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Abstract 18 

1. The quantification of thermal performance curves (TPCs) for biological rates has many 19 

applications to problems such as predicting species’ responses to climate change. There is 20 

currently no widely used open-source pipeline to fit mathematical TPC models to data, which 21 

limits the transparency and reproducibility of the curve fitting process underlying applications 22 

of TPCs.  23 

2. We present a new pipeline in R that currently allows for reproducible fitting of 24 different 24 

TPC models using non-linear least squares (NLLS) regression. The pipeline consists of two 25 

packages – rTPC and nls.multstart – that allow multiple start values for NLLS fitting and 26 

provides helper functions for setting start parameters. This pipeline overcomes previous 27 

problems that have made NLLS fitting and estimation of key parameters difficult or unreliable. 28 

3. We demonstrate how rTPC and nls.multstart can be combined with other packages in R to 29 

robustly and reproducibly fit multiple models to multiple TPC datasets at once. In addition, we 30 

show how model selection or averaging, weighted model fitting, and bootstrapping can easily 31 

be implemented within the pipeline. 32 

4. This new pipeline provides a flexible and reproducible approach that makes the challenging 33 

task of fitting multiple TPC models to data accessible to a wide range of users. 34 

 35 

Key words: non-linear least-squares, regression, thermodynamic models, thermal performance 36 

curves, thermal tolerance curves, reaction norms 37 
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1.  Introduction 39 

Thermal performance curves (TPCs) describe how biological rates such as growth, photosynthesis 40 

and respiration change with temperature. TPCs (and the parameters that underpin them) have been 41 

used widely in biology, from studying thermal adaptation (Schaum et al., 2017; Smith et al., 2019), 42 

to predicting ectotherm range shifts (Sunday, Bates, & Dulvy, 2012; Sinclair et al., 2016) and 43 

changes in disease dynamics (Molnár, Kutz, Hoar, & Dobson, 2013; Cohen et al., 2017; Mordecai 44 

et al., 2019) under expected climate change. Despite their wide use across ecology and evolution, 45 

there is no open-source, flexible approach available to fit TPC models to data (henceforth simply 46 

“fit TPCs”) that allows for reproducible fitting using NLLS. Current software for fitting TPCs, 47 

such as the R packages temperatureresponse (Low-Décarie et al., 2017) and devRate (Rebaudo, 48 

Struelens, & Dangles, 2018), do not address the well-known sensitivity of NLLS algorithms to 49 

parameter starting values, which is exacerbated when fitting multiple models with varying non-50 

linearities, and to multiple datasets with differences in sampling, rate measurements and coverage 51 

of temperature ranges. Moreover, these existing packages do not address robust quantification of 52 

parameter uncertainty.    53 

Many different mathematical models have been used to fit TPCs (Krenek, Berendonk, & 54 

Petzoldt, 2011; DeLong et al., 2017; Low-Décarie et al., 2017) which can make it difficult to 55 

determine the “best” model for any given dataset. A few papers have evaluated the performance 56 

of TPC models (Angilletta Jr, 2006; Shi & Ge, 2010; Krenek et al., 2011). The most comprehensive 57 

analysis to date compared 12 models, and demonstrated how model choice alters the predicted 58 

species-level response to temperature (Low-Décarie et al., 2017). However, using model selection 59 

to select the best or most appropriate model for specific datasets remains rare (but see Montagnes, 60 

Morgan, Bissinger, Atkinson, & Weisse, 2008). Instead, a single model is used, often chosen for 61 
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its mechanistic underpinnings, despite little agreement about the mechanistic links between 62 

enzyme kinetics and emergent biological rates (e.g. velocity, feeding rate, growth rate). Others 63 

prefer to use a model that directly estimates desired parameters (e.g. optimum temperature). There 64 

is likely no “best” model to use for fitting TPCs, with different models proving the most 65 

appropriate for different biological processes, taxa, and levels of data quality. Consequently, a new 66 

analysis pipeline that allows users to fit TPCs, while remaining flexible to the research question 67 

being asked, is sorely needed.  68 

 Here, we present rTPC and nls.multstart; two open-source R packages that provide the 69 

basis for a pipeline to robustly and reproducibly fit TPCs. The pipeline allows the fitting of 24 70 

different TPC model formulations, and we demonstrate how multiple models can be fitted to the 71 

same curve, as well as how multiple datasets can be fitted. We also describe helper functions within 72 

rTPC for the estimation of start parameters, upper and lower parameter limits, and commonly-73 

used parameters (e.g. optimum temperature, activation energy or Q10). Finally, we illustrate how 74 

this pipeline can be used for model selection and model averaging, as well as how weighted model 75 

fitting and bootstrapping implemented using rTPC can be used to account for parameter and model 76 

uncertainty. 77 

 78 

2. Pipeline overview 79 

The goal of rTPC and the associated pipeline is to make fitting TPCs easier and repeatable. 80 

Extensive examples of the pipeline can be found at https://padpadpadpad.github.io/rTPC where all 81 

vignettes are available. When developing rTPC, we made a conscious decision not to repeat code 82 

and methods that are already optimised and available in the R ecosystem. Instead, they are utilised 83 

and incorporated into the pipeline. 84 
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 85 

2.1 Models contained in rTPC 86 

rTPC contains 24 mathematical TPC models (Table S1). Most models are named after the author 87 

that first formulated the model and the year of its first use (e.g. thomas_2012()). A list of all models 88 

in rTPC can be accessed using get_model_names(). Models can be characterised by whether they 89 

appropriately model negative rates before and after the optimum temperature (Table S1). 90 

  91 

2.2 NLLS fitting using multiple start parameters using nls.multstart 92 

The Gauss-Newton (implemented in nls) and the Levenberg-Marquardt (implemented in 93 

minpack.lm::nlsLM) NLLS fitting algorithms are sensitive to the choice of starting values for the 94 

model parameters. This sensitivity can result in differences in parameter estimates between 95 

separate fitting attempts for the same dataset, or a complete failure to fit the model (the 96 

optimisation does not converge). To address this, the R package nls.multstart – and its only 97 

function nls_multstart() - generates multiple start values and fits many iterations of the model 98 

using the Levenberg-Marquardt algorithm implemented in nlsLM. The best model is then picked 99 

and returned using Akaike’s Information Criterion corrected for small sample size (AICc) 100 

(Padfield & Matheson, 2018). 101 

 102 

2.3 Estimating starting parameter values and limits for fitting TPCs using rTPC 103 

rTPC helper functions get_start_vals(), get_lower() and get_upper() aid in the specification of 104 

sensible start values and limits that can be used by nls_multstart() (or nls and nlsLM). These 105 

functions return values for the desired model, which is specified using the argument model_name. 106 

Where possible, the model’s starting parameter values are estimated from the data. In all other 107 
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instances, start values are the average fitted parameters from studies that used that equation. Upper 108 

and lower limits are set at biologically implausible values. If these helper functions aren’t needed, 109 

values can be set manually. 110 

 111 

2.4 Calculating derived TPC parameters 112 

Parameters of TPCs (such as optimum temperature or Q10) are commonly used in downstream 113 

analyses (e.g. to determine if optimum temperature correlates with local climate across taxa). 114 

However, the best-fitting model’s parameters may not include the parameter of interest. rTPC has 115 

helper functions, such as get_topt() and get_rmax(), that numerically calculate most parameters of 116 

interest from any fitted TPC (Table 1). These derived parameters are calculated from high 117 

resolution predictions (0.001ºC intervals) of the fitted model. The function calc_params() returns 118 

values for all 11 derived parameters in a dataframe (Table 1). calc_params() does not return 119 

estimates of uncertainty in these derived parameters, which we address below (section 3.3). 120 

 121 

3. Uses for the rTPC pipeline 122 

Below we give examples of potential applications and extensions to the pipeline, why they are 123 

important, and guidance as to how they can be incorporated. 124 

 125 

3.1 Model selection and model averaging 126 

The “best” model for one dataset is not necessarily the best across other datasets. Our pipeline 127 

provides a flexible approach to help with model selection. For example, after fitting a number of 128 

potential models, AICc scores can be used to rank the models for each individual curve fit and 129 

pick the best overall model across all curves in a dataset. Alternatively, one may choose the best 130 
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model specific to each TPC, or use model averaging to obtain an overall TPC curve and parameter 131 

estimates by weighting each model’s fit by its AICc (Figure 2). 132 

vignette(“model_selection_averaging”) provides an example of how to implement model 133 

selection and model averaging.  134 

 135 

3.2 Data-weighted TPC model fitting 136 

Due to non-independence of replicate rate measurements across temperatures, the mean rate at 137 

each temperature is often taken before fitting the TPC. This approach ignores variation in 138 

measurement values at each temperature. Incorporating variation in measurement errors across 139 

temperatures can be essential to improving the model fit and reducing biases in parameter 140 

estimates (Figure 2) (Davison & Hinkley, 1997). This can be implemented using weighted NLLS 141 

fitting, which can be applied using most methods of fitting NLLS in R. The optimal way to apply 142 

weights is to use 1/standard deviation, which must be included as a vector the same length as the 143 

sample size. vignette(“model_weighting”) provides an example of how to implement weighted 144 

NLLS when fitting TPCs.  145 

 146 

3.3 Quantifying uncertainty in model fits and parameter estimates 147 

Quantifying uncertainty in the TPC model fit as a whole and the estimated parameters is 148 

challenging. The recommended method is to calculate confidence intervals around model 149 

parameters of the TPC by constructing the likelihood profile of the parameters (most commonly 150 

done by using stats::confint which invokes MASS::confint.nls or nlstools::confint2 (Baty et al., 151 

2015)). However, in many instances the profiling (a numerical method) does not converge or the 152 

likelihood profile that emerges is asymmetric or skewed. Consequently, parameter and model 153 
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prediction confidence intervals of TPCs calculated in this way can be unreliable. Moreover, 154 

although profiling returns confidence intervals of the model parameters, this method cannot 155 

calculate the uncertainty in derived parameters (section 2.4).  156 

Bootstrapping is a robust alternative to computing both the parameter and model prediction 157 

confidence intervals. Non-parametric bootstrapping entails resampling a dataset repeatedly and re-158 

fitting the model to reconstruct a relatively unbiased sampling distribution of the parameters. 159 

Parameter confidence bounds can then be constructed using this distribution. Bootstrapping can 160 

also be used to calculate confidence intervals of derived parameters. The rTPC workflow uses the 161 

Boot() function from the R package car (Fox, 2006), which implements two types of non-162 

parametric bootstrapping: case and residual resampling. In case resampling the data themselves 163 

are sampled (with replacement) to create a distribution of resampled parameter estimates, while 164 

residual bootstrapping uses mean centred residuals to create the distribution. Both methods have 165 

their pros and cons, and we leave it to the user to decide which one to use (or evaluate their 166 

performance for fitting TPCs). Non-overlapping confidence intervals of parameters between 167 

different TPCs may be used for inference, but these should be treated with caution for TPCs as 168 

datasets are often too small, making this type of inference unreliable. 169 

vignette(“bootstrapping_models”) provides an example of how to implement bootstrapping for 170 

TPC models using rTPC and car::Boot(). 171 

Finally, data-weighted TPC fitting (section 3.2) can be combined with bootstrapping to 172 

potentially yield both unbiased parameter estimates and better estimates of uncertainty. car::Boot() 173 

now supports both case and residual resampling for weighted NLLS and 174 

vignette(“weighted_bootstrapping”) provides an example of how to implement this when fitting 175 

TPCs.  176 
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 177 

4. Key considerations when fitting TPCs 178 

Effective fitting of TPCs depends on decisions made during experimental design, data collection, 179 

and model choice. 180 

 181 

4.1 Data considerations 182 

For effective fitting of TPCs, the number of unique temperature values used, the level of replication 183 

at each temperature, and the temperature range, all need to be considered. In the (common) 184 

scenario where all three cannot be maximised, the objective of the TPC fitting - and the parameters 185 

of particular interest - need to be considered. For example, in thermodynamic models, if the 186 

objective is to quantify the activation energy accurately, thermal range can be traded off for a finer 187 

degree of temperature resolution in the operational temperature range of the study organism 188 

(Pawar, Dell, Savage, & Knies, 2016). It is particularly important to consider the level of 189 

replication at each temperature: sampling multiple individuals at each temperature can give 190 

multiple individual TPCs of a population. 191 

 192 

4.2 Which models to fit 193 

The decision on which TPC models to fit largely depends on the type and quality of data, and the 194 

questions being asked. In terms of the data, there need to be at least k + 1 points for fitting a model, 195 

where k is the number of model parameters. However, in NLLS fitting, the minimum number of 196 

data points needed to reliably fit a model to data can vary with the mathematical structure of the 197 

model (Burnham & Anderson, 2002), so in general, “the more the merrier”. Carefully consider 198 

what model(s) you want to use before starting the analysis. If there are negative rate values, it is 199 
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wise to fit models that can cross the x-axis both below and above the optimum temperature, such 200 

as thomas_2012(), thomas_2017() or joehnk_2008() (Table S1). In terms of the questions being 201 

asked, if there are specific traits of interest (e.g. optimum temperature), it may be beneficial to 202 

only consider models that explicitly include that parameter in their formulation. This may be 203 

especially pertinent for the activation energy, deactivation energy, and Q10, as they are sensitive to 204 

the calculation of the optimum temperature when calculated from model predictions. Finally, 205 

because NLLS is a numerical (inexact) model fitting method, consider carefully the correlations 206 

and mathematical relationships between parameters that may result in spurious parameter 207 

estimates (e.g. Kontopoulos, García-Carreras, Sal, Smith, & Pawar, 2018 in the case of the Sharpe-208 

Schoolfield model) 209 

 210 

5. Concluding remarks and future improvements 211 

The pipeline presented here allows the user to fit TPCs in a simple, reproducible, and flexible 212 

framework. rTPC includes 24 model formulations previously used in the literature and 213 

nls.multstart provides a reliable method to fit non-linear models using multiple start values. It is 214 

important to note, however, that while this pipeline improves the fitting of TPCs, model fitting 215 

cannot fix poor data. In many experimental studies, the ideal approach to analysing TPCs would 216 

be with non-linear mixed effect models. This can be done using the R package nlme (Oddi, Miguez, 217 

Ghermandi, Bianchi, & Garibaldi, 2019), but Bayesian approaches have quickly become the 218 

easiest way to fit these types of models in R. Additional functionality of rTPC would be to output 219 

formatted code of the model equation, start parameters, and parameter limits that could be used by 220 

brms, a package that fits Bayesian multilevel models (Bürkner, 2017). However, even without this 221 
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feature, this pipeline gives any user the ability to analyse their own data, and the flexibility to 222 

incorporate additional approaches and analyses. 223 
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Figures & Tables  296 

Table 1: Overview of helper functions included in rTPC. 297 

Function Description 

get_model_names() Lists the models available in rTPC. 

get_start_vals() Estimates start values given the temperature, rate values and model selected. 

get_lower_lims() Sets lower limits given the data and the model selected. 

get_upper_lims() Sets upper limits given the data and the model selected. 

get_ctmax() Estimates the critical thermal maximum of the model fit. Where the 
predicted rate can never be 0, the temperature at which the rate is 5% of rmax 
is returned. 

get_ctmin() Estimates the critical thermal minimum of the model fit. Where the 
predicted rate can never be 0, the temperature at which the rate is 5% of rmax 
is returned. 

get_e() Estimates the activation energy of the model fit. 

get_eh() Estimates the deactivation energy of a thermal performance curve. 

get_q10() Estimates the Q10 value of a thermal performance curve. 

get_topt() Estimates the optimum temperature. 

get_rmax() Estimates the rate at optimum temperature. 

get_skewness() Estimates skewness of a thermal performance curve. 

get_thermalsafetymargin Estimates the thermal safety margin of a thermal performance curve (CTmax 
- Topt). 

get_thermaltolerance() Estimate the thermal tolerance of a thermal performance curve (CTmax - 
CTmin). 

get_breadth() Estimated thermal performance breadth of a thermal performance curve. 

calc_params() Returns a table of all the estimated parameters. 
 298 
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Figure 1. General pipeline for fitting thermal performance curves using rTPC. (1) Collect, 301 

check, and present data in long format. (2) Choose which models from rTPC to be use. Here, a 302 

random assortment of four models were chosen. (3) Fit the models using nls.multstart and helper 303 

functions from rTPC. (4) Models can be visualised and (5) common traits of TPCs can be estimated 304 

using rTPC::calc_params(). (6) This simple pipeline can be scaled up to be used on multiple 305 

curves.  306 
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Figure 2. Potential applications for fitting thermal performance curves using rTPC.  (1) AICc 308 

scores of model fits can be calculated to help with model selection or model averaging. (2) If TPCs 309 

are fit to averages of replicates, weighted NLLS can be used to reduce parameter bias. (3) After 310 

the model has been fitted, non-parametric bootstrapping can estimate model uncertainty and 311 

confidence intervals for parameters. 312 
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Table 1: Summary of equations available in rTPC

Function Equation

Parameters Allow negative rates

Reference

Number: Names pre− Topt post− Topt

beta 2012() rate =

a

(
temp−b+

c(d−1)
d+e−2

c

)d−1

·

(
1−

temp−b+
c(d−1)
d+e−2

c

)e−1

( d−1
d+e−2 )

d−1·( e−1
d+e−2 )

e−1 5 : a, b, c, d, e 7 7 Niehaus (2012) [1]

boatman 2017() rate = rmax · (sin(π
(

temp−tmin
tmax−tmin

)a
))b 5 : rmax, tmin, tmax, a, b 7 7 Boatman (2017) [2]

briere2 1999() rate = a · temp · (temp− tmin) · (tmax − temp)
1
b 4 : tmin, tmax, a, b 3 7 Briére (1999) [3]

delong 2017() rate = c · exp
−(eb−(ef (1− temp+273.15

tm
)+ehc·((temp+273.15)−tm−(temp+273.15)·ln(

temp+273.15
tm

))))

k·(temp+273.15)
5 : c, eb, ef , tm, ehc 7 7 DeLong (2017) [4]

flinn 1991() rate = 1
1+a+b·temp+c·temp2 3 : a, b, c 7 7 Flinn (1991) [5]

gaussian 1987() rate = rmax · exp

(
−0.5

(
|temp−topt|

a

)2
)

3 : rmax, topt, a 7 7 Lynch (1987) [6]

hinshelwood 1947() rate = a · exp
−e

k·(temp+273.15) − b · exp
−eh

k·(temp+273.15) 4 : a, e, b, eh 7 3 Hinshelwood (1947) [7]

joehnk 2008() rate = rmax

(
1 + a

((
btemp−topt − 1

)
− ln(b)

ln(c)
(ctemp−topt − 1)

))
5 : rmax, topt, a, b, c 3 3 Jöhnk (2008) [8]

johnsonlewin 1946() rate = r0·exp
−e

k·(temp+273.15)

1+exp
−

eh−
(

eh
(topt+273.15)

+k·ln
(

e
eh−e

))
·(temp+273.15)

k·(temp+273.15)

4 : r0, e, eh, topt 7 7 Johnson (1946) [9]

kamykowski 1985() rate = a ·
(
1 − exp

−b·
(
temp−tmin

))
·
(
1 − exp

−c·
(
tmax−temp

))
5 : tmin, tmax, a, b, c 3 3 Kamykowski (1985) [10]

lactin2 1995() rate = expa·temp − exp
a·tmax−

(
tmax−temp

∆t

)
+ b 4 : a, b, tmax,∆t 3 3 Lactin (1995) [10]

modifiedgaussian 2006() rate = rmax · exp

(
−0.5

(
|temp−topt|

a

)b
)

4 : rmax, topt, a, b 7 7 Angilletta (2006) [11]
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Table 1: Summary of equations available in rTPC continued

Function Equation

Parameters
Allow

negative rates
Reference

Number: Names pre− Topt post− Topt

oneill 1972()

rate = rmax ·
(

ctmax−temp
ctmax−topt

)x

· expx·
temp−topt
ctmax−topt

where : x = w2

400
· (1 +

√
1 + 40

w
)2

and : w = (q10 − 1) · (ctmax − topt)

4 : rmax, ctmax, topt, q10 7 7 O’Neill (1972) [12]

pawar 2018() rate =
rtref ·exp

−e
k

( 1
temp+273.15

− 1
tref+273.15

)

1+( e
eh−e

)·exp
eh
k

( 1
topt+273.15

− 1
temp+273.15

)
4 : rtref , e, eh, topt, tref 7 7 Kontopoulos (2018) [13]

quadratic 2008() rate = a+ b · temp+ c · temp2 3 : a, b, c 3 3 Montagnes (2008) [14]

ratkowsky 1983() rate = (a · (temp− tmin))2 · (1 − exp(b · (temp− tmax)))2 4 : tmin, tmax, a, b 7 7 Ratkowsky (1983) [15]

rezende 2019()
if temp < b : rate = a · 10

log10(q10)

( 10
temp

)

if temp > b : rate = a · 10

log10(q10)

( 10
temp

) · (1 − c · (b− temp)2)

4 : q10, a, b, c 7 3 Rezende (2019) [16]

sharpeschoolfull 1981() rate =
rtref ·exp

−e
k

( 1
temp+273.15

− 1
tref+273.15

)

1+exp

el
k

( 1
tl
− 1

temp+273.15
)
+exp

eh
k

( 1
th
− 1

temp+273.15
)

6 : rtref , e, el, tl, eh, th, tref 7 7 Schoolfield (1981) [17]

sharpeschoolhigh 1981() rate =
rtref ·exp

−e
k

( 1
temp+273.15

− 1
tref+273.15

)

1+exp

eh
k

( 1
th
− 1

temp+273.15
)

4 : rtref , e, eh, th, tref 7 7 Schoolfield (1981) [17]

sharpeschoollow 1981() rate =
rtref ·exp

−e
k

( 1
temp+273.15

− 1
tref+273.15

)

1+exp

el
k

( 1
tl
− 1

temp+273.15
)

4 : rtref , e, el, tl, tref 7 7 Schoolfield (1981) [17]

spain 1982() rate = r0 · expa·temp · (1 − b · expc·temp) 4 : a, b, c, r0 7 3 Spain (1982) [18]

thomas 2012() rate = a · expb·temp

(
1 −

(
temp−topt

c

)2)
4 : a, b, c, topt 3 3 Thomas (2012) [19]

thomas 2017() rate = a · expb·temp − (c+ d · expe·temp) 5 : a, b, c, d, e 3 3 Thomas (2017) [20]

weibull 1995() rate = a ·
(

c−1
c

) 1−c
c
(

temp−topt
b

+

(
c−1
c

) 1
c
)c−1

exp
−
(

temp−topt
b

+

(
c−1
c

) 1
c
)c

+ c−1
c

4 : a, topt, b, c 7 7 Angilletta (1995) [11]
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