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Abstract

Diffeomorphic shape registration allows for the seamless geometric alignment
of shapes. In this study, we demonstrated the use of a registration algorithm
to automatically seed anthropological landmarks on the CT images of the
pelvis. We found a high correlation between manually and automatically
seeded landmarks. The registration algorithm makes it possible to achieve a
high degree of automation with the potential to reduce operator errors in the
seeding of anthropological landmarks. The results of this study represent a
promising step forward in effectively defining the anthropological measures
of the human skeleton.
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Highlights

• The clinical CT scan is a feasible alternative to skeletal collections and
body donor programs.

• Pelvic morphology is complex, sexually dimorphic and is proven to
being a good demonstration model for the performance analysis of reg-
istration algorithm for automatic landmark seeding.

• The landmark seeding using registration algorithm can save time and
effort in anthropological analysis.

Introduction

In order to estimate the sex, body constitution or various anomalies of
the individual from his/her skeleton, anthropologists typically rely on the
nonmetric or metric analyses of the dry bone [1, 2]. More recently, the
stereophotogrammetric method and medical imaging have been adopted [3].
In order to obtain reliable data, it is essential to work with a reasonably
large set of specimens. The gold standard is the osteological database with
personal data [4, 5, 6, 7]. Nowadays it is also possible to gain access to
hospital databases and thus collect an equal or even larger set of data [8, 9]
which is free from any postmortal changes. Virtual anthropometry is the
method of choice in forensic cases [10], for the identification of victims of
disasters [11] or in museum specimens that are susceptible to damage [12].

In recent years, we have been seeing rapid progress in the use of imaging
techniques in forensic anthropology. Many studies have proven their compat-
ibility with previous research on dry bone [13, 14] and found that CT scans
are a promising source of reference data in contemporary forensic investiga-
tions [15, 16, 17]. It has been demonstrated that the accuracy of defining
anthropological landmarks both manually and by use of CT scans have led to
similar results between them [15, 18, 19, 20, 5]. Therefore the many methods
that determine the sex of an individual, as well as the physical or biome-
chanical properties of a population that are already established and proven
for skeletal material, could also be adopted for clinical CT data.

Regardless of the bony specimen‘s origin, its processing requires time and
skill. We tried to reduce the time involved by adopting the technique of shape
morphing for the mass analysis of anthropometric data. We adopted a non-
linear registration algorithm which automatically computes the landmark
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positions from the ones that are pre–defined. The registration algorithm
based on diffeomorphic mapping has been successfully used in brain analyses
[21] but is rarely used in bone analysis [22, 23].

The study aimed to demonstrate the potential for shape registration in
the automatisation of landmark seeding thus making data–gathering and
evaluation easier in further studies, regardless of the researcher‘s experience.
We created a set of virtual human pelvic bones and defined anatomical land-
marks, which were automatically seeded by a proposed registration algo-
rithm.

Materials and Methods

Dataset

Pelvic bone is well suited for our study because of its multifaceted mor-
phology. Moreover, being the most sexually dimorphic skeletal element in
the human body, it could further serve as a way of sex identification by using
our proposed method. The basis for virtual modelling was the retrospective
and anonymised DICOM files that were randomly taken from routine exam-
inations in the Faculty hospital in Hradec Králové under ethical approval,
202010P08. The CT resolution of the data set was 1×1×1 mm (Siemens
Definition AS+, Siemens Definition 128, 120-130 kV using CareDose, recon-
struction kernel 80-90, bone algorithm). The inclusion criteria were: ab-
dominal CT scans, bones without any trauma and an age range of 20 years
or older. The sample population was equally balanced in terms of sex (100
males, 100 females), with the average age being 64 ± 13.5 years.

The Segmentation of Bone Geometry

The pelvic bone geometries were obtained from CT scans with a semi–
automatic segmentation algorithm (GraphCut, MITK-GEM, [24, 25]). On
the downside, the algorithm may sometimes fail in finding the exact borders
between the bones (sacral bone & pelvic bones, pelvic bones & the femur)
that are fused via osteophytes. Therefore, in some cases, we had to manually
correct the errors in the segmentation.

Bone Registration

The purpose of image registration is to geometrically align the so called
moving image I to the so called fixed image J by a suitable class of maps (see
Figure 1). These maps transform each voxel x in the moving image I(x) to
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the corresponding voxel y in the fixed image J(y) by minimising a cost func-
tion that expresses the differences between I(x) and J(y) [26]. These trans-
formations were computed by a well–known diffeomorphism method SYN in
library ANTs with a modified intensity based criterion called the “demons-
like metric” [27, 28]. The algorithm worked in the four–step resolution [100,
100, 50, 30] (the numbers in parentheses represent maximum optimisation
iterations 1. In this study, we used those transformations to map anatomical
landmarks from template shape onto a sample shape and vice versa2, see the
convention in [26]. A suitable template bone must be created in such a way,

Figure 1: a) An illustration of the steps of the registration algorithm: the affine transform
globally translates, rotates, scales and shears the moving image; the non–linear transform
deforms (voxel–wise) the moving image in order to align the moving image with the fixed
image. b) The fixed image is a template shape that is estimated from the dataset.

that it minimises the anatomical discrepancies between the template bone
and any sample it is morphed into. The template bone shape was iteratively
estimated according to [27]. Once the template bone was obtained, all the
samples in the dataset were morphed into the template bone shape. Each
morphed bone sample was visually inspected for the presence of any errors.

Anthropological Measures

The template bone was set by a group of anthropometric reference land-
marks B1, B2, ..., B19 with the associated distances M1,M2, ...,M10 (see Table
1 and Figure 2), by utilizing ParaView software [29]. We adopted the land-
marks defined by Murail and Bruzek [30], both for their acceptance in the
published literature [31] as well as for following the sex–specificity test. One

1see the details in ANTs manual at URL: https://antspyx.readthedocs.io)
2The points are transformed in the reverse direction unlike the images
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additional landmark B20 was added to test the accuracy of the algorithm on
the concave surfaces (on the bottom of the acetabular fossa).

Table 1: Definitions of the reference landmarks B.
B1 Symphysion; the most superior and medial point on the pubic symphysis
B2 Anterior border of the acetabular rim at the level of the lunate surface
B3 The most lateral point on the acetabular rim
B4 A point on the medial margin of the pubic bone; at the level of B4

B5 The most inferior point of the os coxae
B6 The most superior point of the os coxae
B7 The posterior inferior iliac spine
B8 A point on the anterior margin of the great sciatic notch.
B9 The most anterior and inferior point on the ischial tuberosity
B10 The furthest point on the acetabular margin from B9

B11 Anterior superior iliac spine
B12 Posterior superior iliac spine
B13 Anterior inferior iliac spine
B14 The deepest point in the greater sciatic notch
B15 The contact point of the arcuate line and the auricular surface
B16 The midpoint of the anterior portion of the greater sciatic notch
B17 A point on the lateral border of the acetabulum; at the level of B16

B18 The most inferior point on the acetabular rim in the longitudinal axis of the ischium
B19 The most superior point on the acetabular rim on the longitudinal axis of the ischium

Figure 2: The estimated shape of the template bone with the reference landmarks B and
distances M .

A Comparison of Manually and Automatically Seeded Landmarks

In order to evaluate the accuracy of automatic the seeding algorithm, an
operator manually seeded defined landmarks on 50 bones randomly selected
from dataset.
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Intra–observer Error

We checked the consistency of manual seeding by analysing the intra–
observer error in distances M . Fifty pelves were remeasured twice (test1 and
test2) by a moderately experienced operator with a two week time window.
The intra–observer technical error of measurement (TEM) and the percent-
ages expressed relative rTEM were calculated. The resulting TEM index is
a variable in anthropology that is used to express the margin of error and
the quality of measurement. The mutual dependency of all tests is further
expressed as the reliability coefficient R, that describes variance, which is
free of measurement errors [32, 33, 34]:

TEM =

√∑n
j=1 d

2
j

2n

rTEM =
TEM

m̄
100

R =
TEM2

σ

where n is the number of pelvis samples, m̄ is the average distance value
M , over the n samples, σ is the standard deviation over the n samples and
dj is the difference of M on the jth sample that is computed from the two
measurements.

The Distance Between Automatically and Manually Seeded Landmarks, B

To analyse the differences between both automatically and manually
seeded landmarks, we computed the Euclidean distance

∆i = ||xi − x̂i||

where xi and x̂i are the coordinates of the ith landmark B, that were ob-
tained manually and automatically, respectively (see Figure 3). We analysed
the distances on the samples from subsection Intra–observer Error. The sta-
tistical difference between landmarks B, measured at both repetitions was
measured by the Mann Whitney test with a probability level of 95%.

The differences Between Automatically and Manually Computed Distances,
M

Relative differences between automatically and manually computed dis-
tances M , were analysed from samples of subsection Intra–observer Error, see
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Figure 3: An example of measurement of distance between manually and automatically
seeded landmark B6.

Figure 4. The ith relative distance difference δir was computed as 100(Mi −
M̂i)/M̂i. The statistical difference between distances M , measured at both
repetitions was measured by the Mann Whitney test with a probability level
of 95%.

The Analysis of Clouds: the Back–Mapped Landmarks

The manually defined landmarks on the samples from subsection Intra–
observer Error were mapped onto the bone template. The mapped landmarks
form clouds around the reference landmarks. These landmark clouds have a
certain shape, size and centroid (mean coordinates), which are used to ana-
lyze the accuracy of registration algorithms, see Figure 5. The centroids and
confidence ellipsoids (eigenvalues of the covariance matrix) were estimated for
the landmark clouds by the Quadratic Discriminant Classification Method
(QDCM) [35]. By using the QDCM, we were able to estimate the probabil-
ity that a given reference landmark belongs to the corresponding landmark
cloud. The QDCM was trained by samples from subsection Intra–observer
Error. The stratified KFold strategy with 3 folds and a train/test splitting
at 70%/30%, was chosen in order to obtain the best accuracy [35]. The mean
resultant train/test accuracy metrics were 92%±6.1%/90%±8.3%. Besides,
we computed the distance ∆, between the centroids and the reference land-
marks.
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Figure 4: An example of the distance M3 computed from the manually seeded landmarks
B5 and B6 and the distance M̂3 computed from automatically seeded landmarks B̂5 and
B̂6.

Figure 5: Use of registration algorithm for the mapping of manually seeded landmarks onto
the bone template. The set [CAx CAy CAz] represents eigenvalues of a 95 % confidence
ellipsoid. Individually coloured clouds are shown on various aspects of the pelvic bone [a),
b), c), d), e), f)]. The numbers correspond to the landmark numbers in Figure 2.
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Sex Identification Using the DSP2 Method

We demonstrated the practical use and accuracy of the registration al-
gorithm for sex identification. The input for the sex identification algo-
rithm DSP2, were the distances from the subsection Intra–observer Error.
DSP2 is based on a spreadsheet program (freely available at URL: http:
//projets.pacea.u-bordeaux.fr/logiciel/DSP2/dsp2.html) that gives
the individual probability of being a male or female according to the linear
discriminant analysis and posterior probabilities (see original publications
[36, 30]). All ten distances M , served as an input to the application. The
input was data consisted of 200 samples where the sex was known a priori.
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Results

Observer Agreement

TEM values were in range of 0.60 for M9 and 1.55 for M4, see Table 2.
The values of rTEM were mostly less than 2%, except for M2 and M4, which
were 2.27 and 3.51 respectively and according to [37] are considered as being
imprecise. The coefficient of reliability R, was between 0.94 and 0.99 and is
defined as being high for all measurements. The TEM and rTEM were found
as being relatively low [32].

Table 2: The technical and relative technical errors of manual measurements. The mini-
mum and maximum values are in bold.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

TEM [mm] 0.79 0.98 1.16 1.55 0.82 1.05 1.12 1.35 0.60 1.02
rTEM [%] 1.07 2.27 0.53 3.51 0.72 0.64 1.44 1.70 1.59 1.77
R 0.98 0.98 0.99 0.94 0.99 0.98 0.97 0.95 0.98 0.95

The Distance Between the Automatically and Manually Seeded Landmarks,
B

The largest average distance of 15.91 mm was found for landmark B6

while the smallest distance of 2.04 mm was found for landmark B18 in the
test set 2, see Figure 6. There were no statistically significant differences
between the repetitions of test1 and test2. The lowest value of p was 0.05 for
landmark B14, while the highest value of 0.49 was found for landmark B19.

The Differences Between the Automatically and Manually Computed Dis-
tances, M

The largest average relative difference of -4.20% was found for distance
M4 in the test set 2, see Figure 7. The average lowest relative difference of
0.01% was found for distance M10 in the test set 1, see Figure 7. There were
no statistically significant differences between the repetitions of test1 and
test2. The lowest value of p was 0.06 for the distance M9, while the highest
value of 0.49 was found for distance M2.

The Analysis of Clouds: Back–Projected Landmarks

The longest distance of 10 mm, was found between centroid B6 and refer-
ence landmark B6, while the shortest distance of 0.66 mm, was found between

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.17.423253doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423253
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: A boxplot showing the distance between the automatically and manually seeded
landmarks for both repetitions.

Figure 7: A boxplot showing the relative difference between automatically and manually
seeded landmarks for both repetitions.

centroid B19 and reference point B19. The distances between the centroids
and the reference landmarks are in Table 3. The probability that the refer-
ence landmark falls into a given landmark cloud was high (more than 99 %)
for almost all landmarks. An exception was reference landmark B9, which
fell into the landmark clouds of B5/B9 with a probability of 58.5%/41.5%,
see Table 3. In addition, the highest length of confidence for axis x, was
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Table 3: A comparison of the reference landmarks and centroids that are formed by a
cloud of projected landmarks that were manually defined on a template bone;∆[mm]) is
the distance between the reference landmarks and centroids; [CAx CAy CAz] with the
principal of a 95% confidence axes of an individual cloud. The minimum and maximum
values are in bold.
B# ∆ CAx CAy CAz B# ∆ CAx CAy CAz

B1 0.78 1.84 2.97 5.20 B11 1.20 1.40 2.58 7.11
B2 1.98 2.89 5.11 11.81 B12 2.12 3.62 8.83 34.97
B3 4.26 0.90 3.82 7.22 B13 1.63 2.68 6.24 16.38
B4 2.01 0.80 3.52 5.79 B14 0.79 2.70 3.99 16.36
B5 0.94 1.16 2.52 11.68 B15 1.19 0.69 4.62 7.58
B6 10.00 1.46 3.56 24.58 B16 2.03 0.67 2.26 4.05
B7 2.80 1.03 2.81 9.33 B17 1.27 0.79 2.02 4.82
B8 6.92 1.14 2.64 10.34 B18 1.41 0.90 1.67 3.97
B9 5.09 1.36 13.59 16.32 B19 0.66 1.05 2.06 6.84
B10 1.15 1.88 2.63 10.48 B20 2.50 1.03 3.79 6.02

Figure 8: Clouds of manually seeded landmarks mapped onto the template bone.
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measured for point B12 with a value of 3.62 mm, while the lowest value, 0.677
mm was found for B16. The highest length of confidence for axis y, was found
for landmark B9, with a value of 13.596 mm and the lowest was for landmark
B18, with a value of 1.679 mm. The highest length of confidence for axis z,
was found for point B12, with a value of 34.978 mm, while the lowest was for
landmark B18, with a value of 3.978 mm.

Sex identification Using the DSP2 Method

By using all ten distances M , 87% of males and 98% of females were
successfully sexed. The sex was undetermined in 13 male and one female
pelvic bone and wrongly assigned to one female. We excluded the distance
M4 from sex identification as it was determined to being the most erroneous,
see Figure 7. After excluding M4, an algorithm assigned 95% of the male
pelves and 99% of the female pelves with a 100% accuracy in cases where
the sex was assigned, see Table 4.

Table 4: Sex identification results by the DSP2 method (with a 95% posterior probability
threshold). The variables on sexing accuracy and sex found to being indeterminable are
expressed in %.

Number of
distances M

Sexing
Accuracy

Sex
Undeterminable

Sexing
Error

Male
Original Setting 10 87 13 0
Corrected data 9 95 5 0

Female
Original Setting 10 98 1 1
Corrected Data 9 99 1 0
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Discussion

Most of the average distances between the manually and automatically
seeded landmarks were below 5 mm. Average distances above 5 mm were
found for B6, B8 and B9. Landmarks B6 is defined from the distance M3

(see the definition in Figure 2), which means it is not directly dependent
on bone geometry. Landmark B6 can be located almost anywhere in the
middle third of the iliac crest. The landmark B8 should lie on a site, where
the axis is inserted to the posterior inferior iliac spine just perpendicular to
the anterior border of the greater sciatic notch (Figure 2). In this case, the
operator’s result was superior to that of the computer’s result. This can be
interpreted as an algorithm employing a similarity metric, which does not
take into account any additional geometrical constraints.

The accuracy of automatic landmark seeding depends on the proper seed-
ing of reference landmarks on template bone by an operator. Moreover, the
identification of fine anatomical features on template bone can be more diffi-
cult because they can be partially smoothed out due to the method used for
template bone construction [27]. This situation is typical for landmark B9,
which relies on the location of the anteroinferior termination of the ischial
tuberosity.

In our study, the TEM, rTEM and R values were relatively low and the
mean differences between the automatic and manually measured distances
were within millimetres which is comparable to similar publications [17, 14,
38, 39].

The sex identification results from the DSP2 method, with algorithmic
computed input, proved to be very reliable. By leaving out distance M4

(which is dependent on B8), we achieved an improved sexing rate of 97%
with a 100% accuracy, which is on par with the most relevant studies [14,
39, 38, 40].

The algorithm calculates a continuous spatial transformation, which means
that any point on a bone sample has a unique counterpart on the template
bone. In other words, we can potentially define landmarks anywhere on the
bone [41]. This transformation makes it possible to interpret the difference
in shapes in the deformation metric, which is considered as being intuitive
and natural. This capability of the registration algorithm allows for shape
analysis, which is usually performed by using the Principal Component Anal-
ysis (PCA) [42, 43, 44]. Unlike the PCA, the algorithm does not require a
correlation matrix, which can be large and dense (in the case of CT data).
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In our study, the algorithm took 10 minutes per sample (compiled on
a Linux Ubuntu 18.04 LTS platform, GCC 7.4.0, Intel i7 (8 cores) CPU
2.10GHz, 16Gb RAM). This could be seen as a relatively long time, but the
pipeline of registration is fully automated and stable, which is very convenient
for the end–users. Once the registration step is done, the computing of
landmark locations and distances over the whole dataset takes only a few
seconds.

We are aware of some study limitations. Contrary to dry bone measure-
ments, thin bone projections and bony plates could potentially be lost in the
CT data due to an insufficient resolution and must be carefully reconstructed
in order to obtain the same bone topology across the entire dataset. Fur-
thermore, any articular surfaces that may be affected by entesophytes, which
is common in the elderly, may reduce the accuracy of automatic landmark
placement [45]. A lack of more observers should raise some caution regarding
the interpretation of the intraobserver errors, however, a similar setup of the
TEM method is proposed in [39, 46, 38].

Conclusion

The anthropological landmarks must be seeded by an experienced opera-
tor, even when using CT data. Manually defining anthropological landmarks,
especially for larger data sets, is inefficient and can introduce uncertainties
depending on the operator’s focus on the work at hand as well as his/her
level of experience. In this study, we introduced a method that allows us
to automate the definition of anthropological landmarks based on a large
amount of CT data. This method also makes it possible to potentially use
data from bone digitization by laser scanning, which is a subject of further
research. In summary, we

• introduced registration algorithm for automatic landmark seeding,

• extensively analysed the differences between manual and automatic
landmark seeding, and

• showed the algorithm performance on the task of sex identification.
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