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9 Abstract

10 With high drug attrition, interaction network methods are increasingly attractive as quick and 

11 inexpensive methods for prediction of drug safety and efficacy effects when a drug pathway is unknown. 

12 However, these methods suffer from high false positive rates for selecting drug phenotypic effects, their 

13 performance is often no better than random (AUROC ~0.5), and this limits the use of network methods in 

14 regulatory and industrial decision making. In contrast to many network engineering approaches that apply 

15 mathematical thresholds to discover phenotype associations, we hypothesized that interaction networks 

16 associated with true positive drug phenotypes are context specific. We tested this hypothesis on 16 designated 

17 medical event (DMEs) phenotypes which are a subset of adverse events that are of upmost concern to FDA 

18 review using a novel data set extracted from drug labels. We demonstrated that context-specific interactions 

19 (CSIs) distinguished true from false positive DMEs with an 50% improvement over non-context-specific 

20 approaches (AUROC 0.77 compared to 0.51). By reducing false positives, CSI analysis has the potential to 

21 advance network techniques to influence decision making in regulatory and industry settings.

22

23 Author summary

24 Drugs bind proteins that interact with multiple downstream proteins and these protein networks are 

25 responsible for drug efficacy and safety. Protein interaction network methods predict drug effects aggregating 

26 information about proteins around drug-binding protein targets. However, many frameworks exist for identifying 

27 proteins relevant to a drug’s effect. We consider three frameworks for selecting these proteins and show 

28 increased performance from a context-specific approach on selecting proteins relevant to severe drug side 

29 effects. The context-specific approach leverages the idea that the proteins responsible for a drug side effect 

30 are specific to each side-effect. By discovering the relevant proteins, we can better understand downstream 

31 effects of drugs and better anticipate drug side effects for new drugs in development. Further, we focus on 
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32 designated medical events, a subset of the most severe drug side-effects that are high priority for regulatory 

33 review.

34

35 Introduction

36 Protein interaction network methods are increasingly attractive for understanding drug 

37 pharmacodynamic effects because these methods are high-throughput and inexpensive relative to 

38 experimental techniques and because they consider drug effects beyond the drug’s targets. Pathways analysis 

39 is a valuable tool for understanding a drug’s downstream effects. Yet, curated pathways do not exist for drugs 

40 in development and drug pathways do not cleanly align with curated pathways, further necessitating rapid and 

41 reliable tools for generating potential pathway mechanisms. To draft these pathways, many have applied 

42 network methods for understanding associations between drug target proteins and safety or efficacy 

43 phenotypes and extensions of these models have predicted drug repurposing opportunities(1,2) and synergies 

44 for drug combinations(3,4). These methods are compelling because a network approach may yield statistically 

45 significant associations for a drug’s protein targets to many more phenotypic associations than validated 

46 evidence exists. Due to financial or market competition, a drug may only be approved for one, maybe two 

47 disease indications, yet a network method might predict statistically significant associations to many more 

48 disease indications. These predictions may be opportunities for re-purposing or using drugs off-label yet 

49 distinguishing between true positives and true negative disease associations remains a challenge, and gold 

50 standard sets of drug effects do not exist(5).

51 The network community has applied multiple techniques for selecting between true positive and true 

52 negative drug phenotypes, each with varying advantages and disadvantages. In an over-simplified view, 

53 distance-based methods identify the number of protein-protein interactions to a reach a relevant phenotype 

54 association by calibrating to the distance between protein targets of marketed drugs and their intend-to-treat 

55 disease genes(1,6,7). Statistical enrichment methods look for enrichment of a network’s genes relative to all 

56 gene associations across the entire interactome(2) and some rank drug phenotypes based on the connectivity 

57 and closeness of phenotypes shared by drug combinations(8). Neural network methods can achieve high 

58 accuracy at labeling known drug-drug interactions using protein-protein interaction networks, drug-target 

59 binding data, and gene/protein-phenotype data4. However, parsing the potential mechanism behind these 
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60 predictions remains challenging. Here we compared three different paradigms for separating true positive and 

61 true negative drug safety phenotypes to better understand the utility of these paradigms for selecting relevant 

62 drug phenotypes.

63 We specifically considered network associations to drug side-effects because unintended drug side-

64 effects are a major contributor to drug attrition and many applications of network methods have successfully 

65 identified drug associations to safety phenotypes. We specifically focused on designated medical events 

66 (DMEs) because these are the most severe and are consistently and rigorously considered during regulatory 

67 review (e.g. myocardial infarction, pancreatitis) and we did not consider “milder” adverse events (e.g. nausea, 

68 rash). By focusing on this subset of adverse events, we reasoned that FDA regulatory review was a sufficiently 

69 stringent filter for identifying a true association between a drug and a DME and that a lack of a labeled warning 

70 was a sufficient criterion for determining that a drug is likely not causative for the DME. Using this assumption, 

71 we used a novel data set of positives extracted from drug labels using a natural language processing approach 

72 (publication forthcoming). This yielded a set of 1,136 drugs associated to 35 designated medical events 

73 (DMEs), a severe subset of drug side-effects. This dataset was originally developed and analyzed to 

74 understand patterns in networks of drugs with similar DME associations. However, the dataset provided a 

75 unique opportunity to assess the performance of network selection paradigms for identifying relevant drug 

76 safety phenotypes using protein-protein interactions. In this dataset, we defined negatives as any of the 1,136 

77 drugs that had network associations to this set of DMEs but the DME was not listed on the drug’s label. We 

78 further applied the PathFX algorithm(2) because we could more easily modify the code base to test different 

79 paradigms for separating true positives and true negatives. 

80

81 Results

82 Statistical enrichment cannot clearly separate true positives and true negatives

83 We first investigated a statistical enrichment method (Figure 1A) for separating true positives and true 

84 negatives. Specifically, we used PathFX in its original published form. Briefly, PathFX uses a drug’s binding 

85 proteins as inputs to identify a network of relevant protein-protein interactions from a larger interactome 

86 network (Supplemental Figure 1). The algorithm uses a database of gene-phenotype associations and 

87 statistical enrichment to identify enriched network phenotypes relative to the original interactome. We used 
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88 PathFX to identify networks for all 1,136 drugs and investigated where PathFX identified a true positive – a 

89 network association between a drug and a DME on the drug’s label – and a false positive – a network 

90 association to a DME not listed on the drug label. The distributions for these p-values, both raw and 

91 normalized, overlap (Supplemental Figure 2), suggesting that a simple statistical test of enrichment is 

92 insufficient for separating true positives and true negatives. Not surprisingly, the area under the receiver 

93 operator curve (AUROC) is 0.51 (Figure 1C).

94

95 Using a distance-based approach does not increase model performance for DMEs

96 We next investigated a simple distance metric for separating true and false positives (Figure 1A). For 

97 this investigation, we modified PathFX from the original published form (Supplemental Figure 1). Specifically, 

98 the original PathFX algorithm relied on an empirically derived path-score threshold to minimize common biases 

99 for network algorithms including hub-bias (a gene/protein has high connectivity because it is well studied) and 

100 annotation bias (a phenotype is associated with many network genes/proteins because it is overly studied). We 

101 considered this path score to be a sufficient proxy for interaction path distance, and so we created modified 

102 versions of PathFX using non-optimal distances (e.g. PathFX_dist0.9, PathFX_dist0.8, etc). We reanalyzed our 

103 1,136 drug set using each of these distance algorithms and investigated how relaxing the path score value 

104 affected true and false positive rates. At distances of 0.82-0.99, we were unable to generate a full ROC curve( 

105 Figure 1C). This is likely due to the fact that increasing interaction path distance can only yield more true 

106 positives if there are more genes associated with the DME phenotype of interest. We discovered that modifying 

107 the path score threshold did not increase an ability to detect true positive associations to DME-associated 

108 genes.  

109

110 Context-specific interactions increase ability to discern true from false positive DME associations

111 Much of biology is context dependent and many pathways investigations have used disease-specific 

112 pathways to uncover target candidates for therapeutic interventions. We hypothesized that each DME may 

113 result from association to a DME-specific pathway and that a better separator of true and false positives could 

114 be the specific network genes/proteins supporting an association to a DME phenotype. To test this hypothesis, 

115 we tested multiple machine learning and multivariate approaches to distinguish network proteins associated 
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116 with true positives and true negatives for each DME phenotype. We performed nested cross-validation to 

117 select among random forests, logistic regression, and decision trees and used the F1 statistic to discover that 

118 these methods were comparable in performance (Figure 1A, Supplemental Figure 3, Supplemental Table 

119 1). We selected a simple linear regression because it was the most straightforward method for interpreting if 

120 and how network genes/proteins were associated with each DME of interest. Indeed, using a linear regression 

121 model combined with networks discovered for DME-associated drugs increased AUROC values 50% 

122 improvement over p-value (AUROC 0.77 compared to 0.51) or distance methods (Figure 1C). Performance 

123 varied for each DME because a separate logistic regression model was required for each DME phenotype 

124 (Supplemental Figure 4).

125 CSIs are further attractive for their interpretability. For instance, linear regression feature importance 

126 scores highlight network proteins – both drug-binding and downstream of drug-binding proteins – that are 

127 associated with positive and negative drugs for each DME (example for edema shown in Figure 2, other 

128 feature importance scores in Supplemental File 1). We overlaid feature importance scores on a merged 

129 network for edema to visualize the feature-importance scores in the context of drug protein-protein interaction 

130 networks (Figure 4). In the tabular results and merged network image, both drug-binding and downstream 

131 networked intermediate proteins have high feature importance scores, suggesting that downstream 

132 interactions (in addition to specific drug-binding targets) could contribute to drug-induced DMEs.

133

134 Discussion

135 Protein-protein interaction network methods are increasingly used for identifying phenotypes associated 

136 with drug-binding proteins, however, network methods are not sufficiently validated to have translational 

137 impact. Here we considered different network selection paradigms for their ability to discern true from false 

138 positive drug associations to designated medical events (DMEs). Statistical enrichment is a tractable and 

139 relatively easy method to implement, because it requires the selection of a p-value threshold for considering a 

140 phenotype as “positive”. However, we discovered that statistical enrichment was unable to separate true 

141 positives from true negatives. Distance-based metrics are another attractive, and easily implemented approach 

142 for discovering associations between a drug’s targets and DME-associated genes. However, we were unable 
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143 to universally apply a distance-based metric that correctly identified true positives without increase false 

144 positives. Further, interaction distances at high path score thresholds include little to no downstream 

145 interactions in the network and these truncated networks can be considered synonymous with only analyzing 

146 the drug’s targets. An inability to detect DME associations using only drug targets further motivates the use of 

147 network methods for DME detection.  We discovered that multivariate and machine learning techniques – 

148 specifically a simple logistic regression model – could identify network proteins for each DME and these 

149 interaction-based classifiers could separate true positives and true negatives across DMEs. To build further 

150 validation and support for network methods to be used more broadly in drug discovery, our results emphasize 

151 the importance of leveraging a context-specific paradigm. Indeed, the main contribution of this work is 

152 advancing the paradigm of context-specific analysis and emphasizing the role that context-specific interaction 

153 “mining” could have for making protein network methods have greater utility in industrial and regulatory 

154 decision making.   

155 The relative success of CSI-mining is not entirely surprising given that disease-specific pathway 

156 investigations have successfully identified candidate therapeutic targets, however, the results highlight several 

157 hypotheses related to advancing network methods to have greater translational impact. In this analysis of 

158 DME-associated pathways, it was possible that DME positive and negative drugs converged on the same 

159 pathway proteins but had different effects on pathway activation or deactivation. For instance, convergence on 

160 the p53 signaling pathway can have both aggravating or mitigating effects on cancer growth depending on the 

161 directionality of effect on p53. The superior performance of CSIs suggests that the DME context is important 

162 for identifying relevant phenotypes and further, that DME effects could arise, at least partially, from distinct 

163 parts of the network – DMEs may arise not from convergence on key network proteins but may arise because 

164 of associations to distinct network proteins. Specifically, in the case of edema, our analysis identified 

165 endothelin-1 (EDN1) as having a high feature importance score for predicting drugs associated with edema on 

166 their labels and EDN1 was not drug binding. In contrast to the p53 example, this highlights a potential 

167 downstream signaling effect that could be common to drugs that induce edema. However, further experimental 

168 validation would be needed to confirm the relevant of EDN1 or any of the intermediate proteins with high 

169 feature importance scores. Across DMEs, we discovered many downstream network proteins, such as EDN1, 

170 with high feature importance scores. This further motivates the need to discover and test pathway mechanisms 
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171 for their role in DME effects in addition to scrutinizing the drug’s direct binding targets. However, the evidence 

172 is compelling that context-specific interactions are a complementary and viable paradigm for advancing 

173 network methods to have greater influence on decision making in industry and regulatory settings.

174 We acknowledge limitations in this analysis. For instance, the definition of a set of gold-standard true 

175 negative examples is imperfect. We considered the lack of a warning on a drug’s label as a sufficient standard 

176 for our analysis, considering the rigor and integrity of the FDA review process. Yet, it’s still possible that some 

177 of our true negatives are false negatives and the negative drugs could have a meaningful association to a DME 

178 despite a lack of a labeled warning. Because defining gold standard true negatives is difficult, our analysis is 

179 limited to the investigation of DMEs and does not consider drug efficacy or milder drug side effects. 

180 Understanding how well interaction pathways associate drug targets to efficacy phenotypes would require 

181 greater transparency about ‘failed’ tests of drugs against multiple diseases and better curation of this type of 

182 data. Further, the current definitions of CSIs could be further optimized. For some DME contexts, we achieved 

183 AUROC values that were much higher than p-value or distance-based metrics. For some DME contexts, we 

184 were unable to build sufficiently predictive models and ultimately restricted analysis to DMEs where we had at 

185 least 10 positive and negative examples. These models could be improved by further curation of positive and 

186 negative examples or the inclusion of more data (e.g. drug-protein binding data, gene-DME associations, or 

187 protein-protein interactions).

188 Further advancement of context-specific network analysis will require a sufficient number of known 

189 effectors. Specifically, to associate a drug with a relevant effect on a DME, we needed several examples of 

190 drugs that cause the DME and drugs that had network associations to the DME but did not cause it. Because 

191 we lack these positive and negative examples for understudied diseases without current therapies, we are 

192 unable to sufficiently predict drug effects on these understudied diseases. In the case of DMEs, sufficient drug 

193 effectors existed for training classifiers, making context-specific analysis feasible for classifying the effects of 

194 new compounds on DMEs. We anticipate that data from established assays and model systems will be 

195 essential to mining CSIs for drug-efficacy related phenotypes, especially for disease areas where successful 

196 therapies do not yet exist. We anticipate that network selection methods relying on mathematical principles 

197 (e.g. p-value selection, network distance, network connectivity) will remain as powerful workhorse techniques, 

198 especially in contexts where known drug effectors are not established. We see CSI mining as a means to 
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199 advance these predictions towards the goal of providing predictive power for decision-making at the level or 

200 regulatory review or industrial selection of gene targets for new therapies.

201 The contribution in this work is the demonstration that prioritizing specific subsets of the interaction 

202 network can be predictive for modeling drug effects. From a network engineering perspective, CSI mining may 

203 indeed affect how network methods are developed for understanding drug mechanisms. The result presented 

204 here encouraged us to pursue further validation of the prioritized network proteins as mediators of drug 

205 mechanisms. Indeed, combination drugs that bind DME-network proteins synergized to affect adverse 

206 outcomes associated with drugs associated with the DME on their drug labels (in preparation). Together, these 

207 results suggest a paradigm shift towards network engineering of context-specific pathways to identify drug 

208 network mechanisms.

209

210 Materials and Methods

211 Extracting true positive and true negative drug examples from drug labels

212 We extracted relevant phenotypes from the drug’s labels using a custom NLP query (publication 

213 forthcoming, data included in Drugs_labeled_for_AEs.txt). We further refer to ‘positive drug examples’ as those 

214 drugs associated with a DME on their drug label. We refer to ‘negative drug examples’ as any of the 1,136 

215 drugs in our drug set that do not have a DME listed on their drug label. We define positives and negatives for 

216 each DME separately. For instance, 496 drugs are associated with myocardial infarction on their drug label, 

217 and these drugs are considered positives for the myocardial infarction DMEs. The remaining 640 drugs in our 

218 1,136 drug set are considered negatives for the myocardial infarction DME.

219

220 Modeling true positive and negative networks with PathFX

221 We analyzed 1,136 drugs using PathFX with default parameter settings. Briefly, PathFX uses drug-

222 binding proteins as inputs to first identify a relevant protein-protein interaction network around these targets, 

223 and second uses the full list of network genes/proteins to identify phenotypes associated with these 

224 genes/proteins relative to the entire interactome. For each drug, PathFX analysis yielded interaction networks 

225 and a list of phenotypes associated with these networks. For a full list of features and outputs, see2,9. 
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226 We assessed whether a phenotype matched a DME from the drug label and considered these pairs as 

227 true positives. We also searched these same association tables for DMEs not listed on the drug’s label and 

228 considered these as false positives. The script define_tp_fp.py  creates the following outputs: 

229 drugs_to_dmes_true_positive.txt, drugs_to_dmes_false_positives.txt.

230

231 Plotting p-value distributions and estimating AUROC values

232 In the same script (define_tp_fp.py ) where we defined our true and false positive examples, we 

233 generated plot of the p-values for these associations. This script generates the plots, raw_pvalues.png, and 

234 norm_pvalues.png, and generates the data object, pvalue_roc_values.pkl, for further analysis. We analyzed 

235 the AUROC in the script, plot_ROC_pv_soDist.py, using the trapez method implemented in Python. 

236

237 Measuring the effect of interactome distance on detecting DME associations

238 We developed modified versions of PathFX to test the effect of altering interaction distance on 

239 detecting associations to DMEs. For the original PathFX construction we empirically derived an interaction 

240 score threshold to prevent hub bias(2). To measure the effect of interactome distance on detecting 

241 associations, we created 11 custom versions of PathFX. These scripts are contained in the 

242 PathFX_soDist/scripts/ directory and are named phenotype_enrichment_pathway_so_dist_0.82.py where 

243 ‘0.82’ represents the score threshold used in this version. The other score thresholds used include 0.82-0.90, 

244 0.95, and 0.99. We used these thresholds out of convenience. We started our experiment using a stringent, 

245 high threshold, and then relaxed this threshold to increasingly allow more edges to be considered in network 

246 construction. Given the score distribution of our interaction network, we found that computational time 

247 increased significantly as we reached the 0.82 range. We truncated the analysis with this version because we 

248 saw that we were no longer drastically changing our ability to detect more true positives.  

249 We created networks for our 1,136 drug set using each version using the script 

250 run_pathfx_all_distances.py. This script generated networks, and association files for all 1,136 drugs at each of 

251 the 11 distances. We investigated whether the networks for these drugs contained associations to true or false 

252 positive DMEs at each score threshold. We analyzed these results using the script, count_tp_fp_so_dist.py, 

253 and the results of this script are saved in the PathFX_soDist/results/analyze_so_dists/ directory. We then used 
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254 the plot_ROC_pv_soDist.py to count the true and false positive rates at each score threshold and plot the ROC 

255 curve using these values. This script generates the pvalue_ROC_dist.png figure.

256

257 Logistic regression, decision trees, and random forests analysis

258 For this analysis, we created binary matrices for all true and false positive networks associated with a 

259 DME. These matrices included a 1/0 if a gene was/was not included in the drug’s network respectively. Rows 

260 were labels as positive if the drug’s label included the DME on the label or negative if the drug’s label was not 

261 associated with the DME. This analysis is included in the script create_positive_negative_files.ipynb and this 

262 analysis yielded a matrix file for each of 24 DMEs: agranulocytosis, cardiac arrest, cerebral infarction, deep 

263 vein thrombosis, delirium, edema, gastric ulcer, hemolytic anemia, hemorrhage, hepatic necrosis, 

264 hyperlipidemia, hypertension, interstitial lung disease, myocardial infarction, myopathy, pancreatitis, peripheral 

265 neuropathy, pneumonia, proteinuria, pulmonary edema, sepsis, tardive dyskinesia, thrombocytopenia, and 

266 ventricular tachycardia. These files are saved in /ML_network_positives_negatives/dme_DMENAME.txt where 

267 DMENAME is replaced with each of the DMES of interest. 

268 We first used the scikit-learn module in python and a nested cross-validation procedure to evaluate 

269 modeling types – logistic regression, decision trees, and random forest – and used the F1 score to evaluate 

270 model performance in this analysis (ML_network_positives_negatives/run_all_dme_models_ncv.py). The 

271 results of those analysis are included in Supplementary Figure 1. To generate test scores for the ROC curves 

272 using logistic regression, we modified ML_network_positives_negatives /run_all_dme_models_new_log_reg.py 

273 and ML_network_positives_negatives/all_pathways.py scripts. To plot all ROC curves, we used 

274 plot_ROC_all_methods_072720.py.

275

276 Plotting merged networks

277 To analyze feature importance scores, we used 

278 ML_network_positives_negatives/save_and_plot_feat_imp_scores.py. This script analyzed the feature 

279 importance scores generated after the model fitting and generated Supplemental File 1. This file is a copy of 

280 ML_network_positives_negatives/log_reg/logistic_regression_all_feature_importance.xlsx. We next plotted 

281 merged networks and feature importance values using network_images/ plot_feat_imp_on_networks.ipynb.
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282

283 Data and code availability

284 The data and code used in this analysis are available on GitHub 

285 (https://github.com/jenwilson521/network_selection).
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321 Figure 1. Consideration of three frameworks shows superior performance of context-specific analysis. 

322 (A) We considered three frameworks: 1. statistical enrichment - a network association is selected if the drug’s 

323 interaction network is enriched for associations to a phenotype of interest relative to the entire interactome. 2. 

324 distance-based - an interaction distance function is calibrated based on the ability to identify relationships to 

325 true positive phenotypes without finding associations to true negative phenotypes. 3. context-specific 

326 interactions (CSI) analysis – multivariate analysis (e.g. logistic regression) is used to discover which 

327 genes/proteins and interactions separate true from false positives. (B) Positive Drug-DME relationships are 

328 extracted from the warnings, boxed warnings, and precautions section of the drug’s label. Negative cases (or 

329 cases where the drug is not expected to cause the DME) are inferred from the absence of the DME on the 

330 drug’s label. Red or blue triangles represent positive or negative drugs, and multiple shades of yellow/orange 

331 are meant to distinguish different DMEs in the dataset. (C) ROC curves for distinguishing true and false 

332 positives using p-value (orange) or a distance-based approach (blue) or using CSIs (green). Legend indicates 

333 AUROC value for each framework.
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339

340 Figure 2. Meta-analysis of DME-associated networks identifies CSIs for edema. The merged interaction 

341 network for all true and false positive drugs associated with edema highlights which network components – 

342 drug-binding and network proteins – have high feature importance in the logistic regression model (A). 

343 True/false positive drugs are represented in the top layer as regular/inverted triangles respectively. Drug-
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344 binding and intermediate pathway proteins are represented in the second and third layers. The size of the 

345 protein reflects the number of networks in which the protein appears. Relevant edema-associated phenotypes 

346 are represented as boxes in the last layer. Protein coloring reflects the feature importance in the logistic 

347 regression model. Red/blue coloring represents association to true/false positive networks. We have also 

348 provided tabular results (B) indicating protein feature importance score and whether or not the protein is drug-

349 binding and a histogram (C) of ranked feature importance scores.
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