
 1 

Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global 1 

viral populations 2 

  3 

Anneliek M. ter Horst (1), Christian Santos-Medellín (1), Jackson W. Sorensen (1), Laura A. 4 

Zinke (1), Rachel M. Wilson (2), Eric R. Johnston (3), Gareth G. Trubl (4), Jennifer Pett-Ridge 5 

(4), Steven J. Blazewicz (4), Paul J. Hanson (5), Jeffrey P. Chanton (2), Christopher W. Schadt 6 

(3), Joel E. Kostka (6, 7), and Joanne B. Emerson (corresponding author) (1) 7 

 8 

(1) Department of Plant Pathology, University of California Davis, Davis, CA, USA 9 

(amterhorst@ucdavis.edu, cmsantosm@ucdavis.edu, jwsorensen@ucdavis.edu, 10 

laurazinkeucd@gmail.com, jbemerson@ucdavis.edu) 11 

(2) Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, 12 

FL, USA (rmwilson@fsu.edu, jchanton@fsu.edu) 13 

(3) Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA 14 

(erjohnston@ornl.gov, schadtcw@ornl.gov) 15 

(4) Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 16 

Livermore, California, USA (trubl1@llnl.gov, pettridge2@llnl.gov, blazewicz1@llnl.gov) 17 

(5) Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA 18 

(hansonpj@ornl.gov) 19 

(6) Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, 20 

Atlanta, GA, USA (joel.kostka@biology.gatech.edu) 21 

(7) Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 22 

30332, USA (joel.kostka@biology.gatech.edu) 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422944
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 Abstract 24 

Background: Peatlands are expected to experience sustained yet fluctuating higher temperatures 25 

due to climate change, leading to increased microbial activity and greenhouse gas emissions. 26 

Despite mounting evidence for viral contributions to these processes in peatlands underlain with 27 

permafrost, little is known about viruses in other peatlands. More generally, soil viral 28 

biogeography and its potential drivers are poorly understood at both local and global scales. 29 

Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal 30 

peatland in northern Minnesota (the SPRUCE whole-ecosystem warming experiment and 31 

surrounding bog) were analyzed for dsDNA viral community ecological patterns, and the 32 

recovered viral populations (vOTUs) were compared to our curated PIGEON database of 33 

266,805 vOTUs from diverse ecosystems. 34 

Results: Within the SPRUCE experiment, viral community composition was significantly 35 

correlated with peat depth, water content, and carbon chemistry, including CH4 and CO2 36 

concentrations, but not with temperature during the first two years of warming treatments. Peat 37 

vOTUs with aquatic-like signatures (shared predicted protein content with marine and/or 38 

freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. 39 

Predicted host ranges for SPRUCE vOTUs were relatively narrow, generally within a single 40 

bacterial genus. Of the 4,326 SPRUCE vOTUs, 164 were previously detected in other soils, 41 

mostly peatlands. None of the previously identified 202,372 marine and freshwater vOTUs in 42 

our PIGEON database were detected in SPRUCE peat, but 1.9% of 78,203 genus-level viral 43 

clusters (VCs) were shared between soil and aquatic environments. On a per-sample basis, 44 

vOTU recovery was 32 times higher from viromes compared to total metagenomes. 45 
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Conclusions: Results suggest strong viral “species” boundaries between terrestrial and aquatic 46 

ecosystems and to some extent between peat and other soils, with differences less pronounced at 47 

the “genus” level. The significant enrichment of aquatic-like vOTUs in more waterlogged peat 48 

suggests that viruses may also exhibit niche partitioning on more local scales. These patterns are 49 

presumably driven in part by host ecology, consistent with the predicted narrow host ranges. 50 

Although more samples and increased sequencing depth improved vOTU recovery from total 51 

metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment 52 

highlights the utility of soil viromics. 53 

  54 

Keywords (8/10) Three to ten keywords representing the main content of the article. 55 

viral ecology | viromics | soil viruses | soil microbial ecology | peat | metagenomics | 56 

biogeography | virome 57 

  58 

Background 59 

Peatlands store approximately one-third of the world's soil carbon (C) and have a 60 

significant role in the global C cycle [1]. Microbial activity in peatlands plays a key role in soil C 61 

and nutrient cycling, including soil organic C mineralization to the greenhouse gases, methane 62 

(CH4) and carbon dioxide (CO2) [2–5]. Given the abundance of viruses in soil (107 to 1010 per 63 

gram of soil [6–9]) and evidence for viral impacts on microbial ecology and biogeochemistry in 64 

other ecosystems [10–12], it is likely that viral infection of soil microorganisms influences the 65 

biogeochemical and C cycling processes of their hosts [13–15]. In marine ecosystems, viruses 66 

are estimated to lyse 20-40% of ocean microbial cells daily, impacting global ocean food webs 67 
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and the marine C cycle [16–18], and viral contributions to terrestrial ecosystems are presumed to 68 

be similarly important but are less well understood [6,13,14,19–21]. 69 

Our current understanding of soil viral ecology stems from pioneering studies on viral 70 

abundance, morphology, amplicon sequencing, and lysogeny of bacteria [22–27], along with 71 

early viral size-fraction metagenomic (viromic) investigations [28–30]. More recently, total soil 72 

and wetland metagenomic datasets have been mined for viral sequences in a subarctic peatland 73 

spanning a natural permafrost thaw gradient [15], a freshwater marsh [10], and through a global 74 

meta-analysis [31], revealing thousands of previously unknown viral populations (vOTUs) and 75 

suggesting habitat specificity for some of these viruses. An effort to mine metatranscriptomic 76 

data for RNA viruses in Mediterranean grasslands revealed differences in RNA viral 77 

communities in bulk, rhizosphere, and detritusphere (plant litter-influenced) soil compartments 78 

[32]. Similar mining of metatranscriptomic data from peat bog Sphagnum mosses revealed that 79 

viruses may play an important role in the ecology of the Sphagnum microbiome [33]. In addition 80 

to mining omic data for viral signatures, laboratory enrichment of viral particles prior to 81 

sequencing can allow for the generation and analysis of viral size-fraction metagenomes 82 

(viromes) from soil. This approach has recently been paired with high-throughput sequencing, 83 

revealing more comprehensive insights into soil viral ecology [13,15,34,35], including in 84 

thawing permafrost peatlands. 85 

Thawing permafrost peatlands have been the focus of several recent viral and other 86 

microbial diversity studies that seek to better understand ecological patterns underlying C 87 

emissions from these climate-vulnerable ecosystems [13,15,36–38]. Microbial (bacterial and 88 

archaeal) diversity tends to be highest in surface peat and decreases with depth [1,38–42], and 89 

similarly, viral community composition has been shown to vary by depth in the seasonally 90 
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thawed active layer of permafrost [15]. These peat soils were characterized by relatively high 91 

viral diversity (thousands of vOTUs), including viruses predicted to infect methanogens and 92 

methanotrophs that are responsible for CH4 cycling [15]. Viruses and other microbes have been 93 

shown to be active in the active layer of permafrost through metatranscriptomics, and bacterial 94 

and/or archaeal activity has also been shown through stable isotope probing and metaproteomics 95 

[15,38,43,44]. Furthermore, both microbial and viral community composition have been shown 96 

to differ according to permafrost thaw stage, suggesting that these microbiota and their coupled 97 

dynamics could change with changing climate [13,15,36,38]. Evidence for more direct viral 98 

impacts on ecosystem C cycling has been revealed by the recovery of putative viral auxiliary 99 

metabolic genes (AMGs) [13,15], specifically, virus-encoded glycosyl hydrolases capable of 100 

degrading complex C into simple sugars [15]. 101 

Although we are gaining insights into soil viral ecology within specific ecosystems, 102 

global soil viral biogeographical patterns and their underlying drivers are largely unknown. 103 

Cultivation- and genomics-based studies of mycobacteriophages have revealed that some closely 104 

related phage isolates and genome clusters are widespread across the globe, while others seem to 105 

be more geographically restricted, often contained in a single region of the USA, where the 106 

majority of the samples were collected [38,39]. A study of T4-like g23 major capsid gene 107 

amplicons in rice paddy floodwater revealed that T4-like phage communities changed with 108 

sampling time and location and that these communities were mostly structured by geographical 109 

separation, but also by ecological environment (e.g., freshwater, soil, marine, or wetland 110 

environments), such that the phage communities were more similar in the same ecological 111 

environments [27]. In better studied marine ecosystems, virions are thought to be transported 112 

along oceanic currents and by sinking particles, and viral communities tend to be structured 113 
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locally by environmental factors that affect host microbial communities [45]. In general, marine 114 

viruses occupying similar habitats tend to be closely related, in terms of shared sequence 115 

homology and community composition, even across large geographic distances [31]. However, 116 

given the substantial physicochemical differences between relatively well-mixed marine and 117 

highly heterogeneous, structured terrestrial ecosystems [14], together with the relative dearth of 118 

information on soil viruses, it is difficult to predict the extent to which previously identified 119 

biogeographical patterns in marine viral communities might also apply to soil. 120 

 Although we now have an array of laboratory and bioinformatics methods for soil viral 121 

ecology [7,15,23,31,34,46–51], we lack a thorough comparative understanding of these 122 

approaches and best practices. As one specific example, viral size-fraction metagenomes 123 

(viromes) from grassland and agricultural soils have been shown to be substantially enriched in 124 

viral and ultrasmall cellular organismal DNA, compared to total metagenomes that tend to be 125 

more enriched in DNA from cellular organisms too large to easily pass through the 0.2 µm filters 126 

used for viral enrichment [35,52]. Although these results would suggest that viromes may be 127 

more appropriate than total metagenomes for studying viral communities, the generalizability of 128 

this trend across soils and in other ecosystems is unknown. In fact, a recent meta-analysis of 129 

human gut sequencing data reported that total metagenomes may recover more viral sequences 130 

than viromes [53], though the available datasets for that analysis generally precluded robust, 131 

direct comparisons of both approaches applied to the same samples. 132 

 In this study, we examined viral communities in boreal peatlands in Minnesota, USA. 133 

Cold, acidic, and waterlogged conditions in these peatlands slow decomposition, resulting in C 134 

accumulation over centuries [54]. Rising temperatures, changing hydrology, and oxygenation of 135 

surface peats are predicted to accelerate decomposition of the accumulated C, increasing 136 
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ecosystem respiration and enhancing greenhouse gas emissions as a positive feedback to climate 137 

change [54,55]. The Marcell Experimental Forest (MEF) in Minnesota, USA is at the southern 138 

edge of the boreal zone and is expected to be particularly vulnerable to climate change [54]. 139 

MEF has been the site of numerous studies on greenhouse gas emissions, C sequestration, 140 

hydrology, biogeochemistry, and vegetation [56–61]. To investigate the response of peatlands to 141 

increasing temperature and atmospheric CO2 concentrations, the US Department of Energy 142 

(DOE) established the Spruce and Peatland Responses Under Changing Environments 143 

(SPRUCE) experiment in MEF. This experiment is within an intact peat bog ecosystem, 144 

consisting of Picea mariana (black spruce) and Larix laricina (larch) trees, an ericaceous shrub 145 

layer, and a predominant cover of Sphagnum with minor contributions of other mosses 146 

[54,55,62]. SPRUCE researchers are studying whole-ecosystem responses to temperature and 147 

elevated CO2 (eCO2), including the responses of plants, above- and belowground microbial 148 

communities, and whole-ecosystem processes, such as greenhouse gas emissions [1,54,55,63–149 

67]. 150 

 Here, we used a combination of total soil metagenomics and viromics to: 1) investigate 151 

peat viral community composition and its potential drivers in the SPRUCE experiment, 2) place 152 

the recovered vOTUs in global biogeographical and ecosystem context, and 3) compare the two 153 

approaches (total metagenomics and viromics) for recovering soil viral population sequences. 154 

We are also contributing a new database for reference-based viral genome recovery: the Phages 155 

and Integrated Genomes Encapsidated Or Not (PIGEON) database of 266,805 vOTU sequences 156 

from diverse ecosystems. 157 

 158 

 159 
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Results and Discussion 160 

Dataset overview and peat viral population (vOTU) recovery 161 

To improve our understanding of peat viral diversity, we leveraged 82 peat metagenomes 162 

from cores collected from the SPRUCE experiment in northern Minnesota, USA in 2015 and 163 

2016, along with five paired viromes and metagenomes that we collected along a transect outside 164 

the experimental plots from the same bog in 2018 at near-surface (top 10 cm) depths. In the field 165 

experiment, deep peat heating (DPH) and whole ecosystem warming (WEW) treatments heated 166 

the peat (to a depth of 2 m) and air inside chambered enclosures to target temperatures of +2.25, 167 

+4.5, +6.75 and +9 °C above ambient temperature [1,55,62,68] inside 8 experimental chambers. 168 

There were also two ambient experimental chambers and two unchambered ambient plots (Table 169 

S1). Peat samples for metagenomics were collected from four depths (10-20 cm, 40-50 cm, 100-170 

125 cm and 150-175 cm) per year in each chamber and unchambered ambient plot (38 and 44 171 

total soil metagenomes were successfully sequenced in 2015 and 2016, respectively), with 172 

approximate sequencing depths of 6 Gbp per metagenome in 2015 and 15 Gbp in 2016. From 173 

each of the five transect peat samples (Supplementary Figure 1), a viral size-fraction 174 

metagenome (virome) and total soil metagenome were sequenced, each to a depth of 175 

approximately 14 Gbp. 176 

 Reads from the SPRUCE experiment metagenomes (82), transect viromes (5), and 177 

transect total soil metagenomes (5) were assembled into contigs ≥ 10 kbp in length, from which 178 

viral contigs were identified [48,49] and clustered into 5,006 approximately species-level viral 179 

populations (viral operational taxonomic units, vOTUs [69]). These vOTUs were then clustered 180 

with 261,799 vOTUs from diverse habitats in our PIGEON database (see methods, Table S2, 181 

available on Dryad (https://datadryad.org/, by DOI of this paper) [10,13,15,31,33,54–58]. The 182 
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resulting clustered database of 266,805 “species-level” vOTUs from SPRUCE and other 183 

ecosystems was then used as a reference for read mapping from each of our metagenomes to 184 

identify vOTUs recovered from these peatlands. In total, we recovered 4,326 vOTUs (detected 185 

through read mapping) from the SPRUCE experiment and adjacent peatlands. Henceforth, 186 

“SPRUCE” refers to our data from the SPRUCE experiment and/or transect, unless otherwise 187 

specified. 188 

 189 

Investigating patterns and potential drivers of peat viral community composition in the 190 

SPRUCE experimental plots 191 

To characterize peat viral community compositional patterns and their potential drivers, 192 

vOTU abundances from the 82 SPRUCE experiment metagenomes were compared to 193 

environmental measurements. Using the 4,326 SPRUCE vOTUs as references, we recovered 194 

2,699 vOTUs from the SPRUCE experimental plots through read recruitment and tracked their 195 

abundances (average per bp coverage depth) across the experimental plot metagenomes. No 196 

significant differences in viral community composition were detected according to temperature 197 

treatment (Mantel ⍴ = 0.0057, p = 0.56), as discussed in more detail below. Viral community 198 

composition was significantly correlated with depth (Fig. 1A), even across different temperature 199 

treatments and years (Mantel ⍴ = 0.57, p=0.00001), consistent with previous evidence that viral 200 

community composition varies with depth in Swedish peatlands [15] and other soils [70]. These 201 

results are also consistent with observations of microbial communities in SPRUCE peat, where 202 

depth was shown to explain the largest amount of variation in peat microbial community 203 

composition, and temperature effects have thus far (from 2015-2018) been shown not to be 204 

significant [1,65]. We also measured a significant difference in viral community composition 205 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422944doi: bioRxiv preprint 

https://paperpile.com/c/m9OGXp/SIsO
https://paperpile.com/c/m9OGXp/BJGxZ
https://paperpile.com/c/m9OGXp/TK7y7+04OD3
https://doi.org/10.1101/2020.12.15.422944
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

between the two sampling years (June 2015 and June 2016, PERMANOVA p=0.009), indicating 206 

temporal dynamics on time scales shorter than one year. Other factors that significantly (p < 207 

0.05) correlated with viral community composition included microbial community composition, 208 

porewater CO2 and CH4 concentrations, and the calculated fractionation factor for carbon in 209 

porewater δ13CH4 relative to δ13CO2 (αC) [71] (Table S3), which can be used to infer CH4 210 

production and consumption pathways, including whether acetoclastic or hydrogenotrophic 211 

methanogenesis is the more dominant pathway [3,15,71,72]. Although all of these factors also 212 

co-varied with depth, interestingly, viral community composition was more significantly 213 

correlated with αC and porewater CH4 concentrations than with depth. Together, these results 214 

prompted further exploration of potential explanations for these compositional patterns with 215 

depth, including links between SPRUCE vOTUs and water content, peat C cycling, and 216 

microbial hosts. 217 

 To investigate potential drivers of viral community compositional patterns with depth, we 218 

identified 121 vOTUs that exhibited significant differential abundance patterns across peat depth 219 

levels (adjusted-p < 0.05, Likelihood Ratio Test). We assigned these vOTUs to one of three 220 

groups via hierarchical clustering (Fig. 1B): vOTUs abundant in the near-surface (10-20 cm) but 221 

depleted at all other depths, vOTUs abundant in the 40-50 cm depth range but depleted at other 222 

depths, and vOTUs abundant in only the two deepest depth ranges (100-125 and 150-175 cm). 223 

Given that near-surface peat had significantly higher gravimetric soil moisture measurements 224 

than deeper peat (p=0.002, Student’s T-test), and because peat viral community composition was 225 

significantly correlated with both depth and measured soil moisture content (Table S3), we 226 

investigated the depth-resolved abundance patterns of “aquatic-like” SPRUCE vOTUs. We 227 

defined aquatic-like vOTUs as those found in the same “genus-level” viral clusters (VCs) as 228 
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vOTUs from freshwater and/or marine environments, based on clustering the predicted protein 229 

contents of SPRUCE vOTUs with those of aquatic vOTUs in our PIGEON database. Next, we 230 

compared the proportion of aquatic-like vOTUs within each of the three depth-range groups and 231 

found that the near-surface peat group displayed the highest proportion of aquatic-like vOTUs, 232 

followed by the mid-depth group, while the deepest peat group had zero recognizable aquatic-233 

like vOTUs (Fig. 1C). The proportion of aquatic-like vOTUs in the near-surface group deviated 234 

significantly from the aquatic-like proportion of the total set of 2,699 vOTUs (p < 0.05, 235 

Hypergeometric Test), indicating a significant enrichment of aquatic-like vOTUs in the near 236 

surface. Overall, these results suggest that the aquatic-like SPRUCE vOTUs found in the surface 237 

horizons and/or their hosts were better adapted to near-surface depths, perhaps due to better 238 

adaptation to water-rich environments. Consistent with this interpretation and as is typical for 239 

peat sampling, we did not exclude porewater from our samples [3,7,15,37], so it is likely that 240 

some of the vOTUs were derived from the porewater directly. Also, although the gravimetric soil 241 

moisture content measurements may not accurately reflect peat saturation with depth (water table 242 

depth measurements indicated that the entire sampled peat column was saturated for each of the 243 

samples), qualitatively, there was substantially more volumetric water content (waterlogging) in 244 

the near-surface depths compared to the deeper, more compacted peat. Still, the underlying 245 

explanation for the observed enrichment of aquatic-like vOTUs in the near surface could be due 246 

to a variety of ecological similarities between near-surface peatlands and aqueous systems 247 

beyond simply water content (e.g., redox chemistry, substrates, and dissolved oxygen content 248 

[36,73]) and warrants further exploration in the future. 249 

Under the assumption that patterns in viral community composition were at least partially 250 

indirect, resulting from interactions with hosts, we attempted to bioinformatically link SPRUCE 251 
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vOTUs to microbial host populations [15]. All 4,326 vOTUs and a total of 486 metagenome-252 

assembled genomes (MAGs), 443 from the SPRUCE experiment metagenomes (Table S4) and 253 

43 from the transect (>60% complete, <10% contaminated, Table S5), were considered in this 254 

analysis. A total of 2,870 CRISPR arrays were recovered from the metagenomes via Crass [74], 255 

and 29 CRISPR-derived virus-host linkages were made between 23 vOTUs and 21 host MAGs 256 

(Fig. 2, Table S6). All 21 of the MAGs were bacterial and could be taxonomically classified to at 257 

least the family level, and for each of the six vOTUs linked to more than one host, the predicted 258 

hosts were all in the same family. Where genus-level host classification was possible, all vOTUs 259 

were predicted to infect the same host genus. However, two vOTUs that were linked to multiple 260 

host MAGs had at least one predicted host that could not be classified to the genus level. These 261 

results are generally consistent with the expected narrow host range for most viruses, but the data 262 

do not exclude the possibility that some of the vOTUs could infect different genera. Of the seven 263 

hosts that were predicted to be infected by more than one virus, only one, Acidobacteria 264 

bacterium UBA7540 Bin 12, was predicted to be infected by two viruses from the same genus-265 

level viral cluster (VC), meaning that most vOTUs predicted to infect the same host came from 266 

different viral genera. 267 

 To investigate potential connections between virus-host dynamics and environmental 268 

conditions, along with viral community links to carbon chemistry, we attempted to assess virus-269 

host abundance ratios and their patterns across samples, and we explored the auxiliary metabolic 270 

gene (AMG) content of the vOTUs. Only 10 virus-host pairs (10 vOTUs linked to 9 MAGs) 271 

were identified for which both the vOTU and the MAG were detected together in at least one 272 

sample, so, unsurprisingly for the small dataset size, significant patterns in virus-host abundance 273 

were not found according to any of the parameters considered, including depth, year, αC, CH4 274 
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and CO2 concentrations, and moisture content. To further investigate the significant correlation 275 

between αC and viral community composition, we also looked for vOTU linkages to 276 

methanogen or methanotroph MAGs, this time based on MAG genomic content as opposed to 277 

the above analyses according to MAG taxonomy. HMM searches for McrA (a methanogenesis 278 

biomarker) [75,76], sMMO, pMMO, and pXMO (methanotrophy biomarkers) [3] predicted 279 

proteins were performed on the 443 SPRUCE experiment MAGs. Nine MAGs were found to 280 

contain McrA-encoding genes, and evidence for methanotrophy was found in 22 MAGs, but 281 

none of these MAGs had a CRISPR linkage to a vOTU. Thus, we infer either that αC co-varies 282 

with an unmeasured variable that better explains viral community composition and/or that 283 

important virus-host linkages associated with CH4 cycling were not identified through these 284 

approaches. Finally, consistent with potential viral roles in the soil C cycle, we identified 287 285 

putative AMGs encoded by viral genomes and predicted to be involved in 18 C-cycling 286 

processes, based on VIBRANT output [50] (Supplementary discussion table S7, S8, S9). These 287 

results are consistent with previously identified glycosyl hydrolase genes encoded in peat viral 288 

genomes [13,15], along with other putative C-cycling AMGs from soil [77,78] (see 289 

Supplementary Discussion). 290 

 As indicated above, no significant influence of temperature on viral community 291 

composition was detected over the first two years of experimental warming. Consistent with 292 

these findings, no differences in microbial community composition were found according to 293 

temperature treatments in these samples over the first five years of whole ecosystem warming, 294 

although warming exponentially increased CH4 emissions and enhanced CH4 production rates 295 

throughout the entire soil profile [65]. These results are also consistent with prior studies that 296 

have shown that soil microbial community responses to similar temperature increases can take 297 
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multiple years to manifest [79–81]. For example, significant differences in soil microbial 298 

community composition were found in Harvard Forest after 20 years of soil warming at 5 °C 299 

above ambient temperatures [79], after seven years in Austrian forest soils warmed 4 °C above 300 

ambient temperatures [80], and after five years of warming the soil only 1.5 °C above ambient 301 

temperatures in a Castanopsis hystrix plantation (planted forest) [81]. Warming has been shown 302 

to substantially alter the community composition, diversity, and N2 fixation activity of peat moss 303 

microbiomes [66], and in microcosms of surface peat collected from the SPRUCE site, microbial 304 

diversity was negatively correlated with temperature, suggesting that prolonged exposure of the 305 

peatland ecosystem to elevated temperatures will lead to a loss in microbial diversity [82]. In the 306 

SPRUCE experiment, the fractional cover of Sphagnum mosses (S. magellanicum and S. 307 

angustifolium/fallax) decreased with increasing temperature, and the fraction of ground area with 308 

no live Sphagnum increased with increasing temperature [54]. Plant phenology (the timing of 309 

different traits throughout the growing season) also changed for some native plant species [62]. 310 

Though no significant temperature response has been observed in the in situ belowground peat 311 

viral and microbial communities after two to five years of warming, context from these other 312 

studies suggests that differences in viral and microbial community composition may follow after 313 

a longer period of warming. In addition, evidence for an increased CO2 pulse in response to 314 

elevated atmospheric CO2 concentrations (a manipulation that commenced at SPRUCE after the 315 

samples considered here were collected) in combination with warming [65] suggests that 316 

changes in belowground communities may also be more readily observed after warming in 317 

combination with elevated atmospheric CO2 concentrations. 318 

 319 

  320 
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Placing SPRUCE peat viral “species” in global context 321 

Of the 4,326 vOTUs from SPRUCE, 4,162 were assembled from SPRUCE-associated 322 

metagenomes (including the viromes), and 164 were recovered through read mapping to our 323 

PIGEON database of vOTUs from diverse ecosystems (Fig. 3A). The previously recovered 324 

vOTUs were first reported from other globally distributed sites, mainly peatlands (160 of 164), 325 

including peat vOTUs from Sweden (147), Germany (5), Alaska, USA (4), Wisconsin, USA (2), 326 

and Canada (2) (Fig. 3B). The recovery of hundreds of viral species (4% of the dataset) in 327 

geographically distant peatlands suggests that there may be a peat-specific niche for these 328 

viruses. In addition, four vOTUs recovered from SPRUCE peat were first identified in a wet 329 

tropical soil in Puerto Rico, suggesting some global species-level sequence conservation across 330 

soil habitats (Table S10). 331 

Interestingly, despite the overwhelming dominance of marine vOTUs in our database 332 

(190,502 vOTUs, 71%), zero species-level vOTUs from the oceans were recovered in the 333 

SPRUCE peatlands. Though freshwater vOTUs (predominantly from freshwater lakes) have less 334 

representation in our database (11,869 vOTUs, 4.45%), similarly, no freshwater vOTUs were 335 

recovered from SPRUCE peat. Importantly, this analysis at the “species” level is different from 336 

the analysis of aquatic-like SPRUCE vOTUs inside the SPRUCE experiment described above; 337 

although those were also species-level vOTUs, they were defined (grouped) by shared predicted 338 

protein content at the genus level with aquatic vOTUs, such that the same viral “genera” were 339 

found in near-surface SPRUCE peatlands and aquatic environments, but none of the SPRUCE 340 

vOTUs (“species”) was actually found in aquatic environments. No other vOTUs from our 341 

PIGEON database, including bioreactor, hot spring, non-peat wetland, human-, plant-, and other 342 

host-associated vOTUs, were recovered in SPRUCE peat. These results suggest viral adaptation 343 
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to soil and/or strong viral species boundaries between terrestrial, aquatic, and other ecosystems, 344 

as previously observed for bacterial species [83,84], though data for soil viruses are limited, so 345 

further studies across diverse soils will be necessary to assess the generalizability of these 346 

results. 347 

 348 

Taxonomic classification and emergence of global patterns at the “genus” level 349 

To group vOTUs at approximately the genus level, assign taxonomy, and place them in 350 

global and ecosystem context, the 4,326 SPRUCE vOTUs were clustered according to shared 351 

predicted protein content (using vConTACT2 [85,86]) with the 261,799 other vOTUs in our 352 

PIGEON database, including 2,305 RefSeq viral genomes (release 85) [87]. The SPRUCE 353 

vOTUs formed 2,445 VCs, 1,457 of which were singletons and 988 of which contained at least 354 

two vOTUs (we note that although singletons are not technically clusters, each VC represents a 355 

distinct viral “genus” [85,86], so we include singletons in all of our VC counts for ease of 356 

interpretation of genus-level trends). Only fourteen of these VCs, containing 67 vOTUs (1.5% of 357 

the dataset), were taxonomically classifiable (Fig. 3C), which is substantially less than the 358 

taxonomically classifiable portion of previously studied peat viral communities (e.g., 17% of the 359 

vOTUs could be taxonomically classified in Emerson et al. 2018 [15]). We speculate that this 360 

low level of taxonomic affiliation may be related to the inclusion of more vOTUs from viromes 361 

in the current study, relative to the previous work that was focused almost exclusively on viral 362 

recovery from total metagenomes. Viromes tend to access more of the rare virosphere [35] and 363 

may therefore include vOTUs less likely to be present in the public database used for taxonomic 364 

assignments. The taxonomically classifiable vOTUs from SPRUCE included 52 Myoviridae, 365 

four Podoviridae, four Siphoviridae, and seven Tectiviridae, consistent with the more abundant 366 
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viral taxa previously reported from thawing permafrost peatlands [15]. Although most SPRUCE 367 

VCs were not taxonomically classifiable, 562 (containing 1,609 vOTUs, 36.6% of the dataset) 368 

included a vOTU that was also found in another dataset, meaning that just over 1/3 of the 369 

SPRUCE genus-level viral groups had been observed before. The remaining 2,092 SPRUCE 370 

VCs (containing 61.8% of the vOTUs) were previously unknown at the genus level. 371 

All 32,346 of the vOTUs from soil in our PIGEON database, including those from 372 

SPRUCE and globally distributed soils, grouped into 20,908 genus-level VCs. Of these, 17,488 373 

(83% of the soil VCs, containing 53.9% of the vOTUs) included only a single vOTU, meaning 374 

that most of the genus-level viral sequences known from soil worldwide have only been 375 

recovered from a single study and/or location so far. In total, 9.3% of the soil VCs, containing 376 

8.2% of the vOTUs, were exclusively found in SPRUCE peatlands. Given that other thoroughly 377 

sampled and deeply sequenced peatlands were part of this analysis, these particular viruses may 378 

have a limited biogeographical distribution, potentially due to specific adaptations to their local 379 

habitats and/or hosts, though further sampling across spatiotemporal scales will be required to 380 

more comprehensively unravel local and global peat viral biogeography. Of all of the soil VCs 381 

(n=20,908), 178 (0.85%, containing 7.1% of the soil vOTUs) included at least one vOTU each 382 

from SPRUCE, other peat habitats, and other soils (Fig. 3D), while 198 VCs (0.94%, 3.1% of the 383 

soil vOTUs) contained a vOTU from SPRUCE and other peat sites but not other soils. Together, 384 

these data suggest that, while much of soil viral sequence space clearly remains to be explored, 385 

genus-level viral similarities may be more common across soil habitats, while species-level 386 

similarities may be more restricted to specific soil habitat types. 387 

To investigate similarities between genus-level VCs from soil and aquatic (marine and 388 

freshwater) ecosystems, 232,116 vOTUs from our PIGEON database (32,346 soil vOTUs 389 
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[10,15,31,35], 190,502 vOTUS from marine environments [31,88,89], and 11,869 vOTUs from 390 

freshwater environments [31]) were clustered into 78,213 VCs (Table S11). Of the soil VCs, 391 

1.9% shared a cluster with one or both aquatic systems, indicating a small amount of genus-level 392 

similarity between aquatic and soil viruses (Fig. 3E). However, most VCs were found in only 393 

one habitat, consistent with differences in microbial community composition in aquatic 394 

compared to soil and sediment habitats and between freshwater and saltwater environments [83]. 395 

Viral clustering according to habitat type has been previously observed, mainly in aquatic 396 

viromes, which generally cluster by salinity and other environmental properties [90,91]. Viruses 397 

from other ecosystems, such as soil, also tend to be found in similar habitats regardless of 398 

geographic location, but this pattern was most pronounced for marine viruses, and comparatively 399 

limited data were available from soil [31]. Only 15.4% of the vOTUs from marine environments 400 

remained as singleton VCs in our dataset, in contrast with 39.2% of freshwater vOTUs and 401 

45.6% of soil vOTUs. This suggests that marine viral sequence space has been more 402 

comprehensively sampled than soil and freshwater habitats, which is not surprising, considering 403 

the disproportionate amount of prior research on marine viruses [13,14,17,23,92]. However, 404 

repeated sampling of the same kinds of environments (for example, frequent sampling of 405 

oxygenated, near-surface photic zones throughout the oceans) would likely yield a similar 406 

pattern, even if some habitats (e.g., marine oxygen minimum zones) have not been well-sampled. 407 

Also, since ocean waters are generally well-mixed and viral populations seem to be transported 408 

along ocean currents [45], marine viral populations are presumably more homogeneously 409 

dispersed than those in soil or those shared between geographically isolated freshwater bodies 410 

[12,18,88,93]. 411 

 412 
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Comparing viral population (vOTU) recovery from viromes and total soil metagenomes 413 

Metagenomic studies of viral community composition typically take one of two 414 

approaches: either the viral signal is mined from total metagenomic assemblies, which 415 

predominantly tend to contain bacterial sequencing data [13,15,31], or viral particles are 416 

physically separated from other microbes in the laboratory (e.g., through filtration), and then 417 

viral size-fraction enriched metagenomes (viromes) are sequenced and analyzed [12,13,15,18]. 418 

To directly compare results from both approaches, we first analyzed the paired total soil 419 

metagenomes and viromes from the five transect samples. Considering all assembled contigs ≥ 420 

10 kbp, only 0.8% of the metagenomic contigs were classified as viral after passing them 421 

through viral prediction software (see methods), relative to 16% of the virome contigs. This ~20-422 

fold improvement is consistent with our observed ~30-fold improvement in viral contig recovery 423 

from viromes relative to total metagenomes in agricultural soils [35], and similar differences in 424 

the composition of metagenomes and viromes have been reported from grassland soils [52]. 425 

When accounting for read mapping to all vOTUs in the PIGEON database (including all of the 426 

SPRUCE vOTUs), 1,952 vOTUs were detected in the viromes, relative to 401 in the 427 

metagenomes from the same samples (Fig. 4A, Supplementary figure 3A). Only 37 vOTUs were 428 

detected in the metagenomes alone. Although far more vOTUs were recovered from the viromes, 429 

vOTU accumulation curves were still climbing steeply after five samples for both viromes and 430 

metagenomes (Fig. 4B, Supplementary figure 3B, 3C), suggesting that more viral diversity 431 

remains to be recovered from this peat transect. A comparison of the five viromes indicated that 432 

there was no spatial relationship between the samples (Supplementary figure 4A), but there was 433 

high variability in the number of recovered vOTUs per sample (Supplementary figure 4B). 434 

Notably, sample SPR-2 recovered on average two times more vOTUs than the other viromes, 435 
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which could be due to a higher sequencing depth, as sample SPR-2 had on average 1.76 times 436 

more sequencing than the other viromes. 437 

 To place these direct comparisons of viromes and metagenomes from the same samples 438 

in the context of the larger SPRUCE dataset, we compared the five viromes from 2018 to the 82 439 

metagenomes from 2015 and 2016, again with vOTU recovery assessed through read recruitment 440 

to all vOTUs in the PIGEON database. We note that the samples in this set of comparisons do 441 

differ in multiple ways beyond the extraction method, including the sampling year, depth range, 442 

location, and (in some cases) temperature treatment. Specifically, 2015 and 2016 total soil 443 

metagenomes were generated from SPRUCE experimental plot samples, most of which received 444 

temperature treatments, at four different depths (10-175 cm), whereas the 2018 viromes were 445 

recovered from the top 10 cm of a transect outside the experimental plots in the same bog. Also, 446 

although all samples were collected in June, the timing of seasonal thaw cycles varies slightly 447 

year to year. Acknowledging that all of these sample differences could contribute to the observed 448 

trends, on a per-sample basis, the viromes recovered far more vOTUs than the metagenomes, as 449 

indicated by the much steeper accumulation curve slope for viromes compared to total 450 

metagenomes after only five samples (Fig. 4B). However, the much larger number of samples in 451 

the SPRUCE experimental plot metagenomes resulted in a higher total vOTU recovery of 2,699 452 

in the 82 metagenomes, compared to 1,952 in the five viromes (Fig. 4A). 453 

For our final analyses comparing viromes and total metagenomes, we considered the 454 

metagenomes from 2015 and 2016 separately, because the sequencing throughput from 2016 was 455 

1.4 times higher than in 2015. The first of these comparisons was based on read recruitment only 456 

to vOTUs derived from contigs that assembled from samples in the same category, considering 457 

four categories: the five transect viromes, five transect metagenomes, 38 metagenomes from 458 
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2015, and 44 metagenomes from 2016. These “self-mapped” analyses were meant to simulate a 459 

situation in which only the vOTUs from that particular dataset would have been available. The 460 

perceived viral richness per sample was 32 times higher in viromes (mean 649 vOTUs) 461 

compared to their five paired metagenomes (mean 20 vOTUs) but was nine and three times 462 

higher, respectively, in viromes compared to the 2015 and 2016 metagenomes (mean 72 and 207 463 

vOTUs) (Fig. 4C). The perceived viral richness was 2.8 times higher in the 2016 metagenomes 464 

compared to 2015 metagenomes, indicating that a greater sequencing depth of total soil 465 

metagenomes (in this case from 6 to 15 Gbp on average) likely increased vOTU recovery, 466 

though we cannot exclude the possibility of a true difference in viral richness between the two 467 

years. A further comparison of vOTU recovery from the transect viromes and the three sets of 468 

metagenomes was based on read recruitment to all 266,805 PIGEON vOTUs from SPRUCE and 469 

other datasets. In this case, the perceived viral richness in the viromes (mean 721 vOTUs) was 470 

5.7 times higher than in the paired metagenomes (mean 127 vOTUs, Fig. 4D), 3.5 times higher 471 

than in the 2015 metagenomes (mean 200 vOTUs), and two times higher than in the 2016 472 

metagenomes (mean 370 vOTUs). Thus, the availability of reference vOTUs, particularly from 473 

the SPRUCE viromes, substantially improved recovery from the total metagenomes. 474 

Few direct comparisons of viromes and total metagenomes from the same samples have 475 

been reported from any ecosystem, and even comparisons across different laboratory methods, 476 

sequencing throughputs, and numbers of samples are rare. Consistent with our results from peat, 477 

agricultural and grassland soil viromes have been shown to be enriched in both viral sequences 478 

and genomes from ultrasmall cellular organisms (which would be more likely to pass through the 479 

0.2 µm filters used for viral enrichment) but depleted in sequences from most other cellular 480 

organisms, compared to total metagenomes [35,52]. In aqueous systems, water samples are often 481 
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separated into multiple size fractions (for example, 3-20 µm, 0.8-3 µm, 0.2-0.8 µm, post-0.2 482 

µm), such that previous studies have compared viral sequences recovered across different size 483 

fractions, as opposed to comparing the viral fraction to bulk water, and generally, the viruses 484 

recovered from different size fractions seem to be distinct [94,95]. A recent meta-analysis of 485 

human gut viral data recovered from viromic and metagenomic sequences suggested that more 486 

viral contigs could be recovered from metagenomes than from viromes [53]. However, of the 487 

2,017 viromes considered in that study, 1,966 were multiple-displacement amplification (MDA) 488 

treated, and, as the authors acknowledged, MDA of viromes has known methodological biases 489 

(for example, MDA preferentially recovers circular ssDNA viruses [6]) and thus would result in 490 

artificially lower-richness viral communities. Although differences in the environments (human 491 

gut compared to soil) could have contributed to the observed differences in viral recovery from 492 

viromes compared to total metagenomes in the human gut study compared to our work, the large 493 

difference in the number of total metagenomes considered in the human gut study (680) 494 

compared to non-MDA amplified viromes (51) could also have contributed to the greater 495 

recovery of human gut viral sequences from total metagenomes. Consistent with that 496 

interpretation, here we have shown that viromics (without MDA amplification) seems to be a 497 

better approach for maximizing viral recovery from soil on a per-sample basis. However, 498 

increasing the number of samples, in combination with deeper sequencing and the availability of 499 

relevant reference vOTU sequences, improved vOTU recovery from total soil metagenomes, 500 

which have the added advantage of accessing virus and host population sequences from the same 501 

dataset. 502 

 503 

 504 
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Conclusions 505 

We analyzed dsDNA viral diversity in a climate-vulnerable peat bog, revealing 506 

significant differences in viral community composition at different soil depths and according to 507 

peat and porewater C chemistry. Aquatic-like SPRUCE vOTUs were significantly more 508 

abundant at near-surface depths, suggesting potential adaptation of these viruses to water-rich 509 

environments. Some viral species-level similarities were observed across large geographic 510 

distances in soil: 4% of the vOTUs found in SPRUCE peat were previously recovered elsewhere, 511 

predominantly in other peatlands, but interestingly, zero marine or freshwater vOTUs were 512 

recovered from SPRUCE peat, suggesting the potential for viral species boundaries between 513 

terrestrial and aquatic ecosystems. When comparing vOTU recovery from viromes and total soil 514 

metagenomes, increasing the dataset size through deeper sequencing and more samples improved 515 

vOTU recovery from metagenomes, but viromics was a better approach for maximizing viral 516 

recovery on a per-sample basis. Together, these results expand our understanding of soil viral 517 

communities and the global soil virosphere, while hinting at a vast diversity of soil viruses 518 

remaining to be discovered. 519 

 520 

Materials and methods 521 

Sample collection 522 

In June 2018, five peat samples were collected along “Transect 4” in the S1 bog ~150 m 523 

from the SPRUCE experimental plots in the Marcell Experimental Forest in northern Minnesota, 524 

USA (For GPS coordinates, see Table S12). Avoiding green Sphagnum moss at the surface (~2 525 

cm), the top 10 cm of peat (5 cm diameter) was collected for each sample with a sterile spatula 526 
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and placed in 50 mL conical tubes on dry ice. Samples were stored at -80 °C for 6 months prior 527 

to DNA extraction for total metagenomes and viromes. 528 

Within the SPRUCE study, temperature treatments were applied in large (~115 sq m) 529 

open-topped enclosures. Temperature treatments in the 10 enclosures were as follows: +0, +2.25, 530 

+4.5, +6.75 and +9, with two chambers assigned to each temperature treatment. Data were also 531 

collected from two ambient environment plots where there was no enclosure but within the 532 

treatment area on the south end of the S1 Bog. In each enclosure, warming of deep soil started in 533 

June 2014 [55], and aboveground warming began in August 2015 with continuous whole 534 

ecosystem warming (365 days per year) operating since late in 2015. A more detailed 535 

explanation of deep soil heating procedures and construction of the enclosures and warming 536 

mechanics can be found in Hanson et al., 2017 [54,55,62]. 537 

Peat samples for 82 total soil metagenomes were collected from the SPRUCE experiment 538 

in June 2015 and June 2016 from cores that were extracted using defined hand sampling near the 539 

surface and via Russian corers below 30 cm. Samples for analysis were obtained from depth 540 

ranges 10-20 cm, 40-50 cm, 100-125 cm, and 150-175 cm from a total of 10 chambers in 2015 541 

(no samples were analyzed from the open, ambient plots that year), with the exception of only 542 

two samples collected from chamber 19 (control plot, no temperature treatment, only 10-20 cm 543 

and 40-50 cm samples collected), for a total of 38 samples from 2015. In 2016, samples were 544 

collected from the same depth ranges from all 10 chambers, plus two samples from each of the 545 

two ambient, open plots (depth ranges 10-20 cm and 40-50 cm), for a total of 44 samples from 546 

2016. These 82 samples were used for DNA extraction and total metagenomic analysis and 547 

MAG recovery, as described below. Soil temperature, moisture content, CH4 and CO2 548 
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concentrations, and aC measurements (see supplementary methods) were collected from the same 549 

samples (Table S13). 550 

  551 

DNA extraction 552 

All samples from the peatland transect were stored at -80°C until further processing. 24 553 

hours prior to DNA extraction, samples were placed at -20 °C. For total metagenomes from the 554 

transect, DNA was extracted from 0.25 g peat per sample with the QIAGEN DNeasy Powersoil 555 

Kit (QIAGEN, Germany), according to the manufacturer's protocol. For viromes, 50 g of peat 556 

per sample was divided between two 50 mL conical tubes, and 37.5 mL of Amended Potassium 557 

Citrate Prime buffer (AKC’, 0.02 µm filtered, 1% K-citrate + 10% PBS + 150 mM MgSO4) [34] 558 

was added per tube, for a total of 75 mL buffer. Tubes were shaken at 400 rpm for 15 min, then 559 

centrifuged at 4,700 g for 20 min. Excluding the pelleted soil, the supernatant was filtered 560 

through a 0.2 µm polyethersulfone filter (Corning, USA) and ultracentrifuged in a Beckman LE-561 

8K ultracentrifuge with a 70 Ti rotor for 3 hours at 32,000 RPM at 4 °C under vacuum. The 562 

supernatant was decanted, and the pellet containing virions was resuspended in 200 µl UltraPure 563 

water and added to the QIAGEN DNeasy PowerSoil Kit bead tubes (QIAGEN, Germany) for 564 

DNA extraction according to the manufacturer’s instructions with one exception: instead of 565 

vortexing for 10 minutes with the beads, samples in the bead tubes were incubated at 70 °C for 566 

10 min, vortexed briefly, and incubated at 70 °C for another 5 min. A DNase treatment was not 567 

included prior to virion lysis. Anecdotally, this is because we have found that soils stored frozen 568 

often have virome DNA yields below detection limits after DNase treatment, while non-DNase-569 

treated viromes from the same frozen samples are still highly virus-enriched relative to total 570 

metagenomes (data not shown). 571 
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For the 82 2015 and 2016 peat samples used in metagenomic analysis and MAG 572 

recovery, DNA was extracted from homogenized samples of each depth interval using the MO 573 

BIO Powersoil DNA extraction kit (QIAGEN, Germany). Six replicate 0.35 g extractions were 574 

combined and re-purified with the MO BIO PowerClean Pro kit (QIAGEN, Germany) and eluted 575 

in 50 mL of 10 mM Tris buffer. 576 

  577 

Library construction and sequencing 578 

Library construction and sequencing for the five viromes and five total soil metagenomes 579 

from Transect 4 were conducted by the DNA Technologies and Expression Analysis Cores at the 580 

UC Davis Genome Center. Libraries were prepared with the DNA Hyper Prep library kit (Kapa 581 

Biosystems-Roche, Basel, Switzerland), as previously described [35]. Paired-end sequencing 582 

(150 bp) was done on the Illumina NovaSeq platform, using 4% of a lane per virome and 8% of a 583 

lane per total soil metagenome. Sequencing of the 82 metagenomes from the SPRUCE 584 

experiment and ambient plots was done by the DOE Joint Genome Institute (JGI), using standard 585 

protocols for Nextera XT metagenomic library construction. These barcoded libraries were 586 

sequenced on an Illumina HiSeq 2500 instrument in 2x150 bp mode. 587 

  588 

Sequencing read processing, assembly, viral population (vOTU) recovery, and read mapping 589 

Raw reads from the SPRUCE experiment metagenomes (82), transect viromes (5), and 590 

transect total soil metagenomes (5) were first quality-trimmed with Trimmomatic v0.38 [96] 591 

with a minimum base quality threshold of 30 evaluated on sliding windows of 4 bases and 592 

minimum read length of 50. Reads mapped to the PhiX genome were removed with bbduk [97]. 593 

Reads were assembled into contigs ≥ 10 kbp in length, using MEGAHIT v 1.1.3 [98] with 594 
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standard settings. All 92 metagenomes underwent single-sample assemblies, and two additional 595 

co-assemblies were generated from the transect, one each for the five viromes and five total soil 596 

metagenomes, respectively. For co-assemblies, the preset meta-large option was used. 82 597 

previously existing assemblies from the SPRUCE experiment metagenomes were also used. 598 

Briefly, for those assemblies, raw metagenomic fastq sequences were quality trimmed with 599 

bbduk from the BBTools software package (options: qtrim=window,2 trimq=17 minlength=100) 600 

[99] and assembled with IDBA-UD [100](options: -mink 43 –maxk 123 –step 4 –min_contig 601 

300). 602 

DeepVirFinder [49] and VirSorter [48] were used to recover viral contigs from each 603 

assembly. Contigs with DeepVirFinder scores > 0.9 and p < 0.05 were considered viral [88], and 604 

DeepVirFinder results were filtered with a custom python script (parse_dvf_results.py, all scripts 605 

are available on GitHub, see Data Availability Statement below) to only retain results in 606 

compliance with this score. VirSorter was run in regular mode for all total metagenomes and 607 

virome decontamination mode for the viromes. Only contigs from VirSorter categories 1, 2, 4 608 

and 5 (high-confidence) were retained. All resulting viral contigs were clustered into vOTUs 609 

using CD-HIT [101] at a global identity threshold of 0.95 across 85% of the length of the shorter 610 

contig [69]. Different sets of vOTUs were used as references for read mapping throughout the 611 

manuscript (see main text), with the most commonly used and most comprehensive reference 612 

database being PIGEON (see below). In all cases, read mapping was performed with BBMap 613 

[97] at ≥ 90% identity, and vOTU coverage tables were generated with BamM [102], using the 614 

‘tpmean’ setting, and bedfiles were generated using bedtools [103]. Custom python scripts 615 

(percentage_coverage.py, filter_coveragetable.py) were used to implement the thresholds for 616 

detecting viral populations (vOTUs) in accordance with community standards (≥ 75% of the 617 
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contig length covered ≥ 1x by reads recruited at ≥ 90% nucleotide identity) [69]. The final vOTU 618 

coverage table of per-bp vOTU abundances in each metagenome was normalized by the number 619 

of metagenomic sequencing reads for each sample [15]. 620 

  621 

Construction of the PIGEON reference database of vOTUs 622 

An in-house database, Phages and Integrated Genomes EncapsidatedOr Not (PIGEON), 623 

was created, containing 266,805 species-level vOTUs, of which 190,502 came from marine 624 

environments, 11,869 from freshwater, 32,346 from soil (including 5,006 from SPRUCE), 2,305 625 

RefSeq viral genomes (release 85) [87], and 30,400 from other environments in a meta-analysis, 626 

including human microbiomes, other animal microbiomes, plant microbiomes, and other 627 

environments). Available viral contigs were downloaded from published datasets 628 

[10,13,15,31,34,87–89,104,105], compiled from ongoing work in Alaskan peat soil and Puerto 629 

Rican soils (see supplementary methods), and those recovered from SPRUCE (see above). For 630 

most of the datasets, viral contigs were derived from viromes, or a combination of viromes and 631 

total soil metagenomes, but two datasets only considered viral recovery from total soil 632 

metagenomes [10,31]. For all but one of the datasets, VirSorter [48], VirFinder [106], 633 

DeepVirFinder [49], or a combination of these programs was used for viral contig recovery 634 

(Contigs with DeepVirFinder scores > 0.9 and p < 0.05 were considered viral [88], and only 635 

contigs from VirSorter categories 1, 2, 4 and 5 were considered. The exception was the meta-636 

analysis dataset of Paez-Espino et al. (2016), which used a viral discovery pipeline [31]. From all 637 

of these datasets, viral contigs ³ 10kb were retained and then clustered into vOTUs using CD-638 

HIT [101] at a global identity threshold of 0.95 across 85% of the shorter contig length. PIGEON 639 

v1.0 (the version used in this manuscript) is available on Dryad ((https://datadryad.org/, by DOI 640 
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of this paper). We are actively improving PIGEON and expect to release a new version in the 641 

future. 642 

  643 

Viral taxonomic classification and genus-level clustering 644 

Viral taxonomic classifications for the 4,326 SPRUCE vOTUs (detected in the SPRUCE 645 

dataset through read mapping) were assigned using vConTACT2 (options: --rel-mode ‘Diamond’ 646 

--db 'ProkaryoticViralRefSeq85-Merged' -pcs-mode MCL --vcs-mode ClusterONE) [73,74]. The 647 

vOTUs were clustered according to shared predicted protein content with the 261,799 other 648 

vOTUs in our PIGEON database, including 2,305 RefSeq viral genomes [87]. The 649 

viral_cluster_overview output file was used for further analysis, including to manually identify 650 

SPRUCE vOTUs that shared a genus-level viral cluster with one or more vOTUs from marine 651 

and/or freshwater (aquatic) environments. 652 

  653 

Metagenome-assembled genome (MAG) reconstruction 654 

MAG reconstruction from the five transect total metagenomes was done as follows: 655 

quality-trimmed reads were assembled using MEGAHITv 1.1.3 [98] with a minimum contig 656 

length of 2,000, using the meta-large preset. After individual assembly of each sample, quality-657 

filtered and trimmed reads were mapped to the resulting contigs using bbmap [107] with 658 

standard settings, and this abundance information was used to bin the contigs into MAGs using 659 

MetaBAT [108], using the --veryspecific setting and the coverage depth information. Quality and 660 

identification of bins was done with CheckM [109], following Sorensen et al., [110]. 661 

From the 82 SPRUCE experiment metagenomes, metagenome assembly, recovery, and 662 

analysis of metagenome-assembled genomes (MAGs) was performed as described in Johnston et 663 
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al., [111]. Briefly, metagenomic sequences were assembled with IDBA-UD [100] (options: -664 

mink 43 –maxk 123 –step 4 –min_contig 300). Resulting contigs ≥ 2.5 kbp were used to recover 665 

microbial population genomes with MetaBAT2 (options: –minCVSum 10) [108] and MaxBin2 666 

[112]. Before binning, Bowtie 2 was used to align short-read sequences to assembled contigs 667 

(options: –very-fast) [113], and SAMtools was used to sort and convert SAM files to BAM 668 

format [114]. Sorted BAM files were then used to calculate the coverage (mean representation) 669 

of each contig in each metagenome. The quality of each resulting MAG was evaluated with the 670 

CheckM v1.0.3 taxonomy workflow for Bacteria and Archaea separately [109]. The result from 671 

either evaluation (i.e., taxonomy workflow for Archaea or Bacteria) with the highest estimated 672 

completeness was retained for each MAG. MAGs with a quality score ≥ 60 were retained (from 673 

Parks et al., 2017 [115] calculated as the estimated completeness – 5 × contamination). MAGs 674 

recovered from different metagenomes were dereplicated with dREP [116], and the GTDB-tk 675 

classify workflow [117,118] was used to determine MAG taxonomic affiliations. MAG gene 676 

prediction, functional annotation, and assessment of metabolic pathway completeness (e.g., for 677 

assessing methanogenesis potential) was performed as described in Johnston et al., 2019 [111]. 678 

Taxonomic classification, source dataset SRA ID, basic genome statistics, and CheckM 679 

summaries for each MAG can be found in Table S4. 680 

 Using the parameters described above for vOTU coverage table generation, a microbial 681 

contig coverage table was generated. From this coverage table, we calculated the coverage of 682 

each population genome as the average of all of its binned contig coverages, weighting each 683 

contig by its length in base pairs. In-house scripts for this are available on GitHub. Hmm 684 

searches were done on both MAGs and vOTUs for proteins involved in methanogenesis or 685 

methanotrophy (McrA (a methanogenesis biomarker) [75,76], sMMO, pMMO, and pXMO 686 
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(methanotrophy biomarkers) [3]). The MAG and vOTU contigs were annotated with prodigal 687 

(standard settings) [119], and an HMM search was done on these annotations with hmmr [120], 688 

using hmmsearch (standard settings) with an e-value cutoff of 1E-5 [121]. 689 

  690 

Reconstruction of microbial CRISPR arrays and virus-host linkages 691 

CRISPR repeat and spacer arrays were assembled with Crass v0.3.12 [74], using standard 692 

settings, and BLASTn was used to match spacer sequences with vOTUs and repeats to MAGs, in 693 

order to link viruses to putative hosts. Briefly, for protospacer-spacer matches (i.e., matches 694 

between vOTUs and CRISPR spacer sequences), the BLASTn-short function was used, with £ 1 695 

mismatch to spacer sequences, e-value threshold of 1.0×10−10, and a percent identity of 95 696 

[31,122]. For MAG-repeat matches, the BLASTn-short function was used, with an e-value 697 

threshold of 1.0×10−10 and a percent identity of 100 [15]. 698 

  699 

Phylogenetic tree construction 700 

A phylogenetic tree of bacterial host MAGs with CRISPR matches to one or more 701 

vOTUs (i.e., a repeat match to a MAG and a spacer from the same CRISPR array with a match to 702 

a vOTU protospacer) was constructed with CheckM [109] via a marker-gene alignment of 43 703 

conserved marker genes with largely congruent phylogenetic histories, defined by CheckM 704 

[109]. This alignment was used to construct a maximum-likelihood tree with MEGA [123], with 705 

the LG plus frequencies model [124]. A total of 500 bootstrap replicates were conducted under 706 

the neighbor-joining method with a Poisson model. 707 

  708 

Data analysis (ecological statistics) 709 
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The following statistical analyses were performed in R using the Vegan [125] package: 710 

accumulation curves were calculated using the speccacum function, vOTU coverage tables were 711 

standardized using the decostand function with the Hellinger method, and Bray-Curtis 712 

dissimilarity matrices were calculated using the vegdist function. Mantel tests were performed 713 

with the mantel function, using the Pearson method, and permutational multivariate analyses of 714 

variance (PERMANOVA) were performed with the Adonis function. Venn diagrams were 715 

created with the VennDiagram package, using the draw.triple.venn function. The differential 716 

abundance analysis of vOTUs across depth levels was performed using the likelihood ratio test 717 

implemented in DESeq2 [126]. Hierarchical clustering of the viral abundance patterns of the five 718 

viromes was done with the hclust function (method=complete), and heatmaps were created with 719 

the pheatmap and dendextend libraries. The world map was created with the maps library. 720 

  721 

Detection of putative viral auxiliary metabolic genes (AMGs) 722 

VIBRANT [50] and DRAM-v [51] were used to identify putative AMGs in the vOTU 723 

sequences. VIBRANT was run (using standard settings) on all SPRUCE viral contigs identified 724 

by either VirSorter or DeepVirFinder, resulting in 2,802 vOTUs that were used for this analysis. 725 

VIBRANT output was manually screened to determine whether the predicted AMGs had viral 726 

genes upstream and downstream [15], and in many cases, they did not (see supplementary 727 

discussion). DRAM-v (standard settings) was applied to 2,645 vOTUs that were recovered by 728 

both VIBRANT and VirSorter, because DRAM-v uses the VirSorter output, and we wanted to 729 

compare results from the two AMG detection methods. From the DRAM-v output, only putative 730 

AMGs with auxiliary scores < 4 were retained (a low auxiliary score indicates a gene that is 731 

confidently viral), and no viral flag (F), transposon flag (T), viral-like peptidase (P), or 732 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422944doi: bioRxiv preprint 

https://paperpile.com/c/m9OGXp/ZaGLg
https://paperpile.com/c/m9OGXp/QChQb
https://paperpile.com/c/m9OGXp/hhHh
https://paperpile.com/c/m9OGXp/tfXE
https://paperpile.com/c/m9OGXp/SIsO
https://doi.org/10.1101/2020.12.15.422944
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

attachment flag (A) could be present. Putative AMGs that did not have a gene ID or a gene 733 

description were also discarded. See supplemental discussion for more information. 734 
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Figure captions and legends 802 

Figure 1: Peat viral community and population (vOTU) abundance patterns with depth in 803 

the SPRUCE experimental plots. A: Principal coordinates analysis (PCoA) of viral community 804 

composition in 82 samples (total soil metagenomes) from peat bog soil from the Marcell 805 

Experimental Forest in northern Minnesota (USA) collected from the SPRUCE experimental 806 

plots and chambers (temperature treatments ranging from ambient to +9 °C above ambient), 807 

based on Bray-Curtis dissimilarities derived from the table of vOTU abundances (read mapping 808 

to vOTUs, n=2,699). Each point is one sample (n=82). B: Mean relative abundances (Z- 809 

transformed) of vOTUs significantly differentially abundant by depth (adjusted-p<0.05, 810 

Likelihood Ratio Test). Groups were identified through hierarchical clustering and are colored 811 

according to the depths in panel A. C: Percentage of vOTUs classified as “aquatic-like” in each 812 

of the groups identified in panel B (Groups 1-3) and in the whole dataset of 2,699 vOTUs 813 

(Total). SPRUCE vOTUs were considered “aquatic-like” if they shared a genus-level viral 814 

cluster (VC) with at least one vOTU from a marine or freshwater habitat in the PIGEON 815 

database. Note that the y-axis maximum is 10%. *** denotes a significantly larger proportion of 816 

aquatic-like vOTUs in that group, relative to the proportion of aquatic-like vOTUs in the full 817 

SPRUCE dataset (Total) (P < 0.05, Hypergeometric test) 818 

 819 

Figure 2: SPRUCE virus-host linkages according to host phylogeny. Unrooted phylogenetic 820 

tree (concatenated predicted protein alignment of 43 marker genes defined by CheckM [109]) of 821 

microbial host metagenome-assembled genomes (MAGs) with at least one vOTU (green and 822 

orange circles) linked via CRISPR sequence homology. Branch lengths represent the expected 823 

number of substitutions per site. Lines between black circles and squares with orange or green 824 

circles link vOTUs to predicted host MAGs. Colored triangles indicate the MAG genus (the 825 

same color is the same genus, except for grey triangles, for which the corresponding MAG could 826 

only be classified to the family level). Asterisk indicates vOTUs in the same genus-level viral 827 

cluster (VC); remaining vOTUs were all in distinct VCs. Bootstrap support values are shown as 828 

circles on nodes, black circles indicate support >= 95%, grey indicates support between 65 and 829 

95%. 830 

 831 

Figure 3: Habitat and global distribution of SPRUCE vOTUs and viral clusters (VCs), 832 

using the PIGEON database for context. A. Composition of the PIGEON database of vOTUs 833 

(n=266,805) by source environment. RefSeq includes isolate viral genomes from a variety of 834 

source environments (prokaryotic viruses in RefSeq v95). Plants = plant-associated, Humans = 835 

human-associated, Other Animals = non-human animal-associated. B. vOTUs (n=4,326) 836 

recovered from SPRUCE peat by read mapping, according to the location from which they were 837 

first recovered. Numbers indicate SPRUCE vOTUs from a given location. Circle sizes are 838 

proportional to the number of vOTUs. C: Percentages of vOTUs recovered from SPRUCE that: 839 

had predicted taxonomy based on clustering with RefSeq viral genomes (Taxonomically 840 

classified), had unknown taxonomy but shared a genus-level viral cluster (VC) with one or more 841 
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previously recovered vOTUs in the PIGEON database (Unclassified, previously recovered), or 842 

were previously unknown at the VC (genus) level (Previously unknown). D: Habitat(s) for each 843 

soil VC (n=20,908) in the PIGEON database, based on source habitat(s) for the vOTU(s) 844 

contained in each VC. For a given soil VC, either all vOTUs were exclusively derived from a 845 

single habitat (non-overlapping regions), or two or more vOTUs were derived from different soil 846 

habitats (overlapping regions). E: Similar to D, but for VCs with vOTUs from soil, marine, 847 

and/or freshwater habitats (n=78,213 VCs). 848 

 849 

Figure 4: Comparison of vOTU recovery from SPRUCE viromes and total soil 850 

metagenomes. A: Distribution of vOTUs recovered in each of three extraction groups (grouped 851 

by extraction method and collection date), based on read mapping to the PIGEON database (n=5 852 

viromes from 2018, 82 total soil metagenomes from 2015 and 2016, and 5 total soil 853 

metagenomes from 2018). B: Accumulation curves of distinct vOTUs recovered as sampling 854 

increases for each extraction method; 100 permutations of sample order are depicted as open 855 

circles, line shows the average of the permutations for each method. C: Number of vOTUs 856 

recovered per metagenome when reads were only allowed to map to vOTUs that assembled from 857 

metagenomes in the same category (self-mapped), considering four categories: 2018 bulk (n=5), 858 

2015 bulk (n=38), 2016 bulk (n=44), 2018 viromes (n=5); bulk = total soil metagenomes. One 859 

outlier was excluded from the plot for ease of visualization; the y-axis value of the outlier in the 860 

2018 viromes was 1,328. Letters above boxes correspond to significant differences between 861 

groups (Student’s T-test, significant when p < 0.05). D. Similar to C, but reads were allowed to 862 

map to all vOTUs in the PIGEON database (PIGEON-mapped), including all vOTUs assembled 863 

from any of the SPRUCE metagenomes. Three outliers were removed from the plot for ease of 864 

visualization; the y-axis values of the two outliers from 2016 bulk were 1,415 and 1,818, and the 865 

value of the outlier from the 2018 viromes was 1,558. 866 

 867 

Supplementary Figures 868 

  869 

Supplementary figure 1: Sampling locations for all SPRUCE samples. Sampling locations 870 

within the S1 Bog at the Marcell Experimental Forest in Northern Minnesota, USA, including 871 

the five transect samples and the samples from the SPRUCE experimental plots and chambers. 872 

Numbers next to the brackets show how many and what kinds of metagenomes were derived 873 

from each part of the bog. 874 

 875 

Supplementary figure 2: Comparison of vOTU recovery from five paired viromes and total 876 

soil metagenomes from the SPRUCE transect. A: Distribution of vOTUs recovered by each of 877 

the two extraction methods, based on read mapping to the PIGEON database, including all 878 

vOTUs recovered from SPRUCE. B: Accumulation curves of distinct vOTUs recovered as 879 

sampling increases for each extraction method; 100 permutations of sample order are depicted as 880 

open circles, and averages are shown as a line. C: Similar to panel B, but only the accumulation 881 
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curve of distinct vOTUs recovered from total soil metagenomes is shown, with a smaller y-axis 882 

maximum to better show the trend. 883 

 884 

Supplementary figure 3: Comparison of the five viromes from the transect. A: Dendrogram 885 

depicting sample similarity according to viral community composition (left) and heatmap (right) 886 

of vOTUs detected (green = detected, white = not detected) in the five SPRUCE transect 887 

viromes. B: Comparison of vOTU recovery from the SPRUCE-2 sample compared to the four 888 

other virome samples. 889 

 890 
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Figure 1: Peat viral community and population (vOTU) abundance patterns with depth in the SPRUCE experimental plots. A: Principal 

coordinates analysis (PCoA) of viral community composition in 82 samples (total soil metagenomes) from peat bog soil from the Marcell 

Experimental Forest in northern Minnesota (USA) collected from the SPRUCE experimental plots and chambers (temperature treatmentsranging 

from ambient to +9 °C above ambient), based on Bray-Curtis dissimilarities derived from the table of vOTU abundances (read mapping to 

vOTUs, n=2,699). Each point is one sample (n=82). B: Mean relative abundances (Z- transformed) of vOTUs significantly differentially abundant 

by depth (adjusted-p<0.05, Likelihood Ratio Test). Groups were identified through hierarchical clustering and are colored according to the 

depths in panel A. C: Percentage of vOTUs classified as “aquatic-like” in each of the groups identified in panel B (Groups 1-3) and in the whole 

dataset of 2,699 vOTUs (Total). SPRUCE vOTUs were considered “aquatic-like” if they shared a genus-level viral cluster (VC) with at least one 

vOTU from a marine or freshwater habitat in the PIGEON database. Note that the y-axis maximum is 10%. *** denotes a significantly larger 

proportion of aquatic-like vOTUs in that group, relative to the proportion of aquatic-like vOTUs in the full SPRUCE dataset (Total) (P < 0.05, 

Hypergeometric test)
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Figure 2: SPRUCE virus-host linkages according to host phylogeny. Unrooted 

phylogenetic tree (concatenated predicted protein alignment of 43 marker genes defined by 

CheckM [109]) of microbial host metagenome-assembled genomes (MAGs) with at least 

one vOTU (green and orange circles) linked via CRISPR sequence homology. Branch 

lengthsrepresent the expected number of substitutions per site. Lines between black circles 

and squares with orange or green circles link vOTUs to predicted host MAGs. Colored 

triangles indicate the MAG genus (the same color is the same genus, except for grey 

triangles, for which the corresponding MAG could only be classified to the family level). 

Asterisk indicates vOTUs in the same genus-level viral cluster (VC); remaining vOTUs 

were all in distinct VCs. Bootstrap support values are shown as circles on nodes, black 

circles indicate support >= 95%, grey indicates support between 65 and 95%.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422944
http://creativecommons.org/licenses/by-nc-nd/4.0/


Marine

52,000

Soil

18,107

Freshwater

5,598

36196

121

2,155

Other Soil

9,754

SPRUCE

1,951

Other Peat

8,368

198

178

350

109

Taxonomically classified

1.5%

Previously unknown

66.4%

Unclassified,

previously recovered

32.1%

A B

C D E

Marine (71.4%)

Freshwater (4.4%)

Peat (5.9%)

Other Soil (5.9%)

Plants (0.5%)

Humans (5.7%)

Other Animals (0.7%)

RefSeq (3.5%)

Other (1.8%)

4

SPRUCE
Other Soils

147

51

4

4,126 2

1

Figure 3: Habitat and global distribution of SPRUCE vOTUs and viral clusters (VCs), using the PIGEON database for context. 

A: Composition of the PIGEON database of vOTUs (n=266,805) by source environment. RefSeq includes isolate viral genomes 

from a variety of source environments (prokaryotic viruses in RefSeq v95). Plants = plant-associated, Humans = human-

associated, Other Animals = non-human animal-associated. B: vOTUs (n=4,326) recovered from SPRUCE peat by read mapping, 

according to the location from which they were first recovered. Numbers indicate SPRUCE vOTUs from a given location. Circle 

sizes are proportional to the number of vOTUs. C: Percentages of vOTUs recovered from SPRUCE that: had predicted taxonomy 

based on clustering with RefSeq viral genomes (Taxonomically classified), had unknown taxonomy but shared a genus-level viral 

cluster (VC) with one or more previously recovered vOTUs in the PIGEON database (Unclassified, previously recovered), or were 

previously unknown at the VC (genus) level (Previously unknown). D: Habitat(s) for each soil VC (n=20,908) in the PIGEON 

database, based on source habitat(s) for the vOTU(s) contained in each VC. For a given soil VC, either all vOTUs were 

exclusively derived from a single habitat (non-overlapping regions), or two or more vOTUs were derived from different soil habitats 

(overlapping regions). E: Similar to D, but for VCs with vOTUs from soil, marine, and/or freshwater habitats (n=78,213 VCs).
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Figure 4: Comparison of vOTU recovery from SPRUCE viromes and total soil metagenomes. A: Distribution of vOTUs 

recovered in each of three extraction groups (grouped by extraction method and collection date), based on read 

mapping to the PIGEON database (n=5 viromes from 2018, 82 total soil metagenomes from 2015 and 2016, and 5 

total soil metagenomes from 2018). B: Accumulation curves of distinct vOTUs recovered as sampling increases for 

each extraction method; 100 permutations of sample order are depicted as open circles, line shows the average of the 

permutations for each method. C: Number of vOTUs recovered per metagenome when reads were only allowed to 

map to vOTUs that assembled from metagenomes in the same category (self-mapped), considering four categories: 

2018 bulk (n=5), 2015 bulk (n=38), 2016 bulk (n=44), 2018 viromes (n=5); bulk = total soil metagenomes. One outlier 

was excluded from the plot for ease of visualization; the y-axis value of the outlier in the 2018 viromes was 1,328. 

Letters above boxes correspond to significant differences between groups (Student’s T-test, significant when p < 

0.05). D: Similar to C, but reads were allowed to map to all vOTUs in the PIGEON database (PIGEON-mapped), 

including all vOTUs assembled from any of the SPRUCE metagenomes. Three outliers were removed from the plot 

for ease of visualization; the y-axis values of the two outliers from 2016 bulk were 1,415 and 1,818, and the value of 

the outlier from the 2018 viromes was 1,558.
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