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ABSTRACT 

The study of human genome variations can contribute towards understanding population 

diversity and the genetic aetiology of health-related traits. We sought to characterise human 

genomic variations of Botswana in order to assess diversity and elucidate mutation burden in 

the population using whole genome sequencing. Whole genome sequences of 390 unrelated 

individuals from Botswana were available for computational analysis. The sequences were 

mapped to the human reference genome GRCh38. Population joint variant calling was 

performed using Genome Analysis Tool Kit (GATK) and BCFTools. Variant characterisation 

was achieved by annotating the variants with a suite of databases in ANNOVAR and snpEFF. 

The genomic architecture of Botswana was delineated through principal component analysis, 

structure analysis and FST. We identified a total of 27.7 million unique variants. Variant 

prioritisation revealed 24 damaging variants with the most damaging variants being ACTRT2 

rs3795263, HOXD12 rs200302685, ABCB5 rs111647033, ATP8B4 rs77004004 and ABCC12 
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rs113496237. We observed admixture of the Khoe-San, Niger-Congo and European ancestries 

in the population of Botswana, however population substructure was not observed. This 

exploration of whole genome sequences presents a comprehensive characterisation of human 

genomic variations in the population of Botswana and their potential in contributing to a deeper 

understanding of population diversity and health in Africa and the African diaspora. 

 

Key words: Whole genome sequencing, Population structure, Mutation burden, HIV-1, Next 

generation sequencing (NGS) 

 

INTRODUCTION 

Variants (or variations) are differences between the human reference genome (for instance 

GRCh38) and a genome of interest (1). Genomic variations (variants) include single nucleotide 

variants (SNVs), short insertions and deletions (indels) of less than 50 bases and structural 

variations (1–5). At the core of variant characterization is annotation of the discovered variants. 

Variant annotation involves interpreting the variants by determining their types, minor allele 

frequencies, effect prediction and predicting the genomic location of the discovered variants 

(6–9). Prioritizing variants in medical genetics mainly entails distinguishing background 

benign variants from pathogenic variants that can lead to disease phenotypes (10,11). 

According to comparative genetics, if a variant occurs in a gene that is conserved among 

species, this variant is likely to be pathogenic. In this regard a number of conservation methods 

can be used to identify deleterious mutations (12).  

 

Characterizing genetic variations fosters the understanding of pathophysiology, and 

reconstruction of population histories through the inference of genetic relatedness (or 

divergence) of individuals (13,14). In genetic epidemiology, population structure is assessed 

and corrected to minimize spurious genetic associations and unmask signals of association  

(14–17). Patterns of genetic variation can be detected and quantified using methods such as 

Principal Components Analysis (PCA) (17,18), Wright’s fixation index (FST) (19,20), patterns 

of homozygosity (21–23)  and admixture proportion inference (24). 

 

Major events such as the “Bantu expansion” and Eurasian migration into Southern Africa have 

shaped the genetic landscape of the region. These events have led to varying degrees of 

admixture of the migrant groups and indigenous population (14,25–31). Given the complex 

genetic architecture and high disease burden in Southern Africa, it is important to characterize 

the genetic variation within the region in order to understand the biology of disease (14,27,32).  

 

We sought assess population genetic diversity and elucidate mutation burden in Botswana. 

Botswana is a landlocked country at the centre of Southern Africa (33). The population of 

Botswana is made up of mainly Bantu-speakers, an ethnolinguistic group of the Niger-Congo 

phylum (34–36). According to the latest population census the population is mainly comprised 

of about 92.7% Bantu-speakers, 1.7% Khoe-San, 3.6% Europeans, and relatively less Indians, 

and Asians (37). Since admixture occurs when previously isolated populations interbreed, it is 

possible to observe admixture of the aforementioned populations in Botswana. Using whole 

genome sequencing, we present a comprehensive characterization of the genomic variation and 
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elucidate mutation burden within a Southern African population of Botswana.  

 

RESULTS 

 

Characterization of variants and variants effect 

We identified 27.7 million variants from 390 individuals of Botswana. Of these variations, we 

found 25.1 million SNVs and 2.6 million indels (Table S1); 13.4% of these variations were 

novel, i.e. not found in dbSNP151, 1KGP, AGVP and gnomAD (38) (Figure 1a). The average 

transition-transversion (TI/TV) ratio was 2.1. The novel variants were classified into genomic 

region and functional classes. Of the 2,789,599 novel variants, intergenic variants were 

observed at the highest frequency (1,461,193), followed by intronic (1,066,166) and ncRNA 

(178,178) variants (Figure 1b and Table S2). A majority of the novel variants were singletons, 

rare (MAF <= 0.01) and low frequency variants (MAF >0.01-0.05) (Table S3, Figure 1a and 

c). Nonsynonymous SNVs, stop gain and stop loss variants formed 65.6% of the exonic 

variants (Figure 1d and Table S2).  

 

 
Figure 1. The distribution of novel variants in the Botswana population genomes. 

a. Novel variants, absent from dbSNP151, the African Genome Variation Project (AGVP), the 

1000 Genomes Project (1KGP) and gnomAD. b. Genome-wide distribution of novel variant 
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effects by functional elements. c. Distribution of novel functional elements across MAF bins 

d. Distribution of exonic variants by functional elements. FS, frameshift; sSNV (synonymous 

SNVs); nsSNV (non-synonymous SNVs). 

 

Variant Prioritization and prediction of mutation burden 

Potentially pathogenic SNVs were identified by selecting those that had at least 10 predictions 

of deleteriousness (Table S4). We also observed that 8 of the genes identified by at least 10 

predictions in ANNOVAR harboured additional loss-of-function (LOF) variants according to 

snpEFF (Table S4). A trimmed list of five SNVs that were further classified as “damaging” by 

FATHHM is hereby presented. The most deleterious mutations were found within the ACTRT2, 

HOXD12, ABCB5, ATP8B4 and ABCC12 genes (Table 1). 

 

Table 1. The most deleterious nonsynonymous single nucleotide variants 

CHR Position ID cDNA change AA 

change 

Gene CADD Botswana 1KGP gnomAD_AFR 

1 3022425 rs3795263 exon1:c.G739A p.G247R ACTRT2 16.1 A=0.0013 A=0.12 A=0.044 

2 176100737 rs200302685 exon2:c.G790C p.E264Q HOXD12 34 C=0.032 . C=0.00038 

7 20727068 rs111647033 exon13:c.G1319C p.R440P ABCB5 20.1 C=0.026 C=0.0004 C=0.0022 

15 49972713 rs77004004 exon13:c.C1112A p.P371H ATP8B4 14.2 T=0.019 T=0.0038 T=0.013 

16 48139198 rs113496237 exon5:c.G796C p.G266R ABCC12 19.2 G=0.013 . G=0.000071 

CHR: chromosome. AA change: amino acid change. 1KGP: The 1000 Genomes Project MAF. gnomAD_AFR: 

MAF of an African population from the gnomAD database. 

 

Distribution of pathogenic SNVs in known HIV-1 specific host genes 

Discrepancies in pathogenic SNV proportions were observed between HIV-1 positive (HIV-1 

cases) and HIV-1 negative (HIV-1 controls) in the Sec1 Family Domain Containing 1 

(SCFD1), Histone Cluster 1 H4 Family Member B (HIST1H4B), Histone Cluster 1 H4 Family 

Member A (HIST1H4A), Immunoglobin Superfamily Member 21 (IGSF21), Nuclear Cap 

Binding Protein Subunit 2 (NCBP2) and Zinc Finger DHHC-Type Palmitoyltransferase 19 

(ZDHHC19) genes. Lower proportions were observed for SCFD1, HIST1H4B, HIST1H4A and 

ZDHHC19 genes, and higher proportions were observed for IGSF21 and NCBP2 genes in HIV-

1 cases (Figure 2). 
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Figure 2. Distribution of pathogenic SNVs in known HIV-1 specific host genes 

 

Pathways enrichment analysis and gene-gene interactions 

The 24 genes harbouring the potentially pathogenic variants were subjected to enrichment 

analysis using GeneMANIA (39) and Enrichr (40) bioinformatics tools to identify biological 

processes and pathways putatively affected (Figure 8, Table 4). To successfully enrich for 

biological processes and pathways, the identified genes were used to “fish” 20 more related 

genes that are predicted to physically interact, co-express and co-localize with the identified 

genes (Figure 8). 
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Figure 3. Gene-gene interaction network of genes harbouring the most deleterious 

variants. The different colours of branches represent how the genes are related; pink: physical 

interactions, purple: co-expression, orange: predicted, navy blue: co-localization, blue: 

Pathway, green: Genetic interactions, yellow: shared protein domains. Black and stripped 

nodes: genes provided as input into GeneMANIA. Black only nodes: genes predicted by 

GeneMANIA to interact with the input list. Connecting lines represent interactions. 

 

The products of the identified genes were predicted to perform the following biological 

processes:  gluconeogenesis, hexose and acyl-COA biosynthesis (Table 4). These gene 

products are localized within the oxoglutarate dehydrogenase complex and the mitochondria. 
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The predicted molecular functions of these gene products were catalysis of peptidase, hydro-

lyase, alcohol dehydrogenase and ATPase activities.  The affected pathways included the 

glycolysis and gluconeogenesis, Krebs cycle, renal carcinoma, hypoxia-inducible factor 1 

(HIF-1) signalling and folate biosynthesis pathways (Table 2). The identified genes were found 

to be associated with Pyruvate dehydrogenase complex deficiency (PDCD). One of the 

identified genes tumor susceptibility 101 (TSG101) was also found to be associated with human 

immunodeficiency virus 1 (HIV-1), albeit not statistically significant (Table 2). 

 

Table 2. Enrichr gene-set enrichment of the genes harbouring the prioritized mutations. 

Name P-value P-valueadj
 Database 

Gene Ontology 

Hexose biosynthetic process 2.59 x 10-6 1.32 x 10-2  

 

Biological Process 2018 (41) 

http://www.informatics.jax.org/ 

 

Regulation of acyl-COA biosynthetic 

process 

2.80 x 10-6 7.14 x 10-3 

Pyruvate metabolic process 3.11 x 10-6 3.96 x 10-3 

Glucose metabolic process 1.18 x 10-5 1.2 x 10-2 

Gluconeogenesis 9.99 x 10-5 5.1 x 10-2 

Oxoglutarate dehydrogenase complex 3.46 x 10-5 1.54 x 10-4  

Cellular Component 2018 (41) 

http://www.informatics.jax.org/ 

 

Mitochondrial small ribosomal 

subunit 

2.80 x 10-3 6.24 x 10-3 

Mitochondrial matrix 5.57 x 10-5 8.28 x 10-2 

Alcohol dehydrogenase (NADP+) 

activity 

9.62 x 10-8 5.54 x 10-5  

 

Molecular Function 2018 (41) 

http://www.informatics.jax.org/ 

 

Exopeptidase activity 1.32 x 10-4 3.80 x 10-2 

Hydro-lyase activity 1.32 x 10-4 3.04 x 10-2 

ATPase activity, coupled to 

movement of substances 

2.54 x 10-4 4.17 x 10-2 

Pathways 

Glycolysis and Gluconeogenesis 2.84 x 10-6 1.34 x 10-3  
 

WikiPathways 2019 Human (Slenter et al, 2017) 

 

KEGG 2019 Human (42) 

 

Panther 2016 (43) 

 

 

Hereditary leiomyomatosis and renal 

cell carcinoma pathway  

1.10 x 10-5 2.6 x 10-3 

HIF-1 signalling pathway 2.08 x 10-9 3.20 x 10-7 

Citrate cycle (TCA cycle) 5.57 x 10-9 5.72 x 10-7 

RNA degradation 2.71 x 10-5 2.09 x 10-3 

Central carbon metabolism in cancer 3.95 x 10-4 1.52 x 10-2 

Histidine metabolism 1.16 x 10-3 3.98 x 10-2 

Folate biosynthesis 1.49 x 10-3 4.58 x 10-2 

Diseases 

Pyruvate dehydrogenase complex 

deficiency 

4.71 x 10-5 8.57 x 10-3 ClinVar 2019 (44) 

OMIM Disease (45)    
 

Human immunodeficiency virus 1 6.64 x 10-1 1.0 x 100 VirusMINT (46) 

P-valueadj: adjusted P-value. 
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Population diversity 

Principal components analysis (PCA) and admixture analysis 

Population sub-structure was not observed within the Botswana study population. The plots of 

the first 3 PCs show a homogeneous mix of individuals from the HIV positive and the HIV 

negative groups with 3 outliers (Figure 4).  

 

  

 

Figure 4. Principal component plot depicting population substructure of HIV-1 

positive/negative individuals from Botswana. A depiction of population substructure of 

Botswana with a 3D plot PCs 1,2 and 3 (A) and 2D plot of PC2 against PC1 (B) showing 

cases (HIV-1 positive) in bright brown and controls (HIV-1 negative in blue). 

 

The Botswana population formed a cluster with other African populations of the Niger-Congo 

ethnolinguistic phylum, away from the other ethnicities (Figure 5). We also assessed the 

genetic relationship between Batswana, other Niger-Congo populations and the Khoe-San. We 

see in Figure 6 that Batswana and the Niger-Congo Bantu South formed a separate cluster 

from other Niger-Congo populations, with a dispersion towards the Khoe-San.  

 

A B 
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Figure 5. A PCA plot of the genetic relationship of the Botswana population with 20 

world-wide ethnicities. The points on the PCA plot represent each individual. Botswana 

individuals (known as Batswana) are shown in diamond. Botswana HIV-1 negative (BW HIV-

) individuals are shown with red diamonds, while Botswana HIV-1 positive (BW HIV+) 

individuals are shown with yellow diamonds. 

 

 

Figure 6. A PCA plot of the genetic relationship of Batswana, other Niger-Congo 

populations and the Khoe-San. Botswana samples are in the convex of Khoe-San and Bantu, 

confirming the genetic contribution of both Bantu and Khoe-San in Botswana. 

 

Given the results in Figure 3, we performed admixture analysis to estimate the individual 

fraction of genetic ancestry. Batswana assessed in this study show admixture of the following 
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ancestry proportions:  Niger-Congo (65.9%), Khoe-San (32.9%) and Europeans (1.1%) 

(Figure 7).  

 

 

 

Figure 7. Genome-wide admixture proportions of Botswana. Khoe-San, Niger-Congo and 

European populations were used as proxy ancestral populations that may have potentially 

contributed to the genetic architecture of Botswana. 

 

Population-based genetic distance (FST) 

The pairwise FST results accentuates what was observed in assessment of global population 

structure. The heatmap and hierarchical clustering shows two distinct clusters separating into 

the Eurasian and African clades. A sub-clade that branches into the Niger-Congo populations 

and the Khoe-San population was observed. An inner sub-clade that separates Southern Bantu-

speakers (including the Botswana population) from other Niger-Congo population is also 

observed (Figure 8). 
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Figure 8. Pairwise genetic distance between the Botswana HIV-1 positive/negative 

population and 20 world-wide ethnicities. This is a heatmap and dendrogram of FST values 

showing pairwise genetic divergence between populations. The blue shade represents 

similarity while the red shade represents divergence between the populations. The populations 

are AA: African-American, AC: African-Caribbean, AS: Afro-Asiatic, ASC: Afro-Asiatic 

Cushitic, ASO: Afro-Asiatic Omotic, ASS: Afro-Asiatic Semitic, LA: Latin American , KS: 

Khoe-San, BW_HIV+: Botswana HIV-1 positive, BW_HIV-: Botswana HIV-1 negative, 

NCB: Niger-Congo Bantu, NCBS: Niger-Congo Bantu South, NCVN: Niger-Congo Volta 

Niger, NCW: Niger-Congo West, EN: European North, ES: European South, EU:USA 

European, EC: European center, EA: East Asian, SA: South Asian, UKI: UK Indian and USI: 

USA Indian. 

 

Genetic relatedness and runs of homozygosity 

The IBD analysis revealed that none of the study participants were related. Our results further 

showed diversity in ROH segments among African populations, and between the African 

populations and non-African populations (Figure 9). Generally, the Niger-Congo populations 
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(including the Botswana HIV-1 positive/HIV-1 negative cohort) had lower ROH lengths and 

less abundant ROH segments than the European, Asian, Indian, Latin-American and Khoe-San 

populations (Figure 9). 

 

 

Figure 9. The lengths and number of runs of homozygosity (ROH) segments across 

different global ethnic groups. Violin plots showing median the lengths (in Mb) and number 

of ROH. The colours represent different super-groups: Mixed populations (African-American 

(AA), African-Caribbean (AC), Afro-Asiatic (AS), Afro-Asiatic Cushitic (ASC), Afro-Asiatic 

Omotic (ASO), Afro-Asiatic Semitic (ASS) and Latin American (LA)) in dark-red, Khoe-San 

(KS) in light blue, Niger-Congo in navy blue (Botswana HIV-1 positive (BW_HIV+), 

Botswana HIV-1 negative (BW_HIV-), Niger-Congo Bantu (NCB), Niger-Congo Bantu South 

(NCBS), Niger-Congo Volta Niger (NCVN) and Niger-Congo West (NCW)), Europeans 

(European North (EN), European South (ES), USA European (EU), European center (EC)) in 
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light orange, Asians (East Asian: EA and South Asian: SA) in orange and Indians (UK Indian 

(UKI) and USA Indian (USI)) in very light blue. 

 

Comparison of genome-wide admixture proportions between HIV-1 positive and HIV-1 

negative groups 

The genome-wide genetic proportions of Khoe-San ancestry in Botswana cases (HIV positive 

individuals) was significantly higher (0.336 ± 0.003 vs 0.315 ± 0.005, p-value = 0.002) than 

that observed in Botswana controls (HIV negative individuals) (Table 6). There was no 

significant difference in the genome-wide genetic proportions of the Niger-Congo and 

European ancestries when comparing Botswana cases to Botswana controls (Table 5). 

 

Table 3. Comparison of the mean genetic ancestry proportions of Botswana estimated 

with ADMIXTURE between HIV-1 positive and HIV-1 negative groups. 

 Genome-wide ancestry contribution (mean ± SE) 

Ancestry All samples Cases (HIV+) Controls 

(HIV-) 

Mean comparisons of 

cases vs controls (P-

value) 

Khoe-San 0.329 ± 0.003 0.336 ± 0.003 0.315 ± 0.005 0.002 

Niger-Congo 0.659 ± 0.003 0.657 ± 0.003 0.665 ± 0.007 0.328 

European 0.0114 ± 

0.003 

 

0.00727 ± 

0.002 

0.0202 ± 

0.007 

0.076 

Estimation of the mean and SE (standard error of the mean) of ancestry proportions from each 

of the 3 populations contributing to the admixture of Botswana. 

 

 

DISCUSSION AND CONCLUSION 

Of the 27.7 million variants identified from 30X depth whole genomes of 390 individuals of 

Botswana. A critical and convenient QC metric to measure the quality and accuracy of genomic 

variation data is the TI/TV ratio (47). The average TI/TV ratio of this set of variants was 2.1. 

This TI/TV ratio is within the expected range for human whole genome data which is ~2.0-2.1, 

meaning that the data is devoid of false positives. As observed previously (27), intergenic 

variants had the highest frequency, followed by intronic variants and non-coding RNA 

(ncRNA) variants. Thirteen percent (2,789,599) of the discovered SNVs were novel. This 

number of previously uncaptured genetic variation highlights a potential of identifying 

population-specific variations through WGS. Whole genome sequencing also offers an 

opportunity to identify intronic variants and variants within non-coding regions. To this effect 
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1,066,166 intronic and 178,178 (ncRNA) novel variants were identified.  

 

Recent human population expansion has resulted in a skewness towards excessive rare variants. 

This means that rare variants constitute a large part of the human genomic variations (48–52). 

Hence it is not surprising that a majority of the novel variants identified in the current study 

were very rare, occurring only once in the dataset (Table S3, Figure 1a and c). A substantial 

number of the exonic variants were nonsynonymous, stop gain and stop loss variants (Figure 

1d and Table S2). These three types of mutations respectively cause a change in the amino 

acid and lead to an abnormal truncation or elongation of the protein, all leading to a change in 

the conformation or function of the encoded protein (53). These changes have a potential to 

disturb normal biological processes and cause disease. In fact, a lot of genetic diseases are 

caused by nonsynonymous mutations. 

 

Variants classified as damaging by at least 10 deleteriousness tools were further prioritized 

with FATHHM score (Table 3).  Here 5 variants within 5 genes were predicted to be the most 

deleterious (rs3795263 in the Actin Related Protein T2 (ACTRT2) gene, rs200302685 in 

homeobox D12 (HOXD12) gene, rs111647033 in ATP binding cassette subfamily B member 

5 (ABCB5) gene, rs77004004 in ATPase phospholipid transporting 8B4 (ATP8B4) gene and 

rs113496237 in ATP Binding Cassette Subfamily C Member 12 (ABCC12) gene. The product 

of ACTRT2 gene may be involved cytoskeletal organization (54). The rs3795263 variant was 

previously identified as harmful and associated with a severe form of tick-borne encephalitis 

virus infection (55). The HOXD12 gene belongs to the homeobox (HOX) family of genes that 

encode transcription factors involved in regulation of embryonic development (54,56). The 

exact role of HOXD12 is unknown (54). The HOX genes have been implicated in maintenance 

and control of HIV-1 latency through epigenetic regulation (57).  

 

The ABCB5 gene belongs to the ATP-binding cassette (ABC) family that encodes proteins 

responsible for transmembrane transport of molecules including drugs such as doxorubicin 

(54). ABCB5 is thought to also mediate chemoresistance of doxorubicin in malignant 

melanoma, (58). The ATP8B4 gene encodes an ATPase protein that is responsible for 

phospholipid translocation in the cell membrane (54). The ABCC12 gene also encodes an ABC 

protein responsible for transmembrane transport of molecules. Overexpression of the ABCC12 

gene has been associated with breast cancer (54). Some members of the ABC family regulate 

the efflux of HIV-1 antiretrovirals from intracellular compartments (59,60). Biological 
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pathways potentially affected by the products of these putatively deleterious genes and their 

interactome are discussed in subsequent paragraphs. 

 

The minor allele frequencies of the HOXD12 rs200302685, ABCB5 rs111647033, ATP8B4 

rs77004004 and ABCC12 rs113496237 variants in the Botswana data were generally higher 

when comparing to the gnomAD and the 1000 Genomes Project data.  While the MAF for the 

ACTRT2 rs3795263 variant was lower than in the gnomAD and the 1000 Genomes Project 

data. This highlights that MAFs do vary per ethnicity which could affect the risk of disease 

differently between populations (Table 1).  

 

Gene-set enrichment and functional analysis revealed the following pathways that were 

enriched for with the putatively deleterious genes: glycolysis and gluconeogenesis, Krebs 

cycle, renal carcinoma, Hypoxia-inducible factor 1 (HIF-1) signalling, RNA degradation, 

Histidine metabolism and folate biosynthesis pathways (Table 2). The pyruvate 

dehydrogenase (PDH), enolase (ENO) and aldo-keto reductase (AKR1) genes (Figure 8, Table 

2) were significantly associated with glycolysis and gluconeogenesis (1.34 x 10-3).  

 

Both glycolysis and gluconeogenesis are glucose metabolism pathways; glycolysis is the 

catabolism of glucose (or glycogen) into pyruvate, while  gluconeogenesis is the anabolism of 

pyruvate (from mainly proteins) into glucose (61,62). The PDH genes were also significantly 

associated with the Kreb’s (Tricarboxylic Acid - TCA or Citric Acid) Cycle (p = 5.72 x 10-7). 

Glycolysis, gluconeogenesis and the TCA cycle are involved in energy (mostly in the form of 

Adenosine triphosphate - ATP) production, carried out in the cytoplasm or mitochondria of 

eukaryotes (Table 2) (61,62). In cells where there is low oxygen (a condition known as 

hypoxia), HIF-1 gets activated and triggers energy production through anaerobic glycolysis 

(63).  

 

Glycolysis and TCA intermediates are used as precursors for macromolecule synthesis in 

hypoxic conditions such as cancer (64,65). This may explain the association of the PDH genes 

with HIF-1 signalling and cancer pathways (Table 2). Amino acids are also made from 

intermediates of TCA, glycolysis and the pentose phosphate pathways (66). This may explain 

the significant association of histidine biosynthesis with genes that are in connection with 

glycolysis and TCA pathways (Figure 8, Table 2).  
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The association of AKR1 genes (Figure 8) with alcohol dehydrogenase (NADP+) activity and 

folate biosynthesis (Table 2) could be explained by that the alcohol dehydrogenases catalyse 

the reduction of NADP+ to NADPH (67). This reaction also takes place within glycolysis,  

gluconeogenesis and pentose phosphate pathways (61,66). Furthermore, there is also evidence 

of NADPH being produced from folate metabolism (68). The human polynucleotide 

phosphorylase (hPNPaseold-35) is an evolutionary conserved RNA-degradation enzyme that has 

homologues in organisms such as Escherichia coli and yeast (69,70). In E. coli PNPase forms 

part of the degradosome with enolase and a helicase (71). This link between enolase and the 

evolutionary conserved PNPase may explain the association of the ENO genes with RNA 

degradation (Table 2). The degradation of HIV-1 mRNA in HIV-1 infected cells is important 

in suppressing HIV-1 replication (72). Moreover, ENO-1 has been shown to prevent HIV-1 

reverse transcription and ultimately decrease HIV-1 infectivity (73). 

 

Lower proportions of potentially pathogenic SNVs were observed for SCFD1, HIST1H4B, 

HIST1H4A and ZDHHC19 genes, and higher proportions were observed for IGSF21 and 

NCBP2 genes in HIV-1 cases (Figure 7). The IGSF21 gene encodes a cell receptor that is a 

member of the immunoglobulin superfamily (54). An intron variant rs2883821 within the 

IGSF21 gene (chromosome 1) was reported to be associated with tenofovir pharmacokinetics 

and increased HIV-1 viral load (74). The NCBP2 gene encodes a protein that is part of the 

nuclear cap-binding protein complex (CBC). The CBC binds to the pre-mRNA and is involved 

in various processes such as splicing, transcription and nonsense-mediated mRNA decay (54). 

A splice site variant rs548853 within the NCBP2 gene (chromosome 3) has been associated 

with decrease in viral load (74).  Since the proportion of pathogenic variants within the IGSF21 

and NCBP2 genes in HIV-1 cases is higher than in HIV-1 control, this corroborates with the 

previous study, that IGSF21 gene may harbour risk alleles. 

 

The product of the SCFD1 gene (chromosome 14) plays a role in SNARE-pin assembly and 

transport of molecules from the Golgi apparatus to the endoplasmic reticulum (54). SCFD1 

interacts with other Golgi proteins and possibly affects HIV-1 replication through regulation 

of glycosylation. A reduction in the level of SCFD1 was observed to reduce HIV-1 infection 

(cell entry) (75). The HIST1H4A and HIST1H4B genes (chromosome 6) encode histones, these 

are proteins that bind to DNA and assist in compacting it into nucleosomes which are the basic 

repeating units of a chromatin. Therefore histones play critical roles in organizing chromatin 

structure and gene expression (54,76,77). HIV-1 induced a modulation of the chromatin 
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signalling network that involved HIST1H4A through epigenetic modifications (78).  

 

The ZDHHC19 gene (chromosome 3) encodes a palmitoyl acyltransferase, an enzyme that 

mediates palmitoylation of signal transducer and activator of transcription 3 (STAT3) (54). 

Palmitoylation is a lipid modification process in which a fatty acids such as palmitate are 

attached to a cysteine residue of a protein to regulate its attachment and localization to the 

cytoplasmic membrane (79–81). In HIV-1 infection, STAT3 has been found to promote 

inflammation (82) and also to promote antiviral immune responses (83,84). According to the 

GWAS Catalog (74) a variant rs11924930 within the ZDHHC19 gene has been associated with 

HIV-1 susceptibility in a GWAS study of a Malawi population (85). However, the effect of 

this variant is not publicly available. In the current study, lower proportions of pathogenic 

SNVs were observed for the SCFD1, HIST1H4B, HIST1H4A and ZDHHC19 genes in HIV-

positive individuals. This might indicate that the minor alleles are protective against HIV-1 

infection. 

 

The assessment of population substructure through PCA revealed no evidence of substructure 

in the study population of Botswana (Figure 4). The study participants were recruited from 

three districts in the southern part (Southern, Kweneng and South-East) of Botswana. Although 

the sampling site does not span the whole of Botswana, the current findings have positive 

implications for genetic epidemiology in the southern part of Botswana. 

 

Population substructure can mask true genetic associations and also lead to false discovery of 

causal (or modifier) variants (14–17). To find minimal or no substructure in the study 

populations will minimize false positives in subsequent genetic association analyses. 

Furthermore, population-specific interventions against HIV-1 can be employed for this part of 

Botswana which will minimize costs that may arise in personalized medicine.  

 

The PCA (Figure 5) and FST values (Figure 8) show that there was a clear distinction between 

African populations and European populations. The population of Botswana clustered with 

other Niger-Congo populations and showed a dispersion towards the Khoe-San population 

(Figure 6). The Botswana population showed a closer affinity with the Niger-Congo Bantu 

South (Zulu) population. This is expected as a close affinity of the Sotho with the Niger-Congo 

Bantu South (Zulu) has previously been reported (27). Batswana are members of the Sotho-

Tswana clan of Southern Africa that includes the Sotho (of Lesotho and South Africa) and 
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Batswana (of Botswana and South Africa) (34,35). 

 

Major events such as the “Bantu expansion” and Eurasian migration into Southern Africa have 

shaped the genetic landscape of the region. These events have led to varying degrees of 

admixture of the migrant groups and indigenous population (14,25–31). These previous 

findings are congruent with the current study that reports a 3-way admixture of Niger-Congo 

(65.9%), Khoe-San (32.9%) and European (1.1%) populations observed in the Botswana 

population (Figure 7 and Table 3). 

 

We found no evidence of consanguinity in the Botswana HIV-1 positive/HIV-1 negative cohort 

as defined by less abundant segments and lower lengths of ROH in comparison to non-African 

populations and the Khoe-San (Figure 9). This finding is supported by the previous 

observation of no extended ROH lengths in a Botswana HIV positive cohort (86). Among the 

Niger-Congo populations, the median ROH length in the Botswana HIV-1 positive/HIV-1 

negative and the Niger-Congo Bantu South were significantly higher (p-value = 2.2 x 10-16) 

than of the Niger-Congo Bantu, Niger-Congo West and the Niger-Congo Volta Niger (Figure 

9, Table S6). These results are consistent with what was observed by Choudhury et. al., who 

observed that the Niger-Congo Bantu population of Southern Africa had the highest lengths of 

ROH compared to Niger-Congo populations of East, Central West and West Africa (27). 

 

The mean proportion of Khoe-San ancestry was higher in HIV-1 cases than in controls (Table 

3). Host genetics studies have previously linked Khoe-San ancestry to susceptibility to 

tuberculosis (TB) (87). Could this be yet another association of the Khoe-San ancestry with an 

infectious disease as with TB? If the answer is an affirmation then from a public health 

standpoint, this could mean that efforts of HIV-1 prevention should be elevated among people 

of Khoe-San ancestry. However, this conclusion seems to be implausible since when we 

regressed HIV-1 status against the ancestry proportions none of the ancestries showed 

association with HIV-1 status. 

  

It may be concluded that no substructure was observed in Botswana. This is good because if 

present, population structure cannot be fully corrected in genetic association studies. 

Admixture of Niger-Congo, Khoe-San and European populations was observed in the 

Botswana population. This is not surprising as Botswana is one of the countries with the largest 

number of the Khoe-San. The Khoe-San are known to be the indigenous people of Southern 
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Africa. Overtime the Khoe-San are expected to have mingled and interbred with the Niger-

Congo people of Botswana. Hence, this work shows the pivotal role played by genetics in the 

reconstruction of population histories. A limitation of this study is that the Botswana population 

had no ethnolinguistic labels, as such ethnicity inferences cannot be drawn from this study. 

Nevertheless, population structure and admixture could still be assessed as the algorithms used 

in this study are unsupervised machine learning methods and therefore can still give meaningful 

results.  

  

This study is the first to use deep sequencing in efforts to delineate a complete genome map 

the human population of Botswana and evaluate the burden of human genomic mutations in 

Botswana. To this effect we identified single nucleotide variants which could potentially 

disrupt the function of 24 genes, the most deleterious (damaging) variants being ACTRT2 

rs3795263, HOXD12 rs200302685, ABCB5 rs111647033, ATP8B4 rs77004004 and ABCC12 

rs113496237. Rare and low-frequency variants constituted the bulk of novel variants that were 

identified in this study. This was made possible by the unique potential of deep sequencing that 

offers an opportunity to discover rare variants. This is important because unlike Mendelian 

conditions, complex traits are influenced by many small-effect variants from different genetic 

loci, a concept known as polygenicity (88). The cumulative effect of rare variants plays an 

important role in the expression of complex traits such as HIV-1.  

 

Glycolysis, TCA and hexo-pentose pathways emerged to be the most affected by the putatively 

deleterious variants. These are critical physiological pathways responsible for energy 

production, amino-acid biosynthesis, immunity and tumorigenesis among other roles. There 

were disparities in proportions of pathogenic variants within previously HIV-1 associated 

genes: SCFD1, HIST1H4B, HIST1H4A, ZDHHC19, IGSF21 and NCBP2 in HIV-1 infected 

versus uninfected individuals. Of interest in these genes is the ZDHHC19  gene that encodes 

palmitoyl acyltransferase involved in pathways such as viral immunity. The ZDHHC19 gene 

was previously identified in a GWAS of HIV-1 susceptibility in Malawi. Though the effect of 

this gene in the previous study is known, the identification of the gene in the current study 

confirms that the gene may have an implication in the genetics of HIV-1 in African populations. 

The current study also suggests a substantial level of pleotropic effects in the genome of 

Batswana. Although the candidate genes have been linked to HIV-1 infection, the same  genes 

may also confer risk towards other health complications. This implies that the results may give 

insights into the potential interplay of genetic co-morbidities in the population of Botswana. 
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MATERIALS AND METHODS 

Ethical approval  

This study is part of a bigger protocol titled “Host Genetics of HIV-1 Subtype C Infection, 

Progression and Treatment in Africa/GWAS on determinants of HIV-1 Subtype C Infection” 

conducted by Botswana Harvard AIDS Institute Partnership. Ethics approval was obtained 

according to The Declaration of Helsinki. All participants consented to participate in the study. 

Institutional Review Board (IRB) approval was obtained for these samples from Botswana 

Ministry of Health and Wellness - Health Research Development Committee (HRDC) & 

Harvard School of Public Health IRB (reference number: HPDME 13/18/1) and the University 

of Cape Town - Human Research Ethics Committee (HREC reference number: 316/2019). 

 

Selection of study participants 

This is a retrospective study that used samples from previous studies conducted at Botswana 

Harvard AIDS Institute Partnership between 2001 and 2007. Of the 390 participants, 265 were 

HIV-1 positive and 125 were HIV-1 negative. The participants were recruited from four 

locations within the southern region of Botswana (Mochudi, Molepolole, Lobatse and 

Gaborone) (Figure 10). The HIV-1 positive participants were previously part of the Mashi 

study (89,90), while HIV-1 negative participants were previously part of the Tshedimoso study 

(91).  

 

Figure 10 Whole genome sequencing sampling sites in Botswana. Botswana is located at 

the center of Southern Africa. The sampling sites are GB: Gaborone, LB: Lobatse, MC: 

Mochudi, ML: Molepolole. The map was produced with Maps package in R (92). 
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DNA and Genomic characterisation 

DNA was extracted from buffy coat using Qiagen DNA isolation kit following manufacturer’s 

instructions. DNA concentration was quantified using Nanodrop 1000 (Thermo Scientific, 

USA). Whole genome sequences of 394 Botswana nationals were generated using paired end 

libraries on Illumina HiSeq 2000 sequencer at BGI (Cambridge, MA, US). 

 

Variant Calling and Downstream Data Description 

Quality assessment was performed on paired-end WGS (minimum of 30X depth) in FASTQ 

format (93) using FastQC (94). Low-quality sequence bases and adapters were trimmed using 

Trimmomatic with default parameters (95). The sequencing reads were aligned to the GRCh38 

human reference genome using Burrows-Wheeler Aligner (BWA-MEM) (96,97) and post-

alignment quality control including adding of read groups, marking duplicates, fix mating and 

recalibration of base quality scores was performed using Picard tools, SAMtools (98) and 

Genome Analysis Toolkit  (99). Four samples  (HIV-1 positive females) were excluded due to 

poor quality of sequences, the remaining dataset had 390 individuals. We have run FastQC on 

all final BAM files prior the variant calling, then we aggregated the results from FastQC into 

a single report by using MultiQC (100). All the sequences passed quality control. 

 

We performed population joint calling (101,102) using two different population joint calling 

methods to leverage the quality and accuracy of our results: GATK HaplotypeCaller (47,99) 

and BCFtools (98). The variant call format (VCF) dataset was filtered using VCFTOOLS 

(103), GATK Variant Quality Score Recalibration and BCFtools. The specific filtering 

parameters employed for both call-sets have been detailed (Supplementary information). 

Downstream analyses were performed with GATK call-set and BCFtools call-set used as a 

validation set. 

 

Variants Annotation and Mutation Prioritization 

The high confidence variants obtained from variant quality control, ANNOVAR (104) and 

snpEFF version 4.3T (105) were used to perform functional annotation in the Botswana HIV-

1 positive/negative VCF file to determine whether SNPs cause protein coding changes and 

produce a list of the amino acids that are affected. We used ANNOVAR “2016Dec18” setting, 

where the population frequency, pathogenicity for each variant was obtained from 1000 

Genomes exome (2), Exome Aggregation Consortium (106) (ExAC), targeted exon datasets 
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and COSMIC (107). Gene functions were obtained from RefGene (108) and different 

functional predictions were obtained from ANNOVAR's library, which contains up to 21 

different functional scores including SIFT (109,110), LRT (111), MutationTaster (112), 

MutationAssessor (113), FATHMM (114,115), fathmm-MKL (114,115), RadialSVM (12), LR 

(12), PROVEAN (12), MetaSVM (12), MetaLR (12), CADD (12,116), GERP++ (117), DANN 

(104), M-CAP (104), Eigen (104), GenoCanyon (104), Polyphen2 HVAR (118), Polyphen2 

HDIV (118), PhyloP (119) and SiPhy (119). From each resulting functional annotated data set, 

we independently filtered for predicted functional status (of which each predicted functional 

status is of "deleterious" (D), "probably damaging" (D), "disease_causing_automatic" (A) or 

"disease_causing" (D)) from SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, 

fathmm-MKL, RadialSVM, LR, PROVEAN, MetaSVM, MetaLR, CADD, GERP++, DANN, 

M-CAP, Eigen, GenoCanyon, Polyphen2 HVAR, Polyphen2 HDIV, PhyloP, and SiPhy.  

 

We prioritized the variants by retaining a variant only if it had at least 10 predicted functional 

status “D” or “A” out of 21 (120). To refine the results from this strategy, we re-applied 

FATHMM (114,115,121), a disease-specific weighting scheme, which uses a Hidden Markov 

Models prediction algorithm capable of discriminating between disease-causing mutations and 

neutral polymorphisms. FATHMM has been found to have the most discriminative power 

among other individual in silico mutation prediction tools (121). We identified further 

deleterious variants within the prioritized genes with snpEFF loss-of-function (LOF) module 

(105). 

 

Distribution of pathogenic SNVs in known HIV-1 specific host genes 

Following the functional annotation of the discovered variants, we evaluated the share of 

pathogenic SNVs between HIV-1 positive and HIV-1 negative individuals from Botswana. We 

further classified the SNVs as pathogenic or population specific if their MAFs were lower than 

5%. The proportion of pathogenic SNVs within a gene was defined as the count of observed 

pathogenic variants over the total number of variants in the given gene (120). We obtained a 

list of 730 HIV associated genes from GWAS Catalog (www.ebi.ac.uk/gwas/), literature and 

gene-diseases database such DisGeNET (disgenet.org). We leveraged the dbSNP151 database 

(https://www.ncbi.nlm.nih.gov/snp/ (122)) to extract SNVs associated with these genes in the 

Botswana data set (Table S5).  
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Pathways enrichment analysis and gene-gene interactions 

The GeneMANIA (39) tool was used to analyse how the genes harbouring the identified 

variants interact in a biological network. This allowed us to obtain an enrichment of related 

genes within the obtained sub-network with potential biological pathways, processes, and 

molecular functions. Enrichment analysis was performed using Enrichr package (40,123) in R 

(124).  

 

Population diversity 

 

Principal components analysis (PCA) and admixture analysis 

Variants were pruned to remove those with minor allele frequency < 5%, > 2% missingness, 

those that deviated from Hardy-Weinberg Equilibrium (HWE p > 1.0 x 10-5), and those in in 

linkage disequilibrium (LD) r2 < 0.85 within 1000kb window size, incrementing with 50 bases 

step (--indep-pairwise 1000 50 0.15). (--indep-pairwise 1000 50 0.15). This resulted in 258,773 

variants retained for assessing population diversity. For admixture analysis, we analysed the 

merged dataset of a total of 5,322 samples including Botswana HIV-1 positive/negative 

individuals and the 20 world-wide ethnic groups (Table S7). The ADMIXTURE (125) 

algorithm was used to estimate the ancestry proportions of the Botswana HIV-1 

positive/negative groups. To evaluate the extent of substructure in the Botswana HIV-1 

positive/negative population and whether stratification can be accounted for in the genetic 

association tests, PCA implemented in the smartpca programme in the EIGENSOFT package 

(17,18) was applied to the merged data set. We assessed structure between the population of 

Botswana and the 20 world-wide ethnic groups. Population structure and admixture were 

visualized by PCA plots generated using Genesis software (126) and R (124) with the pca3d 

package (127).  

 

Distribution of genetic ancestry proportions by HIV-1 positive/negative status 

The mean proportions of the three ancestries were compared between HIV-1 positive and HIV-

1 negative individuals. The accurate admixture cluster was identified from model inference 

with lowest cross-validation (CV) error and the genome-wide admixture proportion estimations 

of that model inference were used as accurate genetics ancestry contribution. From these, and 

also basing on the population history of Southern Africa, we chose the best 3 proxy ancestral 

populations that had the highest genome-wide ancestry proportions from admixture analysis: 

Niger-Congo, Khoe-San and European. 
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Genetic distance estimated by FST 

Pairwise genetic distance was estimated between the Botswana population and the 20 world-

wide ethnic populations using the Weir and Cockerham’s FST (128) in PLINK. A heatmap of 

the genetic distances was generated using package (129) in R (124). 

 

Genetic relatedness and runs of homozygosity 

We assessed cryptic relatedness in the population of Botswana using PLINK. Pairwise allele 

sharing (identity-by-descent, IBD) was determined using pi_hat threshold of 0.2 (--genome --

min 0.2). We further used PLINK to calculate homozygosity by keeping some of the default 

parameters while adjusting the window length and number of heterozygous SNVs allowed in 

the window (--homozyg-kb 150 and --homozyg-window-het 3). We compared the median 

lengths and segments of the runs of homozygosity (ROH) between the Botswana individuals 

and other world ethnic groups using Mann-Whitney U test in R (124). 
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