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23

24 ABSTRACT

25

26         Fresh fruits and vegetables are invaluable for human health, but their quality deteriorates 

27 before reaching consumers due to ongoing biochemical processes and compositional changes. 

28 The current lack of any objective indices for defining “freshness” of fruits or vegetables limits 

29 our capacity to control product quality leading to food loss and waste. It has been hypothesized 

30 that certain proteins and compounds such as glucosinolates can be used as an indicator to 

31 monitor the freshness of vegetables and fruits. However,  it is challenging to “visualize” the 

32 proteins and bioactive compounds during the senescence processes. In this work, we 

33 propose  machine learning hyperspectral image analysis approaches for estimating glucosinolates 

34 levels to detect postharvest senescence in broccoli. Therefore, we set out the research to quantify 

35 glucosinolates as “freshness-indicators” which aid in the development of an innovative and 

36 accessible tool to precisely estimate the freshness of produce. Such a tool would allow for 

37 significant advancement in postharvest logistics and supporting the availability for high-quality 

38 and nutritious fresh produce.

39

40 Introduction

41

42           Broccoli (Brassica oleracea L. var. italica) is a nutritious vegetable that is well enriched in 

43 anti-cancerous chemical compounds like glucosinolates [1]. Broccoli is highly perishable and 

44 senesces quickly after harvest.  Broccoli is usually harvested at a developing stage of 
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45 inflorescence therefore causes stress-induced senescence. The stress-induced senescence leads to 

46 faster chlorosis and increases in proteases resulting in the dismantling of chloroplast number and 

47 component [2]. Thus, during the postharvest storage and transportation, broccoli florets starts to 

48 turn yellow accompanied with a decrease in nutritional quality [1]. 

49 Senescence is a developmental process  that can be tracked by monitoring physiological 

50 and biochemical changes in transcripts, proteins, and metabolites in broccoli. One particularly 

51 interesting class of phytochemicals are glucosinolates, given their importance not only for plant 

52 protection, but also for their dietary significance as chemo-preventative compounds that are 

53 found in edible plants, (i.e., cruciferous crops). However, the actual quality, storability and 

54 overall “freshness” of broccoli postharvest is quite uncertain unless the changes are visible to the 

55 human eye. Detecting any deteriorative physiological signs and symptoms before any 

56 irreversible damage occurs could allow for the development of freshness indicators, which can 

57 be used to identify the best postharvest handling, process and storage practices [3]. Therefore, 

58 sensitive indicators of potential deterioration are essential for extending optimal postharvest 

59 quality. 

60            Prior work to detect symptoms of degradation in quality include using color 

61 measurements at an early postharvest stages [4].  Chlorophyll fluorescence and RGB (red, green, 

62 blue) color imagery analysis were used to measure the pigment change in broccoli using 

63 florescence and inverse red channel for color measurements [5]. However, objectively measuring 

64 the progressive loss of freshness after harvest has been a heretofore intractable problem in 

65 postharvest handling of fresh produce. Until now, determining freshness has been mostly based 

66 on external visual criteria like wilting, shriveling and color changes, which is laborious, time-

67 consuming, and subjective [5]. 
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68             The rapid advancement of optical sensors and imaging technologies has significantly 

69 impacted agriculture and brought about more automation [6]. Initially, imaging techniques used 

70 red-green-blue color systems for the identification of color change and defects in the food and 

71 agricultural products [7]. Since, multispectral fluorescence imaging has been used with maize, 

72 peas, soybean for measuring color change [8]. 

73           Hyperspectral Imaging (HSI) has also evolved over the years and is being explored as 

74 technique for nondestructive food analysis. HSI provides both spatial and spectral information 

75 about an object. HSI consists of many thousands of pixels in a two-dimensional array, with each 

76 pixel containing a spectrum corresponding to a specific region on the surface of the sample. 

77 These spectra vary according to unique material and chemical compositions. Interrogation of 

78 these spectra makes possible the development of mathematical models to estimate the chemical 

79 composition or functional class of a sample associated with each pixel. Results reported in 

80 several studies have indicated that hyperspectral imaging is able to predict a number of food 

81 components and quality parameters in a wide range of biological matrices [5]. Previous research 

82 has shown that HSI was used in a plethora of applications in agriculture and food industry to 

83 measure the textural changes including bruise, chilling injury, firmness [9,10,11], and 

84 biochemical detection such as moisture content, soluble solids content, acidity, and phenolics 

85 [12, 13,14], biosafety measurement in bacterial or fungal infection and fruit-fly infestation 

86 [15,16].  In addition, photosynthetic rate in mangroves was studied in relation to salinity stress 

87 using HSI technology [5].  More importantly, Hernandez et al. [17] reported that hyperspectral 

88 imaging can quantify the localization and total glucoraphanin in florets and stalks of broccoli.   

89 Moreover, the low instrument cost and fast-detecting properties of HSI have enabled the 
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90 development of powerful diagnostic tools for detecting, classifying, and visualizing quality and 

91 safety attributes of fresh produce.   

92        This study was conducted to evaluate the potential significance of hyperspectral imaging as 

93 a tool to determine the freshness of broccoli during postharvest storage. Through High 

94 Performance Liquid Chromatography (HPLC) quantitation, we showed that there is a linear 

95 correlation between the total glucosinolates concentration and post-harvest senescence in 

96 broccoli.  Moreover, we performed Real-Time Polymerase Chain Reaction (PCR) for expression 

97 studies on 13 enzymes are involved in the biochemical pathway producing glucosinolates. We 

98 believe that combination of HSI and glucosinolates analysis can define the freshness signature in 

99 postharvest broccoli. 

100

101 Materials and methods

102

103 Tissue collection and Preparation

104

105          Freshly grown broccoli (cultivar, Emerald Crown) florets were manually harvested from 

106 local farms in Hastings, Florida to avoid any mechanical damage. All the broccoli florets were 

107 selected with the same shape and size in this study. The florets were then stored in either a cold 

108 room (4–5°C, darkness) for the cold treatment, or in a plant growth chamber at 25°C (RT) with 

109 16 hours of light and 8 hours of dark. Four biological replicate of broccoli florets were used for 

110 the experimental sampling for tissue collections. Tissue samples were collected from the broccoli 

111 florets every other day during a twelve-day period. The samples were wrapped in aluminum foil, 
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112 immediately frozen in liquid nitrogen and then stored in -80°C for quantitative PCR and freeze-

113 dried for HPLC. 

114

115 Hyperspectral imaging setup

116

117         Broccoli hyperspectral images were collected with a HinaLea 4200 hyperspectral camera 

118 and converted to reflectance spectra. The camera covers the wavelengths ranging from 400nm to 

119 1000nm with a resolution at 4nm (based on full width at half maximum), resulting in 300 

120 wavebands. Halogen lamps were used as illuminators in an imaging chamber. Within the 

121 chamber, each broccoli sample was placed on a black plate with matte black siding to absorb 

122 redundant light in order to minimize scattering. Hyperspectral measurements of three biological 

123 replicates were carried out at every time point and the experiment was repeated three times. 

124

125 Pre-processing Reflectance Spectra

126

127          Pre-processing of the measured spectra for noise and illumination variation was required 

128 prior to analysis. The measured reflectance spectra consistently contained higher levels of noise 

129 at the two ends of the wavelength range. In addition, since the illuminator used was a point light 

130 source and did not evenly cover the entire imaging surface. As a result, the center of the imaging 

131 plane was brighter than the outer edge. Fig. 1 (d) shows examples for the issues mentioned 

132 above. To mitigate these issues, first, a median filter of length 5 along the wavelength axis was 

133 applied to the reflectance spectra. Next, responses below 500 nm and above 900 nm were 

134 removed due to the high noise levels. Finally, in order to reduce the magnitude difference caused 
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135 by point light source, we applied l2 normalization in which each spectral signature is normalized 

136 to have unit norm. 

137

138 Segmenting Floret from Background

139

140         After pre-processing spectra, the regions of florets were segmented from the remainder of 

141 the hyperspectral cube.   This segmentation was accomplished in two steps: (1) segmenting the 

142 broccoli sample from the black background; (2) segmenting the floret from the stalk.  For the 

143 first stage, Fig. 1 (a) and (d)-(e) illustrates the spectral differences between the broccoli and the 

144 black background.  Namely, the broccoli spectra have a bump around 550nm wavelength (visible 

145 bands of green) and a sharp increase around 700nm wavelength (Near infrared/Red edge whereas 

146 the spectra for the black background are nearly flat up to 800nm and then increases rapidly. 

147 Given these significant spectral differences, the k-means clustering algorithms was applied to 

148 cluster the pixel spectra into two groups, broccoli and background. After clustering, a 

149 morphological image closing operation was applied to connect any disconnected points. An 

150 example of the segmented results is shown in Fig. 1 (b). 

151

152 Fig 1. RGB image and spectra. (a) Broccoli sample placed on a black plate. (b) Segmented 

153 broccoli sample. (c) Segmented broccoli floret.  (d) Reflectance measured by HinaLea 4200 

154 hyperspectral camera. (e) Preprocessed spectra. The color of spectra in the (d)-(e) is 

155 corresponding to the points in (a). 

156
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157           Since the glucosinolates concentration was measured on broccoli spores, we hypothesized 

158 that focusing on the spectra of broccoli flower will generate stronger correlation than analyzing 

159 the spectra of entire broccoli. In order to segment the floret from the stalk, we applied the 

160 GraphCut algorithm [18] of the image segmentation toolbox in Matlab 2019b [19]. The 

161 algorithm was seeded by the user providing a marking that denotes the broccoli flower and the 

162 background including broccoli pedicle. The segmentation took around 5 to 10 seconds for each 

163 image. The segmented results are shown in Fig. 1 (c). 

164

165 Unmixing and correlation with glucosinolates information

166

167         The hyperspectral image collects a high-dimensional image cube that describes each pixel 

168 as the radiance or the reflectance at a range of wavelengths across the electromagnetic spectrum. 

169 The spectrum of a pixel is usually determined by the material of the object surface. With the 

170 assumption that the measured spectrum is consists of a set of constituent spectra, also known as 

171 endmembers, spectral unmixing is defined as decomposing the mixed spectrum into a collection 

172 of endmembers and their corresponding proportions, also known as abundances [20]. A well-

173 known spectral model (and the most commonly applied to perform hyperspectral unmixing) is 

174 the linear mixing model (LMM) which represents each measured spectrum as a convex 

175 combination of endmembers as shown in Equation 1 [20], 

176

177 si =  ∑M
k=1 aikek + εi such that  ∑M

k=1 aik = 1, aik ∈ [0,1] (1)

178
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179 where si is the spectrum of pixel i, εi is the noise vector, M is the number of endmembers, ek is 

180 kth endmember, and aik is the corresponding abundance value.  The objective of each unmixing 

181 broccoli sample is to find a set of endmembers and abundances that can represent the freshness 

182 of broccoli.  Thus, in this work, we attempt to estimate endmembers that represent the range of 

183 “freshness” levels in the samples. Then the associated abundances for the endmembers 

184 corresponding to “fresh” samples can use viewed as a freshness indicator for the sample.   The 

185 endmembers and abundances were estimated using two approaches averaging (as described 

186 below in Section A) or the application of the SPICE algorithm (as described in Section B).  

187 A. Unmixing with averaging spectra as endmembers

188 In the averaging approach, the endmembers were extracted by averaging the broccoli spectrum 

189 from two extreme storage conditions. Specifically, 𝒆1 is the average from broccoli on day 1, 

190 representing the best fresh level. 𝒆2 is the average from broccoli kept under room temperature 

191 for 12 days, representing the least fresh level.  The greater 𝑎𝑖1 indicates more fresh level of pixel 

192 i in the broccoli sample. 

193

194 The abundance values were then estimated by optimizing the fully constrained least squares of 

195 each pixel with the above two endmembers as shown in Equation 2 [22].

196

197 argmin
𝑎𝑖𝑘

∑𝑁
𝑖= 1 |𝒔𝑖 ―  ∑𝑀

𝑘 = 1 𝑎𝑖𝑘𝒆𝑘|2𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ∑𝑀
𝑘 = 1 𝑎𝑖𝑘 = 1, 𝑎𝑖𝑘 ∈ [0,1] (2)

198

199 where M = 2 in this case.

200

201 B. Unmixing with SPICE algorithm
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202

203            Instead of extracting average spectra as endmembers, the sparsity promoting iterated 

204 constrained endmember (SPICE) algorithm benefits from simultaneous estimating the shape and 

205 number of endmembers as well as the abundances [21]. The algorithm is initialized with a large 

206 number of endmembers and iteratively updates the estimated endmembers and abundances by 

207 optimizing Equation 3 using an alternating optimization approach,  

208

209 argmin
𝑎𝑖𝑘, 𝒆𝑘

[1 ― 𝜇
𝑁

∑𝑁
𝑖= 1 |𝒔𝑖 ―  ∑𝑀

𝑘 = 1 𝑎𝑖𝑘𝒆𝑘|2 + 𝜇𝑉 + 𝑆𝑃𝑇],  𝑆𝑃𝑇 = ∑𝑀
𝑘=1

Γ
∑𝑁

𝑖=1 𝑎𝑖𝑘
∑𝑁

𝑖=1 𝑎𝑖𝑘  (3)

210

211 where V is the sum of variances among estimated endmembers, 𝜇 is the regularization parameter 

212 to balance the reconstruction error and variance, Γ is a constant that decide the proportion values 

213 are driven to zero, and 𝑎′𝑖𝑘 is the abundance value for the ith pixel in the kth endmember from 

214 the previous iteration. After each iteration, endmembers which are not being used to represent 

215 the data are pruned from the overall endmember set1.  

216

217 C. Correlating abundance with glucosinolates concentration level

218

219           The estimated abundance vectors 𝒂 =  {𝑎1, 𝑎2, …, 𝑎𝑘} ∈ ℝ1×𝑀 for each broccoli sample  (where 

220 the value 𝑎𝑘 is the average abundance of all pixels over the region of interest as 𝑎𝑘 =  1
𝑁

∑𝑁
𝑖=1 𝑎𝑖𝑘, 

221 where N denotes the number of pixels ) were used to attempt to predict measured glucosinolates 

222 concentration values.  Specifically, a multi-variable linear regression (MLR) model as Equation 

1 The Matlab and Python implementation for SPICE can be found here: github.com/GatorSense
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223 4 was fit using least squares estimation approaches to predict the glucosinolates concentration 

224 value,

225

226 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑛𝑜𝑙𝑎𝑡𝑒 ~ 𝑏 + ∑𝑀
𝑘=1 𝑤𝑘𝑎𝑘 (4)

227

228 where b is the bias, 𝑤𝑘 is the coefficient for 𝑎𝑘, M is the number of estimated endmembers.

229

230

231 Extraction of total glucosinolates for HPLC quantification

232

233         HPLC-UV analysis of total glucosinolates was extracted according to previously defined 

234 methods with some modifications [22].  Raw materials from previously harvested broccoli 

235 florets were stored at -80°C and further samples were taken out to be dispersed in liquid 

236 nitrogen. 100 mg of samples was weighed and crushed to fine powder using mortar and pestle. 

237 Subsequently, crushed tissue powder was dissolved in 1 ml of 50 % methanol contained in the 

238 1.5 ml eppendorf tube. The tubes were further kept at 65°C for 1 hour in the water heating bath. 

239 Samples were then centrifuged at 15000 g for 10 minute. The supernatant was filtered through a 

240 0.22um hydrophilic PTFE syringe filter (Sigma Aldrich, USA). HPLC analysis was done with 

241 the flow rate of 0.4 ml/min at a column temperature of 40°C with a wavelength of 227 nm. The 

242 solvent used were water and 100 % acetonitrile. The individual glucosinolates were estimated by 

243 their HPLC peak area with reference to a desulfo-sinigrin method [22].  Total peak area was 

244 calculated from broccoli florets from day 1, 3, 5, 7, 9, 11 when stored at growth chamber (25°C) 
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245 and cold temperature (4°C). Four biological replicate were used for each time point during the 

246 study.

247

248 RNA extraction and gene expression studies using Quantitative real-

249 time PCR

250

251           Florets tissue samples from day 1, 3, 5 were chosen for glucosinolates pathway expression 

252 analysis. Total RNA was isolated from broccoli floret tissue stored in liquid nitrogen using 

253 TRIZOL (Ambion, life Technologies) method and DNase treatment (Turbo DNA free, Thermo-

254 fisher). First strand cDNA synthesis with 1µg of total RNA was performed using  reverse 

255 transcription kit (Applied Biosystems). For quantitative real-time RT-PCR, primers were 

256 designed using Primer Quest, Integrated DNA Technologies (IDT) software. The primers of 

257 glucosinolates pathway genes were listed in Table 1. Real time PCR reaction was performed in 

258 Applied Biosystems qPCR machine (Thermofisher). Total reaction was 10 µl for each gene in 

259 triplicates with thermocycler conditions as: 95C for 10 min, 45 cycles for 95C for 30 sec, 60C 

260 for 30 sec. Relative gene expression was calculated by CT method. Actin 2 was used as an 

261 internal control. This experiment was repeated twice. 

262

263 Table 1 : List of primers for quantitative PCR performed for glucosinolates pathway in 

264 Broccoli

Glucosinolates biosynthetic genes Sequence

BO_ACTIN2-FORWARD TGGTCGTGACCTTACTGACTAT

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.423030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423030
http://creativecommons.org/licenses/by/4.0/


13

BO_ACTIN2-REVERSE TCACTTGTCCGTCGGGTAAT

BO_ST5B2-FORWARD CCCATATACCCAACGGGTCG

BO_ST5B2-REVERSE CCCATGAACTCAGCCAACCT

BO_MAM1-FORWARD GGAATTATCCCTACCACCAGTTC 

BO_MAM1-REVERSE CAGAGGAGCAACATGAGATGAG 

BO_CYP79F1-FORWARD GTTAGGACAAGCGGAGAAAGA 

BO_CYP79F1-REVERSE CCATCAATGTTCCAACCTCTAAAC  

BO_AOP2-FORWARD GTGAGGAGTGATGTCCGTAAAG

BO_AOP2-REVERSE GCCTCAACTGGTAACTCGAAA 

BO_ESM1-FORWARD CCGGAAGTAGCGTTGTTTACT

BO_ESM1-REVERSE GTTAGGGTCGTCAAGGGATTT

BO_MAM3-FORWARD ATCGTCCGTACAACAAGTCATC

BO_MAM3-REVERSE GTATGTACTCTGGCCACCTTTC

BO_ESP-FORWARD AGGACGATCGAGGCCTATAA

BO_ESP-REVERSE GAATCCAGCTCCACCTCTTT

BO_FMOGSOX1-FORWARD GGATTAATAGCGGCCAGAGAG

BO_FMOGSOX1-REVERSE GCGGGTCGGATTCAGATTTA

265

266

267 Results

268

269 Use HSI as tool to detect postharvest senescence in broccoli 
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270

271          First, spectra were downsampled to 5,000 per segmented broccoli sample via k-means 

272 clustering to accelerate computing. Downsampling was applied to the two segmentation 

273 scenarios being considered: (1) entire broccoli, and (2) broccoli florets, respectively. Next, the 

274 entire dataset was split into training, validation and testing sets. To be more specific, 48 samples 

275 under 12 conditions (2 storage conditions over 6 time stages) were randomly divided into 4 folds, 

276 one for testing, and the other 3 for training and validation. Each fold contains 12 samples, 1 

277 replication from each condition. The training and validation dataset were shuffled in every 

278 repetition.

279

280 In the first step, two endmembers were calculated by averaging spectra from the most and least 

281 fresh replication in the training folds. The glucosinolates concentration and derived abundance 

282 feature for all training replications were applied to fit the MLR model. The training process was 

283 repeated for 10 times over 3 folds. In each repetition, we tested the trained model on the testing 

284 fold, calculated the mean and standard deviation of the testing and training prediction error in 

285 Table 2. In addition, a model was selected according to the root means square error (RMSE) and 

286 R-squared value from training and validation folds and was applied to the testing fold to generate 

287 the result shown in Fig. 2. 

288

289 Table 2. Comparison of glucosinolates prediction error from endmember abundances

Average Spectra SPICE 

RMSE R2 RMSE R2

Entire Training&Validation 48.12 ± 1.50 0.68 ± 0.02 44.93 ± 1.37 0.72 ± 0.02
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Broccoli Testing 28.81 ± 3.13 0.82 ± 0.04 26.14 ± 4.87 0.85 ± 0.06

Training&Validation 47.36 ± 1.52 0.69 ± 0.02 44.78 ± 1.23 0.72 ± 0.02Broccoli

Florets
Testing 26.72 ± 1.82 0.85 ± 0.03 21.34 ± 3.26 0.90 ± 0.03

290

291 Fig 2. Predicted glucosinolates on testing fold.  x-axis indicates the real glucosinolates 

292 concentration, y-axis indicates the prediction. Markers in various shape and color denotes 

293 prediction with different methods. Markers that closer to the “x = y” line indicates more accurate 

294 prediction.

295

296           Next, endmembers were estimated from training folds via SPICE. Since the estimated 

297 endmembers highly depends on the parameter Γ, a various range of Γ, starting from 10 to 150 

298 with stepsize 10, were explored. We conducted 10 repetitions over 3 folds for 15 Γ values. 

299 Similar to the first stage, with the estimated endmembers, the abundance feature can be derived 

300 from the training folds to fit the MLR model. Fig. 3 (a-b), (f-g) shows greater prediction error on 

301 validation folds with a smaller Γ, which indicates over-fitting of the approach. Namely, Since Γ 

302 determines the proportion of estimated endmembers to be eliminated,  a smaller Γ results in a 

303 greater number of endmembers and more parameters that need to be estimated (and provide 

304 opportunity for overfitting). Fig. 3 (c-d), (h-i) illustrate the tendency of over-fitting with 

305 increasing number of endmembers M. In addition, according to Fig. 3 (e), (j), M = 3 was 

306 determined for both segmentation, since it is the most number over 450 replications. We tested 

307 the trained MLR models with estimated endmembers on the test fold, generating the prediction 

308 errors shown in Table 2. A model was selected via the same criterion from repetitions and was 

309 applied to the same test fold as the first stage. The prediction results are shown in Fig. 2.
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310

311 Fig 3.  Exploration of SPICE parameters. (a-e) The training and validation error across 

312 various parameter setting for broccoli florets. (f-j) The training and validation error across 

313 various parameter setting for entire broccoli replicate.

314

315           The visualization of unmixing result is shown in Fig. 4, where (a-b) plot the estimated 

316 endmembers with average and SPICE on broccoli florets. Correspondingly, (c-d) visualize the 

317 estimated abundance map for testing samples in day 1, day 5, and day 12, and (e-f) plot the 

318 histogram of abundance value. The distribution of abundance and the number of pixels 

319 associated with each endmember is informative of freshness over days. In addition, the 

320 abundance map for the 3rd endmember in SPICE shows a relatively high concentration in day 5. 

321 It would be worth to explore whether the 3rd endmember can reveal a transition status during the 

322 progress of decay.

323

324 Fig 4. Estimated endmembers and unmixing results of testing samples in day 1, 5 and 12.  

325 (a-b) Estimated endmembers with average and SPICE  on broccoli florets. (c-d) Visualization of 

326 estimated abundance map for testing samples in day 1, day 5, and day 12. (e-f) Histogram of 

327 abundance value. 

328

329 Indo-glucosinolate peaks increased during the postharvest 

330 senescence 

331
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332         To access the possibility that the glucosinolates can be applied as senescence indicator, we 

333 performed HPLC analysis to measure the total glucosinolates concentration during the 

334 postharvest stored broccoli. In HPLC analysis, we monitored total peak area for indole-

335 glucosinolates, the most widely distributed glucosinolates,  at six time points during a 12-day of 

336 period for the broccoli florets stored at room temperature (25°C) and cold temperature (4°C). 

337 Four biological replicates were analyzed at each timepoint. We found that there is a linear 

338 increase in indo-glucosinlates concentration throughout a 12-day period in broccoli when stored 

339 at room temperature (Fig 5). However, this changes were not observed during the cold storage 

340 treatment in broccoli. Thus, there is a strong correlation observed between the indo-

341 glucosinolates levels and progression of  postharvest senescence in broccoli. This data suggested 

342 that indo-glucosinlates can potentially serve as an ‘freshness indicator’ to define a freshness 

343 signature.

344

345 Fig 5 . Quantification of the indo-glucosinolates peak area by HPLC. Graph displayed the 

346 changes in the indo-glucosinolates level in the broccoli florets on day 1, 3, 5, 7, 9, 11. Data 

347 represented means ± SE bars (n=4 for each day). 

348

349 Glucosinolates transcriptional levels were increased during the 

350 postharvest senescence

351  

352        To further validate this correlation and examine how the glucosinolates biosynthetic 

353 pathway is affected during the postharvest senescence process, we carried out quantitative gene 

354 expression of key genes in the glucosinolates biosynthetic pathway and observed that the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.423030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423030
http://creativecommons.org/licenses/by/4.0/


18

355 expression of all genes involved in glucosinolates biosynthetic pathway were up-regulated when 

356 stored at room temperature. Mostly, all the key candidates’ genes showed significant increase in 

357 transcript expression on day 5 when the broccoli florets were stored at room temperature 

358 however, the increase in glucosinolates  profile during the postharvest day 5 was significant but 

359 less drastic than the senescent conditions (Fig 6).  This data showed that glucosinolates levels 

360 increased rapidly in room temperature when stored at the room temperature. In case of pathway 

361 intermediate methylthioalkylmalate synthases (MAM1 and MAM3), there was 4.3 fold and 11 

362 fold significant increase in transcript levels from day 1 to day 3 and day 3 to day 5, respectively 

363 at room temperature.  However, in cold conditions, MAM1 levels were undetectable on day 3 but 

364 increased on day 5 by 5.3 fold (Fig 6). This implied that MAM1 levels were increased in higher 

365 proportions under room temperature condition. Similar patterns were observed for MAM3, 

366 epithiospecifier modifier 1 (ESM1), α-ketoglutarate-dependent dioxygenase (AOP2), 

367 epithiospecifier protein (ESP2), CYP79ST5B2 as their transcripts were significantly higher from 

368 day 0 to day 5. However, under cold conditions, the increase in flavin-monooxygenases 

369 (FMOGSOX2) transcript levels from day 0 to day 5 was not significant. This observation 

370 provided evidence that the gene expression changes in glucosinolates pathway were associated 

371 with postharvest storage conditions. Transcript levels for all genes were significantly higher at 

372 25°C indicating that the cold temperature was inhibited indo-glucosinolate production in 

373 postharvest broccoli.  Our results suggested that there is correlation between senescence and 

374 indo-glucosinlates concentration in postharvest broccoli.

375

376 Fig 6. A flowsheet of Indo-glucosinolates biosynthetic pathway displaying the transcript 

377 levels on day 1, 3, 5 for key enzymatic intermediates catalyzing the biosynthetic pathway. 
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378 All the key genes in glucosinolates biosynthetic pathway are highlighted in yellow. Red bars in 

379 the graph at each step shows the transcript level of specific candidate genes at 25°C on day 1, 3, 

380 5 whereas blue bars show the expression level of the genes at 4°C on day 1, 3, 5. Expression of 

381 each gene was normalized using actin as an internal control. Data represents means ± SE bars 

382 (n=3). Asterisks (*) indicate statistically significant differences from day 1 (control) to day 3, 

383 day 5 (storage temperature conditions) (p < 0.05).

384

385 Outliers

386
387        The smaller prediction error for testing fold compared with training and validation folds in 

388 Table 2 can be explained by the observed outliers S1 Fig. showed the prediction performance of 

389 the training fold with SPICE on the broccoli florets. The marker size and color are related to their 

390 prediction error. Apparently, the three circled outliers generated greater prediction error 

391 compared with others. The S1 Table listed the glucosinolates concentration of 4 replications kept 

392 in room temperature over 6 time points. Three bold numbers are corresponding to the circled 

393 outliers in S1 Fig. In rep 1, the glucosinolates concentration was increasing along days, while in 

394 rep 2-4, the bold number showed "abnormal" performance. An additional experiment was 

395 conducted, where the outliers were moved to the testing fold.  S2 Fig. and S2 Table showed the 

396 prediction performance and error on the additional testing fold. 

397

398 S1 Table. The glucosinolates concentration under 25°C over days

Rep1 Rep2 Rep3 Rep4
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Day1 11.9544 11.9405 14.2901 21.099

Day3 53.858 31.6877 75.4149 25.0054

Day5 129.0532 113.1505 122.6086 122.941

Day8 135.2934 151.8804 348.884 82.8482

Day10 182.7224 80.5022 192.528 261.347

Day12 200.8352 269.094 215.7358 213.3986

399
400
401 S2 Table. Comparison of prediction error on additional testing fold

Average spectra SPICE

RMSE R2 RMSE R2

Training &Validation 31.81 ± 0.64 0.82 ± 0.01 29.24 ± 1.89 0.85 ± 0.02Entire

Broccoli Testing 65.84 ± 0.32 0.50 ± 0.01 61.81 ± 2.71 0.58 ± 0.05

Training &Validation 29.19 ± 0.36 0.85 ± 0.01 27.54 ± 0.42 0.86 ± 0.01Broccoli

florest Testing 66.22 ± 0.22 0.49 ± 0.01 62.47 ± 0.70 0.58 ± 0.01

402
403
404

405 Discussion

406

407             The above experiments were conducted on both the entire broccoli sample and the 

408 segmented broccoli florets. Fig. 4 and Table 2 compared the prediction performance and error. 

409 Overall, results depicted that the estimated abundances can indicate change in the glucosinolates 
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410 concentration values. The prediction error can be explained by the fact that the measurement of 

411 hyperspectral data and glucosinolates concentration were conducted across different sample 

412 scales. Namely, the abundance values are derived from imaging across the entire surface of one 

413 side of a broccoli sample, whereas the glucosinolates value is measured using only one small 

414 component of the broccoli tissue. The RMSE values show that unmixing with broccoli florets 

415 only has slightly less error than when using the entire broccoli sample. In addition, SPICE 

416 outperforms the simple averaging.  However, when considering the computing and operation 

417 complexity, averaging spectra is a more straightforward approach to estimate endmembers as 

418 compared with SPICE and does not require parameter selection. 

419          In summary, hyperspectral imaging holds promising strength in demonstrating state of art 

420 performance in the area of crop sciences through the modulation of imaging with spectroscopy. 

421 As shown in this effort, HSI has the potential to provide quantitative parameters in understanding 

422 postharvest senescence. 

423
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491 Supporting information 
492 S1 Fig. Predicted glucosinolates on training folds. x-axis indicates the real glucosinolates 

493 concentration, y-axis indicates the prediction. Markers that closer to the “x = y” line indicates 

494 more accurate prediction. The marker size and color is corresponding to the prediction error, the 

495 bigger and brighter markers indicate greater error. 

496

497 S2 Fig. Predicted glucosinolates on additional testing fold. x-axis indicates the real 

498 glucosinolates concentration, y-axis indicates the prediction. Markers in various shape and color 

499 denotes prediction with different methods. Markers that closer to the “x = y” line indicates more 

500 accurate prediction.

501

502
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