should be based on a single observation and what we (or the decoder) 274 
“know(s)” about the world. Therefore, instead of AUC, which implies a comparator, we tested identifiability by 275 
calculating distributional overlap between the states of interest and no interest. Distributional overlap provides the 276 
range of equal probability of belonging to the state of interest and state or states of no interest; here, equiprobability 277 
implies unidentifiability. In addition, we were interested in assessing performance at the individual level. To do so, 278 
we calculated the probability of a subject being in a specific mental state given that subject’s brain activity map. We 279 
thus calculated distributional overlaps and state probabilities to assess the ability of decoders to identify mental 280 
states.  281 

Identification of pain states was similarly poor across the three pain decoders explored: overlaps between 282 
states of interest and states of no interest were high (≥ 68%) and the probabilities of being in pain (when actually in 283 
pain) were low (median posterior probability ≤ 0.5) (Fig 5a–c). These results paint a markedly different picture than 284 
the discrimination results, which simply show that NDPs tend to be greater when individuals are in pain; evidently, 285 
adequate discrimination does not translate to identification. We built upon these findings by using the task-specific 286 
contrast map decoder to decode audition of vocal versus non-vocal sounds 18. While the performance of the voice 287 
decoder was better than that of the pain decoders (overlap = 54%), it was still inadequate, as over half of the data 288 
was unidentifiable (Fig 5d). The slight superiority of the voice decoder relative to the pain decoders may have 289 
several explanations, including the homogeneity of the training and test sets used for the voice data, or simply that 290 
some tasks are easier to identify than others. In any case, regardless of the mental state tested, identification 291 
remained unreliable and thus is currently not feasible with fixed-weight decoders. 292 
 293 

 294 
Figure 5. Identification of mental states shows poor predictability. Three pain decoders (NPS, pPV, and pNsy in A–C) and a voice decoder 295 
(D) were used to test identification for mental states. x-axes are the normalized dot products between decoder and decodee, while y-axes are the 296 
posterior probability of being in pain (A–C) or listening to voices (D). Distributions of normalized dot products and posterior probabilities 297 
include both the decodee (light grey & colors) and comparator (dark grey) tasks. (A–C) Normalized dot products of the pain condition span the 298 
entire distribution of comparator normalized dot products, and as a result, pain is not strongly isolated from the comparator conditions. 299 
Quantitatively, this is evidenced by the strong decodee-comparator overlap for (A) NPS (overlap (95%CI) = 68% (59–82)), (B) pPV (79% (73–300 
90)), and (C) pNsy (73% (66–84)). This is reflected in the Bayesian model, which shows similar probabilities of being in pain for both pain and 301 
pain-free conditions (each dot/line). To this end, all three decoders perform similarly, and cannot unequivocally identify pain, as indicated by their 302 
low sensitivity/specificity (when specificity/sensitivity=0.95) of (NPS, A) 0.19/0.25, (pPV, B) 0.25/0.17, and (pNsy, C) 0.17/0.27. (D) In contrast 303 
to pain, a contrast map decoder for identifying when a participant is listening to human voices separates more clearly the normalized dot products 304 
of the decodee (red) from comparator (dark grey), but still performs poorly (overlap = 54% (46–66)). This separation is reflected in the Bayesian 305 
model, which shows high probabilities when individuals are listening to human voices and lower probabilities when they are not. To identify the 306 
mental state of listening to voices based on NDP with a specificity of 0.95, one would have a sensitivity of 0.19. Conversely, to identify the same 307 
mental state with a sensitivity of 0.95, one would have a specificity of 0.48.  308 
 309 
 310 

NPS

0.00

0.25

0.50

0.75

1.00

0.0 0.1
Normalized dot product

P(
pa

in
 | 

N
D

P)

A
pPV

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2
Normalized dot product

P(
pa

in
 | 

N
D

P)

B
pNsy

0.00

0.25

0.50

0.75

1.00

−0.2 0.0 0.2 0.4
Normalized dot product

P(
pa

in
 | 

N
D

P)

C
Voice

0.00

0.25

0.50

0.75

1.00

−0.3 0.0 0.3
Normalized dot product

P(
vo

ic
e 

| N
D

P)
D

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423495doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423495
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Brain Activity Maps Are Sufficient for Discrimination 311 
The similarity in performance achieved by meta-contrast maps or task-specific contrast maps and “optimized” 312 
decoders prompted us to take another step back in the decoding derivation process. Given that pNsy is a composite 313 
of contrasts from many studies (i.e., a meta-contrast pain decoder) and its decoding performance was similar to 314 
“optimized” decoders (NPS and pPV), we assessed whether an even simpler construct—pain activity maps—was 315 
sufficient to decode the state of being in pain. In other words, if no performance is lost by using contrast maps, 316 
would task-derived GLM maps suffice as simpler but adequate decoders? Brain activity map decoders were created 317 
using the average brain activity for each study’s pain task. Each activity map decoder was then used to discriminate 318 
pain using the left-out brain activity maps of subjects both within and between studies (Fig 6A). Remarkably, these 319 
decoders performed comparably to the ones presented hitherto (NPS, pPV, and pNsy), with an average within-study 320 
AUC of 0.79 and between-study AUC of 0.69 (cf. ~0.73 for the fixed-weight decoders; Fig 6B). The lack of clear 321 
superiority of “optimized” decoders relative to a meta-contrast map, and even simple activity map decoders, casts 322 
serious doubt on the predictive and epistemological value of the more complex “optimized” decoders. These results 323 
also raise the salient question: If decoding can be approached in so many different ways, what actually determines 324 
decodability?  325 

While decoding is difficult, decodability itself is likely predictable, yet to our knowledge remains 326 
unexplored. To build upon our breed metaphor, some dogs exhibit features that largely overlap with other dogs, such 327 
as the stature, color, and flat-faced features of pugs and French Bulldogs. Similarly, the mental state of “being in 328 
pain” shares many features with other states; for example, unpleasantness, behavioral relevance, and saliency 27. 329 
Therefore, the primary challenge of decoding is to tease apart these overlapping features. For this reason, it seems 330 
logical that the similarity of activity maps within and between the decoder, decodee, and comparator would 331 
determine decoding performance. If the decoder is built from activity maps that are dissimilar, the resulting average 332 
map would have a low signal-to-noise ratio; if the decodees or comparators are dissimilar, then we can expect a 333 
greater variance in NDPs; and if the decodees and comparators are similar to one another, then they will have a lot 334 
of overlap and be difficult to tease apart. This logic implicates the neuroanatomical and physiological assumptions 335 
previously mentioned, as heterogeneity across individuals should decrease similarity, making the NDPs more 336 
variable and thus more difficult to discern. Using similarity metrics that reflect these relationships, we attempted to 337 
explain decodability. 338 

Until now, we have primarily focused on decoding across- rather than within-subjects. Intuitively, it is 339 
apparent that, for many of the reasons elaborated above, decoding mental states should be more successful within-340 
subjects compared to across-subjects, as has been formulated by others 28,29. However, no systematic analysis of this 341 
notion has been performed using fixed-weight decoders. Therefore, we investigated this question using data well-342 
suited for the question: fMRI data collected from 14 subjects who completed four cognitive tasks, each with 12 343 
replicates 19. These repetitions enabled the comparison of decoder performance within- and across-subjects. As 344 
expected, decoding performance is more precise (smaller variance) within-subject (Fig 6C), but, interestingly, not 345 
necessarily better (greater average AUC). We investigated whether the ratio of decodee to decodee-comparator 346 
similarity (or within:between) can be a possible natural metric of why some decoders are more efficacious than 347 
others. Higher performing decoders showed greater within:between ratios than lower performing decoders (Fig 6D). 348 
Similarly, decoder similarity—the average NDP of all pairwise combinations of a decoder’s constituent activity 349 
maps, a measure of reliability—could also explain much of the decoder performance, and in support of our previous 350 
conclusions, this relationship is largely unaffected by thresholding and binarizing the decoder (Fig S12). Further 351 
exploration showed that decodability, especially within-subject, is strongly predicated on these similarity metrics 352 
(Fig S13–S14; Table S1). Decodee similarity, together with decodee-comparator similarity, is strongly predictive of 353 
discriminability, accounting for up to 95% of the variance in AUCs. Our similarity metrics almost entirely explain 354 
within-subject decodability, but only about 68% of AUC variance in across-subject decoding. This result may speak 355 
to the assumptions violated by across-subject decoders, in that a similarity score across-subjects is less interpretable 356 
than one calculated within a single subject since variance (e.g., brain anatomy) may be converted to bias (making all 357 
brains fit the same template) during image preprocessing and registration. 358 
 359 
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 360 
Figure 6. Decoders constructed from activity maps perform similarly to pattern-based decoders, and are dependent on both decodee and 361 
comparator properties. (A) Performance of four activity map decoders, based on the across-subject averaging for pain tasks, to differentiate 362 
pain from six other mental states. (B) Among the activity map decoders, within study performance is slightly higher but extensively overlaps with 363 
across study performance. Meta-analytic estimates of performance for NPS, pPV, and pNsy are within 0.4 standard deviation from the average 364 
performance of both within and across study activity map decoders. (C-D) Properties of activity map decoders are examined within and across 365 
subjects as a function of a cognitive task 19. (C) Decoders (rows) are built from four cognitive tasks, tested on remaining three (columns), in a 366 
within subject and across subject design. Within subject performance is always more consistent (i.e. it has smaller variance) but not necessarily 367 
greater than across subject. For example, the within subject performance is always superior to across subject when using task 2 as the decoder. 368 
The inverse is true when task 2 is the comparator, implying strong task dependence. (D) Decoder performance linearly scales with the ratio of 369 
decodee similarity to decodee-comparator similarity (based on normalized dot product), for within- and across-subject comparisons. Because 370 
discriminability depends on this ratio of similarities, they can be viewed as rules for decoding. Each color in (D) represents a decodee-comparator 371 
pair of tasks 1-4 in (C); each point is a permuted sample; each colored line is the regression within a decodee-comparator pair; and the black line 372 
is the regression across decodee-comparator pairs. 373 
 374 
Discussion 375 
In this study, we asked what the determinants, and limits, of decoding mental states are. We primarily emphasized 376 
decoding pain, as this is the modality where the most emphatic claims have been made and where the “optimized” 377 
decoders seem to have become accepted as enabling “mind-reading” 3. For pain, audition, and language tasks, the 378 
locations of a small subset of GLM-derived voxels were sufficient for achieving a discrimination of AUC ≈ 75%, 379 
and a long list of machine learning tools could not consistently improve upon this performance. We also showed 380 
that, in contrast to discriminating between states, identification of a given perceptual state is much harder. For the 381 
first time, we advanced the concept of quantifying discriminability using a simple similarity metric, the NDP, with 382 
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which we provide models for within- and across-subject discrimination. The latter analyses indicated that 383 
discriminability depends not only on the decoder, but also on similarity between the decodee and comparator. 384 
Finally, we showed that, even in an example where within-subject discrimination was almost fully modeled with 385 
similarity properties, there was a considerable decrease in the variance of across-subject discrimination that could be 386 
explained. In doing so, we established limits of decodability based on the most popular linear models currently used 387 
in fMRI literature.  388 
 Limitations of across-subject decoding and reverse inference have been acknowledged by others. For 389 
example, the latest evidence shows that brain-behavioral phenotype associations seem to become reproducible only 390 
with sample sizes of N ⪆	2,000 30. Yet, the extent of these limitations has not previously quantified, nor has 391 
decodability been modeled. Multiple approaches have been initiated to overcome these limitations. The simplest is 392 
to constrain functional studies to within-subject investigations, thus bypassing the idiosyncrasies of anatomically 393 
aligned, group-averaged results, but this approach also obviates across-subject decoding. The approach has been 394 
used in various topics, including subject-specific localizers in vision 31 and language studies 32.  395 

Perhaps the most widespread method is the multivoxel pattern analysis (MVPA). MVPA looks for 396 
statistical evidence for information contained within groups of voxels (functional/anatomical regions of interest or 397 
searchlights) 33. MVPA has been successful in decoding diverse brain states from fMRI activity patterns; for 398 
example 4,34-40. MVPA typically uses subject-specific classifier models, and as a result, its accuracy drops when 399 
predicting other subjects’ responses 28,29,38. To extend MVPA results to across-subject applications, and to improve 400 
on anatomical alignment, Haxby and colleagues 33,41,42 developed an across-subject, high-dimensional, functional 401 
alignment technique, named hyperalignment. It has previously been shown that hyperalignment, coupled with 402 
MVPA, improves across-subject response classification to levels that are comparable to, or even better than, those 403 
seen for within-subjects 29,38. To do so, hyperalignment exploits the temporal variability of stimulus-evoked brain 404 
activity, yet it is designed to enable alignments based on diverse brain signals 29,33,39. Therefore, we explored 405 
whether hyperaligning GLM brain activity maps would enhance across-subject decodability. In contrast to previous 406 
work, our preliminary results did not show improvement between hyperaligned and anatomically aligned across-407 
subject decodability (data not shown). Still, it is possible that variants of hyperalignment may be useful in brain 408 
activity-based across-subject decodability (e.g., 43).  409 

Our principal finding is consistent with the MVPA literature. A recent across-subject study used MVPA 410 
(without hyperalignment) to uncover circuitry associated with pain relief commonly seen for eight different types of 411 
analgesics 44. Their study identified brain locations involved in analgesia for multiple drugs, and thus it is consistent 412 
with our main conclusion: location and not fixed patterns are sufficient decoders. In fact, in general, MVPA 413 
identifies within- or across-subject brain locations, at macro- (voxel level) or micro-scale (sub-voxel level, 45), where 414 
a certain discrimination or calculation is possible. The level of discrimination will ultimately be constrained by 415 
differences in functional-anatomical coupling across individuals, in turn leading to distinct results within- and 416 
across-subjects 46. Thus, specific underlying patterns may not be identified, which again is consistent and 417 
complementary to our main conclusion. 418 

Beyond promoting reverse inference, fixed-pattern decoders, also labeled as “signatures” or 419 
“neuromarkers” 2,3, are purported to 1) unravel neural encoding of psychological constructs, 2) improve 420 
decodability, 3) enable validation across studies and labs, and 4) provide falsifiable models. Since such decoders do 421 
not outperform brain activity map-based decoders, we contend that the aforementioned assertions are untenable. It 422 
follows that fixed-pattern decoders do not provide a defensible path forward for constructing a brain activity-derived 423 
ontology of mental constructs 47.   424 

Our demonstration that overlaying linear machine learning optimization algorithms did not improve on 425 
linear contrast-derived decoders is not surprising. Indeed, similar conclusions have been reached in other domains, 426 
such as medicine 48,49. Moreover, our findings support the idea that neuroimaging has not saturated the performance 427 
of simple linear models 50. The reasons for this are manifold, and from a modeling viewpoint, it has been argued that 428 
the added value of linear “machine learning” techniques is often small, exaggerated, and does not translate into 429 
practical advantages 51. Although unsurprising given the aforementioned work in this area, the apparent stark 430 
discrepancy between our findings and those in the literature warrants explicit explanation. 431 
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How do we explain the discrepancy between our results and the literature, even when the same decoder is 432 
used on the same data 5? We cannot escape the conclusion that “optimized” decoders are superfluous models. 433 
Indeed, Wager and colleagues have also observed similar performance across several pain decoders, including NPS 434 
and pNsy 5,52. Moreover, the use of arbitrary performance metrics (here we base all analysis on NDP), lack of a 435 
control (comparison to GLM modeling), and commonly mixing within- and across-subject performance metrics all 436 
seem to mislead and propagate grandiose assertions 53. In stark contrast, here we show that linear models—contrast 437 
and activity maps—are capable of maximizing prediction, while being readily available and maintaining 438 
interpretability. Yet, across-subject decodability remains complex; only brain location adds value, and depends on 439 
within and between similarity of decoder, decodee, and comparator. These findings advance the general principles 440 
of decoding mental states. Importantly, the limited and inadequate performance of fixed-weight across-subject 441 
decoders, especially regarding identification, pose strict bounds on their utility in the domains of medical and legal 442 
decision-making.  443 
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