1	Evaluation of Postharvest Senescence in Broccoli Via Hyperspectral Imaging
2	
3	
4	Xiaolei Guo ^{1,¶} , Yogesh Ahlawat ^{2,¶} , Alina Zare ¹ *, Tie Liu ² *
5	
6	
7	
8	¹ University of Florida, Department of Electrical and Computer Engineering, Gainesville, Florida
9	United States of America
10 11	² University of Florida, Horticultural Science Department, Gainesville, Florida, United States of America
12	
13	
14	* Corresponding author
15	Email: <u>azare@ece.ufl.edu</u> (AZ) and <u>tieliu@ufl.edu</u> (TL) ("AZ and TL are Joint Senior Authors")
16	
17	
18	
10	These such an equility to this weak
19	[•] These authors contributed equally to this work
20	
21	
22	

23

24 ABSTRACT

25

26	Fresh fruits and vegetables are invaluable for human health, but their quality deteriorates
27	before reaching consumers due to ongoing biochemical processes and compositional changes.
28	The current lack of any objective indices for defining "freshness" of fruits or vegetables limits
29	our capacity to control product quality leading to food loss and waste. It has been hypothesized
30	that certain proteins and compounds such as glucosinolates can be used as an indicator to
31	monitor the freshness of vegetables and fruits. However, it is challenging to "visualize" the
32	proteins and bioactive compounds during the senescence processes. In this work, we
33	propose machine learning hyperspectral image analysis approaches for estimating glucosinolates
34	levels to detect postharvest senescence in broccoli. Therefore, we set out the research to quantify
35	glucosinolates as "freshness-indicators" which aid in the development of an innovative and
36	accessible tool to precisely estimate the freshness of produce. Such a tool would allow for
37	significant advancement in postharvest logistics and supporting the availability for high-quality
38	and nutritious fresh produce.

39

40 Introduction

41

Broccoli (*Brassica oleracea* L. var. *italica*) is a nutritious vegetable that is well enriched in
anti-cancerous chemical compounds like glucosinolates [1]. Broccoli is highly perishable and
senesces quickly after harvest. Broccoli is usually harvested at a developing stage of

inflorescence therefore causes stress-induced senescence. The stress-induced senescence leads to
faster chlorosis and increases in proteases resulting in the dismantling of chloroplast number and
component [2]. Thus, during the postharvest storage and transportation, broccoli florets starts to
turn yellow accompanied with a decrease in nutritional quality [1].

Senescence is a developmental process that can be tracked by monitoring physiological 49 50 and biochemical changes in transcripts, proteins, and metabolites in broccoli. One particularly interesting class of phytochemicals are glucosinolates, given their importance not only for plant 51 protection, but also for their dietary significance as chemo-preventative compounds that are 52 53 found in edible plants, (i.e., cruciferous crops). However, the actual quality, storability and overall "freshness" of broccoli postharvest is quite uncertain unless the changes are visible to the 54 human eye. Detecting any deteriorative physiological signs and symptoms before any 55 irreversible damage occurs could allow for the development of freshness indicators, which can 56 be used to identify the best postharvest handling, process and storage practices [3]. Therefore, 57 sensitive indicators of potential deterioration are essential for extending optimal postharvest 58 quality. 59

Prior work to detect symptoms of degradation in quality include using color 60 61 measurements at an early postharvest stages [4]. Chlorophyll fluorescence and RGB (red, green, blue) color imagery analysis were used to measure the pigment change in broccoli using 62 63 florescence and inverse red channel for color measurements [5]. However, objectively measuring 64 the progressive loss of freshness after harvest has been a heretofore intractable problem in postharvest handling of fresh produce. Until now, determining freshness has been mostly based 65 66 on external visual criteria like wilting, shriveling and color changes, which is laborious, time-67 consuming, and subjective [5].

The rapid advancement of optical sensors and imaging technologies has significantly impacted agriculture and brought about more automation [6]. Initially, imaging techniques used red-green-blue color systems for the identification of color change and defects in the food and agricultural products [7]. Since, multispectral fluorescence imaging has been used with maize, peas, soybean for measuring color change [8].

73 Hyperspectral Imaging (HSI) has also evolved over the years and is being explored as technique for nondestructive food analysis. HSI provides both spatial and spectral information 74 about an object. HSI consists of many thousands of pixels in a two-dimensional array, with each 75 76 pixel containing a spectrum corresponding to a specific region on the surface of the sample. These spectra vary according to unique material and chemical compositions. Interrogation of 77 these spectra makes possible the development of mathematical models to estimate the chemical 78 79 composition or functional class of a sample associated with each pixel. Results reported in several studies have indicated that hyperspectral imaging is able to predict a number of food 80 components and quality parameters in a wide range of biological matrices [5]. Previous research 81 has shown that HSI was used in a plethora of applications in agriculture and food industry to 82 measure the textural changes including bruise, chilling injury, firmness [9,10,11], and 83 biochemical detection such as moisture content, soluble solids content, acidity, and phenolics 84 [12, 13,14], biosafety measurement in bacterial or fungal infection and fruit-fly infestation 85 [15,16]. In addition, photosynthetic rate in mangroves was studied in relation to salinity stress 86 87 using HSI technology [5]. More importantly, Hernandez et al. [17] reported that hyperspectral imaging can quantify the localization and total glucoraphanin in florets and stalks of broccoli. 88 89 Moreover, the low instrument cost and fast-detecting properties of HSI have enabled the

development of powerful diagnostic tools for detecting, classifying, and visualizing quality and
safety attributes of fresh produce.

92	This study was conducted to evaluate the potential significance of hyperspectral imaging as
93	a tool to determine the freshness of broccoli during postharvest storage. Through High
94	Performance Liquid Chromatography (HPLC) quantitation, we showed that there is a linear
95	correlation between the total glucosinolates concentration and post-harvest senescence in
96	broccoli. Moreover, we performed Real-Time Polymerase Chain Reaction (PCR) for expression
97	studies on 13 enzymes are involved in the biochemical pathway producing glucosinolates. We
98	believe that combination of HSI and glucosinolates analysis can define the freshness signature in
99	postharvest broccoli.

100

101 Materials and methods

102

Tissue collection and Preparation

104

Freshly grown broccoli (cultivar, Emerald Crown) florets were manually harvested from local farms in Hastings, Florida to avoid any mechanical damage. All the broccoli florets were selected with the same shape and size in this study. The florets were then stored in either a cold room (4–5°C, darkness) for the cold treatment, or in a plant growth chamber at 25°C (RT) with hours of light and 8 hours of dark. Four biological replicate of broccoli florets were used for the experimental sampling for tissue collections. Tissue samples were collected from the broccoli florets every other day during a twelve-day period. The samples were wrapped in aluminum foil, immediately frozen in liquid nitrogen and then stored in -80°C for quantitative PCR and freeze-

113 dried for HPLC.

114

115 Hyperspectral imaging setup

116

Broccoli hyperspectral images were collected with a HinaLea 4200 hyperspectral camera and converted to reflectance spectra. The camera covers the wavelengths ranging from 400nm to 1000nm with a resolution at 4nm (based on full width at half maximum), resulting in 300 wavebands. Halogen lamps were used as illuminators in an imaging chamber. Within the chamber, each broccoli sample was placed on a black plate with matte black siding to absorb redundant light in order to minimize scattering. Hyperspectral measurements of three biological replicates were carried out at every time point and the experiment was repeated three times.

124

125 **Pre-processing Reflectance Spectra**

126

Pre-processing of the measured spectra for noise and illumination variation was required 127 128 prior to analysis. The measured reflectance spectra consistently contained higher levels of noise 129 at the two ends of the wavelength range. In addition, since the illuminator used was a point light source and did not evenly cover the entire imaging surface. As a result, the center of the imaging 130 plane was brighter than the outer edge. Fig. 1 (d) shows examples for the issues mentioned 131 above. To mitigate these issues, first, a median filter of length 5 along the wavelength axis was 132 applied to the reflectance spectra. Next, responses below 500 nm and above 900 nm were 133 134 removed due to the high noise levels. Finally, in order to reduce the magnitude difference caused by point light source, we applied l_2 normalization in which each spectral signature is normalized to have unit norm.

137

138 Segmenting Floret from Background

139

After pre-processing spectra, the regions of florets were segmented from the remainder of 140 the hyperspectral cube. This segmentation was accomplished in two steps: (1) segmenting the 141 142 broccoli sample from the black background: (2) segmenting the floret from the stalk. For the first stage, Fig. 1 (a) and (d)-(e) illustrates the spectral differences between the broccoli and the 143 144 black background. Namely, the broccoli spectra have a bump around 550nm wavelength (visible 145 bands of green) and a sharp increase around 700nm wavelength (Near infrared/Red edge whereas the spectra for the black background are nearly flat up to 800nm and then increases rapidly. 146 Given these significant spectral differences, the k-means clustering algorithms was applied to 147 cluster the pixel spectra into two groups, broccoli and background. After clustering, a 148 morphological image closing operation was applied to connect any disconnected points. An 149 150 example of the segmented results is shown in Fig. 1 (b).

151

Fig 1. RGB image and spectra. (a) Broccoli sample placed on a black plate. (b) Segmented
broccoli sample. (c) Segmented broccoli floret. (d) Reflectance measured by HinaLea 4200
hyperspectral camera. (e) Preprocessed spectra. The color of spectra in the (d)-(e) is
corresponding to the points in (a).

157	Since the glucosinolates concentration was measured on broccoli spores, we hypothesized
158	that focusing on the spectra of broccoli flower will generate stronger correlation than analyzing
159	the spectra of entire broccoli. In order to segment the floret from the stalk, we applied the
160	GraphCut algorithm [18] of the image segmentation toolbox in Matlab 2019b [19]. The
161	algorithm was seeded by the user providing a marking that denotes the broccoli flower and the
162	background including broccoli pedicle. The segmentation took around 5 to 10 seconds for each
163	image. The segmented results are shown in Fig. 1 (c).
164	

165 **Unmixing and correlation with glucosinolates information**

166

The hyperspectral image collects a high-dimensional image cube that describes each pixel 167 as the radiance or the reflectance at a range of wavelengths across the electromagnetic spectrum. 168 The spectrum of a pixel is usually determined by the material of the object surface. With the 169 170 assumption that the measured spectrum is consists of a set of constituent spectra, also known as endmembers, spectral unmixing is defined as decomposing the mixed spectrum into a collection 171 of endmembers and their corresponding proportions, also known as abundances [20]. A well-172 known spectral model (and the most commonly applied to perform hyperspectral unmixing) is 173 the linear mixing model (LMM) which represents each measured spectrum as a convex 174 combination of endmembers as shown in Equation 1 [20], 175

176

177
$$s_i = \sum_{k=1}^{M} a_{ik} e_k + \varepsilon_i$$
 such that $\sum_{k=1}^{M} a_{ik} = 1, a_{ik} \in [0,1]$ (1)

where s_i is the spectrum of pixel i, ε_i is the noise vector, M is the number of endmembers, e_k is 179 kth endmember, and a_{ik} is the corresponding abundance value. The objective of each unmixing 180 broccoli sample is to find a set of endmembers and abundances that can represent the freshness 181 of broccoli. Thus, in this work, we attempt to estimate endmembers that represent the range of 182 "freshness" levels in the samples. Then the associated abundances for the endmembers 183 corresponding to "fresh" samples can use viewed as a freshness indicator for the sample. The 184 endmembers and abundances were estimated using two approaches averaging (as described 185 below in Section A) or the application of the SPICE algorithm (as described in Section B). 186

187

A. Unmixing with averaging spectra as endmembers

In the averaging approach, the endmembers were extracted by averaging the broccoli spectrum from two extreme storage conditions. Specifically, e_1 is the average from broccoli on day 1, representing the best fresh level. e_2 is the average from broccoli kept under room temperature for 12 days, representing the least fresh level. The greater a_{i1} indicates more fresh level of pixel *i* in the broccoli sample.

193

The abundance values were then estimated by optimizing the fully constrained least squares of each pixel with the above two endmembers as shown in Equation 2 [22].

196

197
$$\arg\min_{a_{ik}} \sum_{i=1}^{N} |\mathbf{s}_i - \sum_{k=1}^{M} a_{ik} \mathbf{e}_k|^2$$
 such that $\sum_{k=1}^{M} a_{ik} = 1, a_{ik} \in [0,1]$ (2)

198

199 where M = 2 in this case.

200

B. Unmixing with SPICE algorithm

202

Instead of extracting average spectra as endmembers, the sparsity promoting iterated constrained endmember (SPICE) algorithm benefits from simultaneous estimating the shape and number of endmembers as well as the abundances [21]. The algorithm is initialized with a large number of endmembers and iteratively updates the estimated endmembers and abundances by optimizing Equation 3 using an alternating optimization approach,

208

209
$$\arg\min_{a_{ik}, e_k} \left[\frac{1-\mu}{N} \sum_{i=1}^{N} |s_i - \sum_{k=1}^{M} a_{ik} e_k|^2 + \mu V + SPT \right], SPT = \sum_{k=1}^{M} \frac{\Gamma}{\sum_{i=1}^{N} a_{ik}} \sum_{i=1}^{N} a_{ik} (3)$$

210

where *V* is the sum of variances among estimated endmembers, μ is the regularization parameter to balance the reconstruction error and variance, Γ is a constant that decide the proportion values are driven to zero, and α'_{ik} is the abundance value for the *i*th pixel in the *k*th endmember from the previous iteration. After each iteration, endmembers which are not being used to represent the data are pruned from the overall endmember set¹.

216

217 C. Correlating abundance with glucosinolates concentration level

218

The estimated abundance vectors $\hat{a} = \{\hat{a}_1, \hat{a}_2, ..., \hat{a}_k\} \in \mathbb{R}^{1 \times M}$ for each broccoli sample (where the value \hat{a}_k is the average abundance of all pixels over the region of interest as $\hat{a}_k = \frac{1}{N} \sum_{i=1}^{N} a_{ik}$, where *N* denotes the number of pixels) were used to attempt to predict measured glucosinolates concentration values. Specifically, a multi-variable linear regression (MLR) model as Equation

¹ The Matlab and Python implementation for SPICE can be found here: github.com/GatorSense

4 was fit using least squares estimation approaches to predict the glucosinolates concentration 223 value, 224 225 glucosinolate ~ $b + \sum_{k=1}^{M} w_k \hat{a}_k$ (4) 226 227 where b is the bias, w_k is the coefficient for \hat{a}_k , M is the number of estimated endmembers. 228 229 230 Extraction of total glucosinolates for HPLC quantification 231 232 HPLC-UV analysis of total glucosinolates was extracted according to previously defined 233 234 methods with some modifications [22]. Raw materials from previously harvested broccoli florets were stored at -80°C and further samples were taken out to be dispersed in liquid 235 nitrogen. 100 mg of samples was weighed and crushed to fine powder using mortar and pestle. 236 237 Subsequently, crushed tissue powder was dissolved in 1 ml of 50 % methanol contained in the 1.5 ml eppendorf tube. The tubes were further kept at 65°C for 1 hour in the water heating bath. 238 Samples were then centrifuged at 15000 g for 10 minute. The supernatant was filtered through a 239 0.22um hydrophilic PTFE syringe filter (Sigma Aldrich, USA). HPLC analysis was done with 240 the flow rate of 0.4 ml/min at a column temperature of 40°C with a wavelength of 227 nm. The 241 solvent used were water and 100 % acetonitrile. The individual glucosinolates were estimated by 242 their HPLC peak area with reference to a desulfo-sinigrin method [22]. Total peak area was 243 calculated from broccoli florets from day 1, 3, 5, 7, 9, 11 when stored at growth chamber (25°C) 244

and cold temperature (4°C). Four biological replicate were used for each time point during the
study.

247

RNA extraction and gene expression studies using Quantitative realtime PCR

250

251	Florets tissue samples from day 1, 3, 5 were chosen for glucosinolates pathway expression
252	analysis. Total RNA was isolated from broccoli floret tissue stored in liquid nitrogen using
253	TRIZOL (Ambion, life Technologies) method and DNase treatment (Turbo DNA free, Thermo-
254	fisher). First strand cDNA synthesis with $1\mu g$ of total RNA was performed using reverse
255	transcription kit (Applied Biosystems). For quantitative real-time RT-PCR, primers were
256	designed using Primer Quest, Integrated DNA Technologies (IDT) software. The primers of
257	glucosinolates pathway genes were listed in Table 1. Real time PCR reaction was performed in
258	Applied Biosystems qPCR machine (Thermofisher). Total reaction was 10 μ l for each gene in
259	triplicates with thermocycler conditions as: 95°C for 10 min, 45 cycles for 95°C for 30 sec, 60°C
260	for 30 sec. Relative gene expression was calculated by ΔCT method. Actin 2 was used as an
261	internal control. This experiment was repeated twice.

262

Table 1 : List of primers for quantitative PCR performed for glucosinolates pathway in Broccoli

Glucosinolates biosynthetic genes	Sequence
BO_ACTIN2-FORWARD	TGGTCGTGACCTTACTGACTAT

BO_ACTIN2-REVERSE	TCACTTGTCCGTCGGGTAAT
BO_ST5B2-FORWARD	CCCATATACCCAACGGGTCG
BO_ST5B2-REVERSE	CCCATGAACTCAGCCAACCT
BO_MAM1-FORWARD	GGAATTATCCCTACCACCAGTTC
BO_MAM1-REVERSE	CAGAGGAGCAACATGAGATGAG
BO_CYP79F1-FORWARD	GTTAGGACAAGCGGAGAAAGA
BO_CYP79F1-REVERSE	CCATCAATGTTCCAACCTCTAAAC
BO_AOP2-FORWARD	GTGAGGAGTGATGTCCGTAAAG
BO_AOP2-REVERSE	GCCTCAACTGGTAACTCGAAA
BO_ESM1-FORWARD	CCGGAAGTAGCGTTGTTTACT
BO_ESM1-REVERSE	GTTAGGGTCGTCAAGGGATTT
BO_MAM3-FORWARD	ATCGTCCGTACAACAAGTCATC
BO_MAM3-REVERSE	GTATGTACTCTGGCCACCTTTC
BO_ESP-FORWARD	AGGACGATCGAGGCCTATAA
BO_ESP-REVERSE	GAATCCAGCTCCACCTCTTT
BO_FMOGSOX1-FORWARD	GGATTAATAGCGGCCAGAGAG
BO_FMOGSOX1-REVERSE	GCGGGTCGGATTCAGATTTA

Results

269 Use HSI as tool to detect postharvest senescence in broccoli

270

271	First, spectra were downsampled to 5,000 per segmented broccoli sample via k-means
272	clustering to accelerate computing. Downsampling was applied to the two segmentation
273	scenarios being considered: (1) entire broccoli, and (2) broccoli florets, respectively. Next, the
274	entire dataset was split into training, validation and testing sets. To be more specific, 48 samples
275	under 12 conditions (2 storage conditions over 6 time stages) were randomly divided into 4 folds,
276	one for testing, and the other 3 for training and validation. Each fold contains 12 samples, 1
277	replication from each condition. The training and validation dataset were shuffled in every
278	repetition.
279	
280	In the first step, two endmembers were calculated by averaging spectra from the most and least
281	fresh replication in the training folds. The glucosinolates concentration and derived abundance
282	feature for all training replications were applied to fit the MLR model. The training process was
283	repeated for 10 times over 3 folds. In each repetition, we tested the trained model on the testing
283 284	repeated for 10 times over 3 folds. In each repetition, we tested the trained model on the testing fold, calculated the mean and standard deviation of the testing and training prediction error in
283 284 285	repeated for 10 times over 3 folds. In each repetition, we tested the trained model on the testing fold, calculated the mean and standard deviation of the testing and training prediction error in Table 2. In addition, a model was selected according to the root means square error (RMSE) and
283 284 285 286	repeated for 10 times over 3 folds. In each repetition, we tested the trained model on the testing fold, calculated the mean and standard deviation of the testing and training prediction error in Table 2. In addition, a model was selected according to the root means square error (RMSE) and R-squared value from training and validation folds and was applied to the testing fold to generate
283 284 285 286 287	repeated for 10 times over 3 folds. In each repetition, we tested the trained model on the testing fold, calculated the mean and standard deviation of the testing and training prediction error in Table 2. In addition, a model was selected according to the root means square error (RMSE) and R-squared value from training and validation folds and was applied to the testing fold to generate the result shown in Fig. 2.

289	Table 2.	Comparison	of glucosin	olates prediction	n error from	endmember	abundances
-----	----------	-------------------	-------------	-------------------	--------------	-----------	------------

		Average Spectra		SPICE	
		RMSE	R2	RMSE	R2
Entire	Training&Validation	48.12 ± 1.50	0.68 ± 0.02	44.93 ± 1.37	0.72 ± 0.02

Broccoli	Testing	28.81 ± 3.13	0.82 ± 0.04	26.14 ± 4.87	0.85 ± 0.06
Broccoli	Training&Validation	47.36 ± 1.52	0.69 ± 0.02	44.78 ± 1.23	0.72 ± 0.02
Florets	Testing	26.72 ± 1.82	0.85 ± 0.03	21.34 ± 3.26	0.90 ± 0.03

290

Fig 2. Predicted glucosinolates on testing fold. x-axis indicates the real glucosinolates concentration, y-axis indicates the prediction. Markers in various shape and color denotes prediction with different methods. Markers that closer to the "x = y" line indicates more accurate prediction.

295

Next, endmembers were estimated from training folds via SPICE. Since the estimated 296 endmembers highly depends on the parameter Γ , a various range of Γ , starting from 10 to 150 297 298 with stepsize 10, were explored. We conducted 10 repetitions over 3 folds for 15 Γ values. 299 Similar to the first stage, with the estimated endmembers, the abundance feature can be derived from the training folds to fit the MLR model. Fig. 3 (a-b), (f-g) shows greater prediction error on 300 301 validation folds with a smaller Γ , which indicates over-fitting of the approach. Namely, Since Γ determines the proportion of estimated endmembers to be eliminated, a smaller Γ results in a 302 greater number of endmembers and more parameters that need to be estimated (and provide 303 opportunity for overfitting). Fig. 3 (c-d), (h-i) illustrate the tendency of over-fitting with 304 increasing number of endmembers M. In addition, according to Fig. 3 (e), (j), M = 3 was 305 determined for both segmentation, since it is the most number over 450 replications. We tested 306 the trained MLR models with estimated endmembers on the test fold, generating the prediction 307 errors shown in Table 2. A model was selected via the same criterion from repetitions and was 308 309 applied to the same test fold as the first stage. The prediction results are shown in Fig. 2.

310

Fig 3. Exploration of SPICE parameters. (a-e) The training and validation error across 311 various parameter setting for broccoli florets. (f-i) The training and validation error across 312 various parameter setting for entire broccoli replicate. 313 314 The visualization of unmixing result is shown in Fig. 4, where (a-b) plot the estimated 315 endmembers with average and SPICE on broccoli florets. Correspondingly, (c-d) visualize the 316 estimated abundance map for testing samples in day 1, day 5, and day 12, and (e-f) plot the 317 318 histogram of abundance value. The distribution of abundance and the number of pixels associated with each endmember is informative of freshness over days. In addition, the 319 abundance map for the 3rd endmember in SPICE shows a relatively high concentration in day 5. 320 It would be worth to explore whether the 3rd endmember can reveal a transition status during the 321 progress of decay. 322 323 Fig 4. Estimated endmembers and unmixing results of testing samples in day 1, 5 and 12. 324 (a-b) Estimated endmembers with average and SPICE on broccoli florets. (c-d) Visualization of 325 estimated abundance map for testing samples in day 1, day 5, and day 12. (e-f) Histogram of 326 abundance value. 327 328 Indo-glucosinolate peaks increased during the postharvest 329 senescence 330 331

332	To access the possibility that the glucosinolates can be applied as senescence indicator, we
333	performed HPLC analysis to measure the total glucosinolates concentration during the
334	postharvest stored broccoli. In HPLC analysis, we monitored total peak area for indole-
335	glucosinolates, the most widely distributed glucosinolates, at six time points during a 12-day of
336	period for the broccoli florets stored at room temperature (25°C) and cold temperature (4°C).
337	Four biological replicates were analyzed at each timepoint. We found that there is a linear
338	increase in indo-glucosinlates concentration throughout a 12-day period in broccoli when stored
339	at room temperature (Fig 5). However, this changes were not observed during the cold storage
340	treatment in broccoli. Thus, there is a strong correlation observed between the indo-
341	glucosinolates levels and progression of postharvest senescence in broccoli. This data suggested
342	that indo-glucosinlates can potentially serve as an 'freshness indicator' to define a freshness
343	signature.
344	
345	Fig 5. Quantification of the indo-glucosinolates peak area by HPLC. Graph displayed the
346	changes in the indo-glucosinolates level in the broccoli florets on day 1, 3, 5, 7, 9, 11. Data
347	represented means \pm SE bars (n=4 for each day).
348	
349	Glucosinolates transcriptional levels were increased during the
350	postharvest senescence
351	
352	To further validate this correlation and examine how the glucosinolates biosynthetic
353	pathway is affected during the postharvest senescence process, we carried out quantitative gene
354	expression of key genes in the glucosinolates biosynthetic pathway and observed that the

expression of all genes involved in glucosinolates biosynthetic pathway were up-regulated when 355 stored at room temperature. Mostly, all the key candidates' genes showed significant increase in 356 transcript expression on day 5 when the broccoli florets were stored at room temperature 357 however, the increase in glucosinolates profile during the postharvest day 5 was significant but 358 less drastic than the senescent conditions (Fig 6). This data showed that glucosinolates levels 359 360 increased rapidly in room temperature when stored at the room temperature. In case of pathway intermediate methylthioalkylmalate synthases (MAM1 and MAM3), there was 4.3 fold and 11 361 fold significant increase in transcript levels from day 1 to day 3 and day 3 to day 5, respectively 362 363 at room temperature. However, in cold conditions, MAM1 levels were undetectable on day 3 but increased on day 5 by 5.3 fold (Fig 6). This implied that MAM1 levels were increased in higher 364 proportions under room temperature condition. Similar patterns were observed for MAM3, 365 epithiospecifier modifier 1 (ESM1), α -ketoglutarate-dependent dioxygenase (AOP2), 366 epithiospecifier protein (ESP2), CYP79ST5B2 as their transcripts were significantly higher from 367 368 day 0 to day 5. However, under cold conditions, the increase in flavin-monooxygenases (FMOGSOX2) transcript levels from day 0 to day 5 was not significant. This observation 369 provided evidence that the gene expression changes in glucosinolates pathway were associated 370 371 with postharvest storage conditions. Transcript levels for all genes were significantly higher at 372 25°C indicating that the cold temperature was inhibited indo-glucosinolate production in 373 postharvest broccoli. Our results suggested that there is correlation between senescence and 374 indo-glucosinlates concentration in postharvest broccoli.

375

Fig 6. A flowsheet of Indo-glucosinolates biosynthetic pathway displaying the transcript

377 levels on day 1, 3, 5 for key enzymatic intermediates catalyzing the biosynthetic pathway.

378	All the key genes in glucosinolates biosynthetic pathway are highlighted in yellow. Red bars in
379	the graph at each step shows the transcript level of specific candidate genes at 25°C on day 1, 3,
380	5 whereas blue bars show the expression level of the genes at 4°C on day 1, 3, 5. Expression of
381	each gene was normalized using actin as an internal control. Data represents means \pm SE bars
382	(n=3). Asterisks (*) indicate statistically significant differences from day 1 (control) to day 3,
383	day 5 (storage temperature conditions) ($p < 0.05$).

384

Outliers

386

The smaller prediction error for testing fold compared with training and validation folds in 387 Table 2 can be explained by the observed outliers S1 Fig. showed the prediction performance of 388 the training fold with SPICE on the broccoli florets. The marker size and color are related to their 389 prediction error. Apparently, the three circled outliers generated greater prediction error 390 compared with others. The S1 Table listed the glucosinolates concentration of 4 replications kept 391 392 in room temperature over 6 time points. Three bold numbers are corresponding to the circled 393 outliers in S1 Fig. In rep 1, the glucosinolates concentration was increasing along days, while in rep 2-4, the bold number showed "abnormal" performance. An additional experiment was 394 395 conducted, where the outliers were moved to the testing fold. S2 Fig. and S2 Table showed the 396 prediction performance and error on the additional testing fold.

397

398 S1 Table. The glucosinolates concentration under 25°C over days

Rep1	Rep2	Rep3	Rep4

Day1	11.9544	11.9405	14.2901	21.099
Day3	53.858	31.6877	75.4149	25.0054
Day5	129.0532	113.1505	122.6086	122.941
Day8	135.2934	151.8804	348.884	82.8482
Day10	182.7224	80.5022	192.528	261.347
Day12	200.8352	269.094	215.7358	213.3986

399

400

401 S2 Table. Comparison of prediction error on additional testing fold

	Average spectra		SPICE	
	RMSE	R2	RMSE	R2
Training &Validation	31.81 ± 0.64	0.82 ± 0.01	29.24 ± 1.89	0.85 ± 0.02
Testing	65.84 ± 0.32	0.50 ± 0.01	61.81 ± 2.71	0.58 ± 0.05
Training &Validation	29.19 ± 0.36	0.85 ± 0.01	27.54 ± 0.42	0.86 ± 0.01
Testing	66.22 ± 0.22	0.49 ± 0.01	62.47 ± 0.70	0.58 ± 0.01
	Training &Validation Testing Training &Validation Testing	Average specRMSETraining &Validation 31.81 ± 0.64 Testing 65.84 ± 0.32 Training &Validation 29.19 ± 0.36 Testing 66.22 ± 0.22	Average spectra RMSE R2 Training & Validation 31.81 ± 0.64 0.82 ± 0.01 Testing 65.84 ± 0.32 0.50 ± 0.01 Training & Validation 29.19 ± 0.36 0.85 ± 0.01 Testing 66.22 ± 0.22 0.49 ± 0.01	Average spectraSPICERMSER2RMSETraining &Validation 31.81 ± 0.64 0.82 ± 0.01 29.24 ± 1.89 Testing 65.84 ± 0.32 0.50 ± 0.01 61.81 ± 2.71 Training &Validation 29.19 ± 0.36 0.85 ± 0.01 27.54 ± 0.42 Testing 66.22 ± 0.22 0.49 ± 0.01 62.47 ± 0.70

402

403 404

405 **Discussion**

406

407 The above experiments were conducted on both the entire broccoli sample and the

408 segmented broccoli florets. Fig. 4 and Table 2 compared the prediction performance and error.

409 Overall, results depicted that the estimated abundances can indicate change in the glucosinolates

concentration values. The prediction error can be explained by the fact that the measurement of 410 hyperspectral data and glucosinolates concentration were conducted across different sample 411 scales. Namely, the abundance values are derived from imaging across the entire surface of one 412 side of a broccoli sample, whereas the glucosinolates value is measured using only one small 413 component of the broccoli tissue. The RMSE values show that unmixing with broccoli florets 414 415 only has slightly less error than when using the entire broccoli sample. In addition, SPICE outperforms the simple averaging. However, when considering the computing and operation 416 complexity, averaging spectra is a more straightforward approach to estimate endmembers as 417 418 compared with SPICE and does not require parameter selection. In summary, hyperspectral imaging holds promising strength in demonstrating state of art 419 performance in the area of crop sciences through the modulation of imaging with spectroscopy. 420

421 As shown in this effort, HSI has the potential to provide quantitative parameters in understanding 422 postharvest senescence.

423

424 Acknowledgements

425

We thank Dr. Diane Rowland for providing the HinaLea 4200 hyperspectral camera and
converted to reflectance spectra for supporting in sample imaging. We thank Dr. Ru Dai and Dr.
Jeongim Kim for the HPLC analysis and troubleshooting. This work was supported by UF Seed
Fund (#P0175583 to A.Z., T.L.).

430

431 **References**

433 434	1.	Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. Journal of Functional Foods. 2014 Mar ;7:67-
435		76.
436	2.	Coupe SA, Sinclair BK, Watson LM, Heyes JA, Eason JR. Identification of dehydration-
437		responsive cysteine proteases during post-harvest senescence of broccoli florets. Journal
438		of Experimental Botany. 2003 Mar 1;54(384):1045–56.
439	3.	Karimi Y, Maftoonazad N, Ramaswamy HS, Prasher SO, Marcotte M. Application of
440		Hyperspectral Technique for Color Classification Avocados Subjected to Different
441		Treatments. Food Bioprocess Technol. 2012 Jan;5(1):252–64.
442	4.	Shewfelt RL, Heaton EK, Batal KM. Nondestructive Color Measurement of Fresh
443		Broccoli. J Food Science. 1984 Nov;49(6):1612–3.
444	5.	Feng Y-Z, Sun D-W. 2012. Application of hyperspectral imaging in food safety inspection
445		and control: a review. Crit Rev Food Sci Nutr 52:1039-58.
446	6.	Gowen A, Odonnell C, Cullen P, Downey G, Frias J. Hyperspectral imaging - an emerging
447		process analytical tool for food quality and safety control. Trends in Food Science &
448		Technology. 2007 Dec;18(12):590–8.
449	7.	Singh CB, Jayas DS, Paliwal J, White NDG. Fungal Damage Detection in Wheat Using
450		Short-Wave Near-Infrared Hyperspectral and Digital Colour Imaging. International
451		Journal of Food Properties. 2012 Jan;15(1):11–24.
452	8.	Chen Y-R, Chao K, Kim MS. Machine vision technology for agricultural applications.
453		Computers and Electronics in Agriculture. 2002 Nov;36(2–3):173–91.
454	9.	Ariana DP, Lu R, Guyer DE. Near-infrared hyperspectral reflectance imaging for
455		detection of bruises on pickling cucumbers. Computers and Electronics in Agriculture.
456		2006 Aug;53(1):60–70.
457	10	. Cheng X, Chen YR, Tao Y, Wang CY, Kim MS, Lefcourt AM. 2004. A novel integrated
458		PCA and FLD method on hyperspectral image feature extraction for cucumber chilling
459		damage inspection. Trans ASAE 47:1313–20
460	11	. Noh HK, Lu R. Hyperspectral laser-induced fluorescence imaging for assessing apple
461		fruit quality. Postharvest Biology and Technology. 2007 Feb;43(2):193–201.
462	12	. ElMasry G, Wang N, Vigneault C. 2009. Detecting chilling injury in Red Delicious apple
463		using hyperspectral imaging and neural networks. Postharvest Biol Technol 52:1–8.
464	13	. Li X, He Y. Non-destructive measurement of acidity of Chinese bayberry using Vis/NIRS
465		techniques. Eur Food Res Technol. 2006 Oct;223(6):731–6.
466	14	Zhu O, Huang M, Zhao X, Wang S, Wavelength Selection of Hyperspectral Scattering
467		Image Using New Semi-supervised Affinity Propagation for Prediction of Firmness and
468		Soluble Solid Content in Apples. Food Anal Methods. 2013 Feb:6(1):334–42
469	15	Cernadas RA. Benedetti CE. Role of auxin and gibberellin in citrus canker development
470		and in the transcriptional control of cell-wall remodeling genes modulated by
471		Xanthomonas axonopodis py citri Plant Science 2009 Sep:177(3):190–5
472	16	Xing J. Guver D. Ariana D. Lu R. Determining ontimal wavebands using genetic
473	10	algorithm for detection of internal insect infestation in tart cherry Sens & Instrumen
474		Food Qual 2008 Sep:2(3):161–7
475	17	Hernandez-Hierro JM Esquerre C Valverde I Villacreces S Reilly K ' Gaffney M
T/J	1/	. Hernandez mente shi, Esquene e, variende s, vinaerees b, Kenry K, Garmey M,

476	Gonzalez-Miret ML, Heredia FJ, O'Donnell CP, Downey G. 2014. Preliminary study
477	on the use of near infrared hyperspectral imaging for quantitation and localisation of total
478	glucosinolates in freeze-dried broccoli. J Food Eng 126:107–12.
479	18. Kwatra V, Schödl A, Essa I, Turk G, Bobick A. Graphcut textures: image and video
480	synthesis using graph cuts. ACM Transactions on Graphics (ToG). 2003 Jul 1;22(3):277-
481	86.
482	19. Gilat A. MATLAB: An introduction with applications. New York:: Wiley; 2008.
483	20. Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Process Mag. 2002
484	Jan;19(1):44–57.
485	21. Zare A, Gader P. Sparsity Promoting Iterated Constrained Endmember Detection in
486	Hyperspectral Imagery. IEEE Geosci Remote Sensing Lett. 2007 Jul;4(3):446–50.
487	22. Lee JG, Lim S, Kim J, Lee EJ. The mechanism of deterioration of the glucosinolate-
488	myrosynase system in radish roots during cold storage after harvest. Food Chemistry.
489	2017 Oct;233:60–8.
490	

491 Supporting information

492 S1 Fig. Predicted glucosinolates on training folds. x-axis indicates the real glucosinolates

493 concentration, y-axis indicates the prediction. Markers that closer to the "x = y" line indicates

494 more accurate prediction. The marker size and color is corresponding to the prediction error, the

495 bigger and brighter markers indicate greater error.

496

- 497 S2 Fig. Predicted glucosinolates on additional testing fold. x-axis indicates the real
- 498 glucosinolates concentration, y-axis indicates the prediction. Markers in various shape and color

denotes prediction with different methods. Markers that closer to the "x = y" line indicates more

500 accurate prediction.

501

(a) RGB image of broccoli

(b) Segmented broccoli

(c) Segmented broccoli flower

(e) Preprocessed spectra

Fig 1

