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Abstract 26 

Aim 27 

The aim of the present study is to investigate the relations between both functional connectivity 28 

and brain networks with cognitive decline, in patients with Parkinson’s disease (PD).  29 

Introduction 30 

PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor 31 

disturbances can occur, cognitive impairment being one of the commonest. However, how the 32 

large-scale organization of brain activity differs in cognitively impaired patients, as opposed to 33 

cognitively preserved ones, remains poorly understood. 34 

Methods 35 

Starting from source-reconstructed resting-state magnetoencephalography data, we applied the 36 

PLM to estimate functional connectivity, globally and between brain areas, in PD patients with and 37 

without cognitive impairment (respectively PD-CI and PD-NC), as compared to healthy subjects 38 

(HS). Furthermore, using graph analysis, we characterized the alterations in brain network 39 

topology and related these, as well as the functional connectivity, to cognitive performance. 40 

Results  41 

We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl's gyrus and 42 

inferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the 43 

left hemisphere, in the gamma band, in PD-CI patients, as compared to PD-NC and HS. With 44 

regard to the global topological features, PD-CI patients, as compared to HS and PD-NC patients, 45 

showed differences in multi frequencies bands (delta, alpha, gamma) in the Leaf fraction, Tree 46 

hierarchy (both higher in PD-CI) and Diameter (lower in PD-CI). Finally, we found statistically 47 

significant correlations between the MoCA test and both the Diameter in delta band and the Tree 48 

Hierarchy in the alpha band. 49 

Conclusion   50 

Our work points to specific large-scale rearrangements that occur selectively in cognitively 51 

compromised PD patients and correlated to cognitive impairment.  52 
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Introduction 53 

Unlike what James Parkinson claimed over two hundred years ago about the disease bearing 54 

his name, ("the senses and intellects being uninjured") (Walshe, 1961), today we know that 55 

Parkinson's disease (PD) is not solely a motor disease (Vitale et al., 2012). Indeed, PD is 56 

characterized by a broad spectrum of non-motor symptoms, including neuropsychiatric disturbances, 57 

autonomic dysfunctions and cognitive decline. After twenty years of disease duration, up to 80% of 58 

patients present with severe cognitive symptomatology (Aarsland et al., 2009). However, despite 59 

extensive investigation, the pathophysiological mechanisms underlying cognitive decline remain 60 

unclear (Aarsland and Kurz, 2010).  61 

In the early stage of the disease, the brainstem and the surviving neurons of the nigrostriatal 62 

dopamine system are mostly affected by alpha synuclein depositions while, with disease 63 

progression, the neuropathological process spreads to other brain regions, including the cortex 64 

(Braak et al., 2003). Hence, PD may be regarded as a whole-brain disease. 65 

Cognitive functions need coordinated interactions between multiple brain areas. 66 

Synchronization is one of the putative mechanisms of information routing across brain areas 67 

(Buzsáki and Draguhn, 2004). Accordingly, different electroencephalographic (EEG) or 68 

magnetoencephalographic (MEG) studies observed a relationship between neural synchrony and 69 

cognitive functions (Singer, 1999; Varela et al., 2001). Graph theory is a mathematically principled 70 

way to represent complex interactions among multiple elements. In this context, brain areas are 71 

represented as nodes, and their interactions are the links (Rubinov and Sporns, 2010; Sporns et al., 72 

2005). Measuring topological features of the brain networks is informative about the large-scale 73 

organization underpinning cognitive processes. Recently, graph theory has been applied to MEG 74 

signals in neurodegenerative diseases, demonstrating alterations in structural organization (Pievani 75 

et al., 2014) as well as in brain functional networks, such as in amyotrophic lateral sclerosis 76 

(Sorrentino et al., 2018), hereditary spastic paraplegia (Rucco et al., 2019), and mild cognitive 77 

impairment (Jacini et al., 2018).  78 

Given its high spatial and temporal resolution, MEG is a useful tool for detecting the evolution 79 

of brain functional connectivity. MEG systems measure the magnetic fields produced by neuronal 80 
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activity, which are undistorted by the layers surrounding the brain. Therefore, it is possible to 81 

reconstruct the neural signals produced by different brain areas (source space) (Baillet, 2017). In 82 

particular, MEG has a millisecond temporal resolution, making it possible to study frequency-specific 83 

networks, and records the oscillatory activity of brain regions, allowing to estimate the phase of brain 84 

signals and, hence, synchronization (Varela et al., 2001). Typically, the canonical frequency bands 85 

(delta, theta, alpha, beta and gamma) are taken into account to understand the cognitive processes 86 

(Lopes da Silva, 2013). 87 

Stoffers et al. have analyzed the MEG signals during resting-state in a group of de novo PD 88 

patients, finding changes in brain activity which included a widespread increase in theta and low 89 

alpha power, and a loss of beta and gamma power (Stoffers et al., 2007). However, they did not 90 

found correlations between brain activity and disease duration, disease stage (i.e. Hoehn and Yahr, 91 

H&Y) (Hoehn and Yahr, 1967)  and disease severity (i.e. Unified Parkinson’s disease rating scale, 92 

UPDRS-III) (Fahn, 1987). The Authors hypothesized that the spectral power changes may be linked 93 

to the degeneration of non-dopaminergic ascending neurotransmitter systems. It has been 94 

demonstrated, especially in functional MRI (fMRI) studies, that the disruption of resting-state 95 

functional connectivity is important in the development of cognitive decline in PD (Amboni et al., 96 

2018; Tessitore et al., 2012a). Some studies have compared, using MEG, the brain activity of non-97 

demented and demented PD patients to that of matched healthy subjects. All in all, a general trend 98 

was found toward the slowing of resting brain activity in demented and (to a lesser extent) non-99 

demented patients, as compared to healthy subjects. This slowing of oscillatory brain activity can be 100 

interpreted as a mechanism related to the progression of the disease and may be potentially involved 101 

in the development of dementia in PD (Bosboom et al., 2006; Dubbelink et al., 2013).  In a source-102 

level, resting-state MEG study, Olde Dubbelink et al. found pathologically altered functional networks 103 

in de novo PD patients (Olde Dubbelink et al., 2014) which can be interpreted as a reduction in local 104 

integration with preserved overall efficiency of the brain network. Furthermore, they have analyzed 105 

longitudinally 43 PD patients also, discovering progressive impairment in local integration in multiple 106 

frequency bands and loss of global efficiency in the PD brain network, related to a worse 107 
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performance in the Cambridge Cognition Examination (CAMCOG) scale (a test assessing the global 108 

cognitive function) (Roth et al., 1986).   109 

Ultimately, starting from the observation that the synchronization in specific frequency bands 110 

between different brain areas is the basis of a variety of cognitive processes, our hypothesis is that 111 

in PD there could be abnormal neuronal synchronization that is reflected in changes in functional 112 

connectivity and, possibly, in the topological features of the brain networks. More specifically, we 113 

hypothesize that, in PD, the progressive alteration of the brain networks would be more pronounced 114 

in patients with clinically evident cognitive impairment, as compared to cognitively unimpaired 115 

patients. To test our hypotheses, we performed a resting state MEG recording in PD patients with 116 

and without cognitive impairment, and age- and sex- matched healthy subjects (HS). We estimated 117 

synchronization between the brain source-reconstructed time series using the phase linearity 118 

measurement (PLM) (Baselice et al., 2019). We then applied the minimum spanning tree (MST) 119 

algorithm (Tewarie et al., 2015) to reconstruct the brain networks, and analyzed both functional 120 

connectivity among brain areas and topological features of the network. Finally, we correlated our 121 

results to clinical motor, cognitive and behavioral PD-specific scales. 122 

 123 

Materials and methods 124 

Participants  125 

Thirty-nine early PD patients were diagnosed according to the modified diagnostic criteria of 126 

the UK Parkinson’s Disease Society Brain Bank (Gibb and Lees, 1988) and recruited at the 127 

Movement Disorders Unit of the First Division of Neurology at the University of Campania “Luigi 128 

Vanvitelli” (Naples, Italy). All subjects were right handed and native Italian speakers. Inclusion criteria 129 

were: a) PD onset after the age of 40 years, to exclude early onset parkinsonism; b) a modified H&Y 130 

stage ≤ 2.5. Exclusion criteria were: a) dementia associated with PD according to consensus criteria 131 

(Emre et al., 2007); b) any other neurological disorder or clinically significant or unstable medical 132 

condition; c) any contraindications to MRI or MEG recordings. Disease severity was assessed using 133 

the H&Y stages and the UPDRS III. Motor clinical assessment was performed in the “off-state” (off-134 

medication overnight). Levodopa equivalent daily dose (LEDD) was calculated for both dopamine 135 
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agonists (LEDD-DA) and dopamine agonists + L-dopa (total LEDD) (Tomlinson et al., 2010). Global 136 

cognition was assessed by means of Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 137 

2005). MoCA consists of 12 subtasks exploring the following cognitive domains: (1) memory (score 138 

range 0–5), assessed by means of delayed recall of five nouns, after two verbal presentations; (2) 139 

visuospatial abilities (score range 0–4), assessed by a clock-drawing task (3 points) and by copying 140 

of a cube (1 point); (3) executive functions (score range 0–4), assessed by means of a brief version 141 

of the Trail Making B task (1 point). 142 

The patients were classified in two groups based on their age- and education-adjusted Italian 143 

cut-off MoCA score (Conti et al., 2015). According to these criteria we selected 20 and 19 PD patients 144 

with MoCA score respectively lower/equal (PD with cognitive impairment, PD-CI) or higher (PD with 145 

normal cognition, PD-NC) than the cut-off of 23. Depressive and apathy symptoms were assessed 146 

with the Beck Depression Index (BDI) (Beck et al., 1961) and the Apathy Evaluation Scale (AES) 147 

(Marin et al., 1991), respectively.   148 

Twenty HS, matched for age, education and sex were also enrolled. (See Table 1).  149 

The study was approved by the local Institutional Human Research Ethics Committee and it 150 

was conducted in accordance to the Declaration of Helsinki. All participants signed informed consent. 151 

 152 

Table 1: Demographic and clinical features of PD patients and healthy subjects 153 
 PD-CI (n=20) 

mean±SD 
PD-NC (n=19) 

mean±SD 
HS (n=20) 
mean±SD 

p-value 

Age 67.90±8.73 61.00±7.73 63.10±8.53    p = 0.04 
Sex (M/F) 10/10 6/13 11/9 NS* 
Disease duration (months) 31.00±13.66 35.16±16.36 -       NS 
H&Y stage 1.88±0.50 1.82±0.44 -       NS 

UPDRS III 26.40±11.03 23.58±7.08 -       NS 
MoCA (total) 19.96±2.30 25.05±1.63 - <0.001 
Memory  0.70±0.90 2.32±1.49 - <0.001 
Visuospatial abilities 1.75±0.99 3.16±0.93 - <0.001 

- Executive functions 1.35±1.28 3.37±0.58 - <0.001 
- Attention, concentration and 

working memory 
4.35±1.49 5.58±0.67 - <0.001 

- Language 4.30±1.23 5.58±0.67 - <0.001 

- Temporal and spatial orientation 5.85±0.36 5.89±0.45 - NS 
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BDI 5.00±5.23 5.37±6.87 - NS 
Apathy 30.25±7.14 29.79±6.32 - NS 
LEDD total 309.50±159.95 269.21±136.56 -       NS 
LEDD DA 67.00±145.64 90.26±103.50 -       NS 

 154 
Data are expressed as mean± standard deviation (SD). PD-CI: Parkinson’s disease patients with 155 

cognitive impairment; PD-NC: Parkinson’s disease patients without cognitive impairment; HS: 156 

healthy subjects; NS*: not significant among the three groups; NS: not significant between PD-CI 157 

and PD-NC; H&Y: Hoehn & Yahr; UPDRS: Unified Parkinson’s Disease Rating Scale; MoCA: 158 

Montreal Cognitive Assessment; BDI: Beck depression inventory; LEDD: Levodopa Equivalent Daily 159 

Dose; DA: dopamine-agonist. Note: age was statistically significant different only between PD-CI 160 

and PD-NC, with a p = 0.04. 161 

 162 

 163 

Magnetic Resonance Imaging acquisition 164 

MR images were acquired on a 3-T scanner equipped with an 8-channel parallel head coil 165 

(General Electric Healthcare, Milwaukee, WI, USA) either after, or a minimum of 21 days (but not 166 

more than one month) before the MEG recording. Three-dimensional T1-weighted images (gradient-167 

echo sequence Inversion Recovery prepared Fast Spoiled Gradient Recalled-echo, time repetition 168 

= 6988 ms, TI = 1100 ms, TE = 3.9 ms, flip angle = 10, voxel size = 1 x 1 x 1.2 mm3) were acquired. 169 

 170 

MEG acquisition 171 

The MEG system acquires the signals of 163 magnetometers placed in a magnetically shielded 172 

room (AtB Biomag, Ulm, Germany). Specifically, 154 sensors cover the entire head of the subject; 173 

the remaining ones, organized into three orthogonal triplets, are positioned more distant from the 174 

helmet and used to measure and reduce the environmental noise (Lardone et al., 2018; Sorrentino 175 

et al., 2017). MEG data were acquired during two, eyes-closed, resting state segments, each 3.5 176 

minutes long. The patients were in the off-state (i.e. after drug withdrawal for 24 hours, without the 177 

effects of the therapy).  178 
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In order to reconstruct the position of the head in the helmet during the MEG, we digitalized, 179 

before acquisition, the position of four reference coils (attached to the head of the subject) and four 180 

anatomical landmarks (nasion, right and left pre-auricular and apex) using Fastrak (Polhemus®). The 181 

coils were activated before each segment of the registration. During the MEG acquisition, 182 

electrocardiographic (ECG) and electrooculographic (EOG) signals were also recorded to remove 183 

physiological artefact (Gross et al., 2013; Rucco et al., 2019). After an anti-aliasing filter, the data 184 

were sampled at 1024 Hz. 185 

 186 

Preprocessing 187 

The MEG data were filtered in the band 0.5-48 Hz using a 4th-order Butterworth IIR band-188 

pass filter, implemented offline using Matlab scripts within the Fieldtrip toolbox (Oostenveld et al., 189 

2011). To reduce the environmental noise, Principal Component Analysis (PCA) was used (de 190 

Cheveigné and Simon, 2007; P.K. Sadasivan, 1996). Subsequently, an experienced rater identified 191 

the noisy channel/segments of acquisition through visual inspection. On average, 140 ± 4 channels 192 

were used. After that, Independent Component Analysis (ICA) (Barbati et al., 2004) was performed 193 

to identify and remove ECG (typically 1-2 two components) and EOG (0-1 components) signals from 194 

the MEG data. 195 

  196 

Source reconstruction 197 

The subject’s anatomical landmarks were visually identified on the native MRI of the subjects 198 

and used to co-register the MEG acquisition, which was then spatially normalized to a template MRI. 199 

Subsequently, the time series related to the centroids of 116 regions-of-interest (ROIs), derived by 200 

the Automated Anatomical Labelling (AAL) atlas (Gong et al., 2009; Tzourio-Mazoyer et al., 2002) 201 

were reconstructed based on Nolte’s volume conduction model (Nolte, 2003) and the Linearly 202 

Constrained Minimum Variance (LCMV) beamformer algorithm (Van Veen et al., 1997). However, 203 

we considered only the first 90 ROIs, excluding those representing the cerebellum, given the low 204 

reliability of the reconstructed signal in those areas. For each ROI, we projected the time series along 205 
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the dipole direction that explained most variance by means of singular value decomposition (SVD), 206 

using Fieldtrip toolbox (Oostenveld et al., 2011). 207 

The beamformer estimates the temporal series representing the activity of the brain regions. 208 

Such signals are filtered in the five canonical frequency bands (delta (0.5 – 4 Hz), theta (4.0 - 8.0 209 

Hz), alpha (8.0 – 13.0 Hz), beta (13.0 – 30.0 Hz) and gamma (30.0 – 48.0 Hz)), and analysed 210 

separately.  211 

 212 

Connectivity analysis 213 

To evaluate the synchronization between brain regions, we adopted the Phase Linearity 214 

Measurement (PLM) (Baselice et al., 2019). This novel, undirected metric, developed by our group, 215 

measures the synchronization between brain regions exploiting the power spectrum of their phase 216 

differences in time. It is defined as follows: 217 

 218 

                    𝑃𝑃𝑃𝑃𝑃𝑃 =
∫ �∫ 𝑒𝑒𝑖𝑖∆∅(𝑡𝑡)𝑇𝑇

0 𝑒𝑒−𝑖𝑖2𝜋𝜋 𝑓𝑓 𝑡𝑡𝑑𝑑𝑑𝑑�2 𝑑𝑑𝑑𝑑 𝐵𝐵
−𝐵𝐵

∫ �∫ 𝑒𝑒𝑖𝑖∆∅(𝑡𝑡)𝑇𝑇
0 𝑒𝑒−𝑖𝑖2𝜋𝜋 𝑓𝑓 𝑡𝑡𝑑𝑑𝑑𝑑�2 𝑑𝑑𝑑𝑑 ∞

−∞
                    (1) 219 

    220 
where the ∆∅(𝑡𝑡) represent the phase difference between two signals, 2B is the integration band,  𝑓𝑓 221 

is the frequency and 𝑇𝑇 is the observation time interval. The PLM ranges between 0 and 1, where 1 222 

indicates perfect synchronization and 0 indicates non synchronous activity. 223 

Based on PLM, we obtained a 90x90 weighted adjacency matrix for each temporal series (with a 224 

duration > 4s), for each subject, in each frequency band.  225 

Starting from these weighted adjacency matrices we calculated, for each ROI, the nodal PLM 226 

for each ROI as the average PLM between a specific ROI and all other ROIs, and the global PLM 227 

as the average of all nodal PLM values. 228 

  229 

Network analysis  230 
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Starting from the weighted adjacency matrices, we reconstructed, based on the minimum 231 

spanning tree (MST) algorithm, a binary network, where the 90 areas of the AAL atlas are the nodes 232 

and the entries represent the edges.  233 

To describe the network, we computed nodal centrality measures (degree, betweenness 234 

centrality) and global, non-centrality (leaf fraction, degree divergence, diameter, tree hierarchy) 235 

metrics (Stam et al., 2014; Tewarie et al., 2015). The degree of a node is defined as the number of 236 

links incident on a given node. The betweenness centrality (BC) is the number of shortest paths 237 

passing through a given node over all the shortest paths of the network (Freeman, 1977). The leaf 238 

fraction (Lf) is the fraction of leaf nodes in the MST, where a leaf node is defined as a node with 239 

degree one (Boersma et al., 2013). The degree divergence (K) measures the broadness of the 240 

degree distribution (Tewarie et al., 2015). The diameter is defined as the longest shortest path of the 241 

MST. Lastly, the tree hierarchy (Th) is the number of leaves over the maximum betweenness 242 

centrality.  243 

 244 

Statistical analysis 245 

To test differences in age and sex among the three groups we use ANOVA and the Chi 246 

square, respectively, after checking the normal distribution of variables. Clinical parameters, 247 

between PD-CI and PD-NC patients, were compared using t-test.   248 

The three groups were compared for each variable of interest (connectivity and topological 249 

metrics) using the permutational analysis of variance (PERMANOVA), a non-parametric test in order 250 

to evaluate the effect of cognitive impairment on brain connectivity in PD-CI, PD-NC patients and in 251 

controls. Then, all the p-values were corrected using the false discovery rate (FDR) (Benjamini and 252 

Hochberg, 1995), so as to account for multiple comparison between the variables. For the significant 253 

p values (after FDR correction), post-hoc analysis was carried out, using Scheffe’s correction for 254 

multiple comparisons among groups.  255 

To correlate the connectivity and topological metrics with the clinical scales, we used the 256 

Spearman’s rank correlation coefficient. All statistical analyses were performed using custom scripts 257 

written in Matlab 2018a. The significance level was set at p < 0.05. 258 
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 259 

Results 260 

Population Characteristics 261 

The studied population consists of 20 PD-CI, 19 PD-NC patients and 20 HS. The gender 262 

among the three groups showed no significant difference. PD-NC were slightly younger than PD-CI 263 

patients (p = 0.04), while no difference were found in terms of disease duration, disease stage (i.e. 264 

H&Y stage), motor impairment (i.e. UPDRS III), depression (i.e. BDI scale) and apathy (i.e. AES) 265 

between the two PD subgroups. As expected, significant differences were found in terms of MoCA 266 

scale and its subtests between PD-CI and PD-NC patients (Table 1).  267 

  268 

MEG data 269 

Connectivity analysis  270 

Regarding the global PLM value, we found a statistical significant difference in the gamma 271 

band among the groups with a p = 0.0416 (H (2,58) = 3.365), with post-hoc analysis showing that 272 

PD-CI patients differed from HS, having lower global PLM, see Fig. 1.  273 

 274 
Fig. 1 Differences in the global PLM value among PD-CI, PD-NC and HS.  275 

The box plots refer to differences in the global PLM value in gamma band among PD-CI, PD-NC and 276 

HS. The upper and lower bound of the box refer to the 25th to 75th percentiles, the median value is 277 

represented by horizontal line inside each box, the whiskers extent to the 10th and 90th percentiles, 278 

and further data are considered as outliers and represented by the symbol +. PD-CI group shows a 279 
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lower global PLM value as compared to both PD-NC group (without reaching statistical significance) 280 

and HS (* = p < 0.05). 281 

 282 

When we compared the nodal PLM values among the three groups, we found differences in 283 

the gamma band in the following areas of the left hemisphere: Postcentral gyrus (H (2,58) = 6.578, 284 

p = 0.002, pFDR = 0.039), Lingual gyrus (H (2,58) = 7.563, p = 0.001, pFDR = 0.039), Fusiform 285 

gyrus (H (2,58) = 9.279, p < 0.001, pFDR = 0.036), Heschl's gyrus (H (2,58) = 6.985, p = 0.002, 286 

pFDR = 0.039), inferior Temporal gyrus (H (2,58) = 7.377, p = 0.001, pFDR = 0.039). In the post-287 

hoc analysis, PD-CI patients showed a lower PLM value with respect to HS in all significant ROI, 288 

while PD-NC patients only reached statistical significance in the left lingual and the left Fusiform 289 

areas, as showed in Fig. 2. 290 

 291 
 292 
Fig. 2 Differences in the nodal PLM values among PD-CI, PD-NC and HS.  293 
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The box plots refer to differences in the nodal PLM value in gamma band among PD-CI, PD-NC and 294 

HS. The upper and lower bound of the box refer to the 25th to 75th percentiles, the median value is 295 

represented by horizontal line inside each box, the whiskers extent to the 10th and 90th percentiles, 296 

and further data are considered as outliers and represented by the symbol +. PD-CI group shows 297 

lower nodal PLM values in Fusiform gyrus, Heschl’s gyrus and Inferior temporal gyrus, Post-central 298 

gyrus, Lingual gyrus, on the left, as compared to both PD-NC group and HS.  * = p < 0.05, ** = p < 299 

0.01, *** = p < 0.001 300 

 301 

Topological network analysis   302 

We found topological differences in the brain networks among PD-CI, PD-NC and HS, in 303 

different frequency bands. With respect to Lf, differences appeared in the delta (H (2,58) = 4.732, p 304 

= 0.012, pFDR = 0.049), the alpha (H (2,58) = 4.371, p = 0.017, pFDR = 0.028) and the gamma band 305 

(H (2,58) = 7.052, p = 0.002, pFDR = 0.012). Post-hoc analysis showed that, in all the three bands, 306 

PD-CI patients had higher leaf fraction as compared to HS, as depicted in Fig. 3.   307 

 308 

309 

Fig. 3 Differences in Leaf fraction parameter, among PD-CI, PD-NC and HS  310 

The box plots refer to differences in the Lf among respectively PD-CI, PD-NC and HS. The upper 311 

and lower bound of the box refer to the 25th to 75th percentiles, the median value is represented by 312 
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horizontal line inside each box, the whiskers extent to the 10th and 90th percentiles, and further data 313 

are considered as outliers and represented by the symbol +. PD-CI group shows a higher Lf, 314 

compared to both PD-NC group and HS, in delta, alpha and gamma band.  * = p<0.05, ** = p<0.01 315 

 316 

The Th differed among the three groups in the alpha (H (2,58) = 5.329, p = 0.006, pFDR = 317 

0.016) and the gamma band (H (2,58) = 5.523, p = 0.007, pFDR = 0.019). In the post-hoc analysis, 318 

both PD-CI and PD-NC patients differed from HS with a higher Th in the alpha band, but only PD-CI 319 

patients differed from the HS in the gamma band, as reported in Fig. 4.   320 

 321 
 322 
 323 
Fig. 4 Differences in Tree Hierarchy parameter among PD-CI, PD-NC and HS 324 

The box plots refer to differences in the Th among respectively PD-CI, PD-NC and HS. The upper 325 

and lower bound of the box refer to the 25th to 75th percentiles, the median value is represented by 326 

horizontal line inside each box, the whiskers extent to the 10th and 90th percentiles, and further data 327 

are considered as outliers and represented by the symbol +. The PD-CI group shows a higher Th, 328 

compared to both PD-NC group and HS, in the alpha and gamma bands. * = p<0.05, ** = p<0.01 329 

 330 

 331 
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The diameter was statistically different in the delta band (H (2,58) = 4.214, p = 0.019, pFDR 332 

= 0.049) among the three groups, and in particular between PD-CI patients and HS, see Fig. 5.  333 

 334 
Fig. 5 Differences in Diameter in PD-CI, PD-NC and HS 335 

The box plots refer to differences in the D among respectively PD-CI, PD-NC and HS. The upper 336 

and lower bound of the box refer to the 25th to 75th percentiles, the median value is represented by 337 

horizontal line inside each box, the whiskers extent to the 10th and 90th percentiles, and further data 338 

are considered as outliers and represented by the symbol +. PD-CI group shows a statistically 339 

significant lower Diameter compared to both PD-NC group and HS, in delta band. * = p<0.05 340 

 341 

However, it is to be noted that, although most of the parameters in the PD-NC group did not 342 

reach statistical significance, a trend seems evident nonetheless, such that cognitively unimpaired 343 

patients show intermediate values between healthy controls and cognitively compromised patients. 344 

No statically significant difference was found among the three groups in the K, the other global 345 

topological parameters calculated, and in the centrality parameters.  346 

 347 

Correlations analysis  348 

As shown in Fig. 6, we found a statistically significant correlation between the MoCA total 349 

score and both the Diameter in delta band (R = 0.352, p = 0.028), and the Tree Hierarchy in the 350 

alpha band (R = -0.374, p = 0.019). No other statistically significant correlation between connectivity 351 

metrics and clinical scales was found.  352 
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 353 
 354 
Fig. 6 Spearman’s rank correlation coefficient 355 

MoCa test correlates positively with the Diameter (R = 0.352, p = 0.028) and negatively with the Tree 356 

Hierarchy (R = 0.374, p = 0.019).  357 

 358 

 359 

Discussion  360 

Our study was designed to test the hypothesis that the cognitive decline observed in PD 361 

patients may be associated to specific changes of both functional connectivity and brain topology. 362 

Furthermore, we hypothesized that the extent of brain network alterations may be correlated with 363 

the cognitive outcome. By applying the PLM, a connectivity metric that measures the synchronization 364 

between brain regions, (Baselice et al., 2019) to MEG signals, we were able to highlight differences 365 

in the global and nodal PLM values in PD-CI as compared to both PD-NC and HS. Furthermore, 366 

using graph analysis, we found specific PD-related changes in brain network topology which were 367 

related to cognitive functioning.  368 

 369 

Functional connectivity 370 
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We found that the global PLM value in the gamma band was significantly reduced in PD-CI 371 

patients as compared to HS. This measure, obtained by averaging over all 90 (one for each ROI) 372 

nodal PLM values, is a measure of global functional connectivity. Interestingly, the global PLM of 373 

PD-NC patients was intermediate between that of HS and PD-CI (although the difference was not 374 

statistically significant).  375 

The nodal PLM values showed a similar trend to that of the global PLM. For example, the 376 

nodal PLM of cognitively PD-NC patients was intermediate between PD-CI patients and HS in the 377 

gamma band. Specifically, a statically significant reduction of the functional connectivity was 378 

observed in several temporal (fusiform gyrus, Heschl's gyrus and inferior temporal gyrus), parietal 379 

(postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere, as compared to 380 

HS. Moreover, the PLM of the lingual and fusiform left gyri was significantly reduced with respect to 381 

the HS in both PD-CI and PD-NC patients (Fig. 2). 382 

 The heterogeneity of the clinical onset, the prognostic evolution as well as the response to 383 

dopaminergic therapy suggest the existence of two distinct cognitive syndromes in PD (although with 384 

overlapping elements), namely the frontostriatal syndrome (Tessitore et al., 2012b) and the posterior 385 

cortical syndrome (Baggio et al., 2015; Tremblay et al., 2013). The former is cognitively characterized 386 

mainly by dysexecutive disorders, and is strictly related to the dopaminergic imbalance (Gotham et 387 

al., 1986), while in the latter, memory deficit, visuospatial/visuoperceptual disturbances and more 388 

generally global cognitive decline are frequently observed (Williams-Gray et al., 2009). Importantly, 389 

the posterior cortical syndrome is associated with a worse cognitive prognosis (Kehagia et al., 2010). 390 

Overall, our results are in line with this view, where the form presenting the greater risk of developing 391 

dementia (Olde Dubbelink et al., 2014) showed widespread functional connectivity in temporal, 392 

parietal and occipital regions (Baggio et al., 2015). Interestingly, cortical areas showing reduced 393 

synchronization in cognitively impaired PD subjects (i.e. fusiform gyrus, Heschl's gyrus, inferior 394 

temporal gyrus, postcentral gyrus, and lingual gyrus) are mainly involved in the posterior cortical 395 

syndrome. 396 

Taking into account the clinical evidence suggesting that damage in such regions leads to 397 

severe cognitive impairment with a high risk of developing dementia, we might speculate that, if 398 
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these regions are less integrated with the rest of the brain, then the cognitive functioning might be 399 

impaired. This is also supported by our correlation analysis, showing that the less is the 400 

synchronization between these areas and the rest of the brain, the worst the cognitive performance. 401 

It is important to note that there was a clear downward trend between HS and all PD in both global 402 

and nodal PLM values, with PD-NC group always displaying intermediate values. This observation 403 

could suggest that the reduction of the functional connectivity in terms of reduced overall 404 

synchronization (estimated by the PLM) progresses till to exceed a threshold, the cognitive 405 

impairment acquires clinical significance (Sorrentino et al., 2020). It is even more interesting to 406 

observe that the reduction in synchronization in the posterior regions (along with the cognitive 407 

impairment), is not a function of disease progression or severity, as documented by the comparison 408 

of the clinical scales between the two PD groups. 409 

Finally, it is worth noting that all these results are in the gamma band (30-48 Hz), which has 410 

been related to visual perception, attention, auditory processing, learning and memory 411 

(Hoogenboom et al., 2006; Kaiser and Lutzenberger, 2005). Interestingly, dopamine agonists have 412 

been shown to increase gamma-band activity in both cortical and subcortical networks (Brown, 413 

2003). 414 

 415 

Brain network topology 416 

The reduction of functional connectivity in PD patients is linked to changes in the large-scale 417 

functional organization of the brain, as captured by our topological network results. With regard to 418 

the centrality parameters (degree and betweenness centrality), which evaluate the topological 419 

characteristic of each single region, we did not find any statistically significant difference among the 420 

three groups. However, with regard to the global parameters, expressing global topological features 421 

of the brain network, PD-CI patients, as compared to HS and PD-NC patients, showed widespread 422 

differences in multi frequencies bands (delta, alpha, gamma) in the Lf, Th (both higher in PD-CI) and 423 

Diameter (lower in PD-CI) (Fig. 3, 4 and 5). 424 
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It should be noted that, similarly to the functional connectivity, PD-NC group shows an 425 

intermediate profile between HS and PD-CI, even when the difference does not reach statistical 426 

significance (see Fig. 4). 427 

The Lf is defined as the ratio between the number of leaf nodes (nodes with degree = 1) and 428 

the maximum possible number of links (total number of nodes minus 1).  A Lf equal to 1 indicates a 429 

network with a star-like topology (Tewarie et al., 2015), where each couple of nodes is topologically 430 

closer, and most shortest path pass on a small subset of highly-important nodes. On the contrary, a 431 

Lf equal to 0 signifies a line-like network, which is less reliant on any singly node, and hence with 432 

higher resiliency to targeted attacks (Rubinov and Sporns, 2010; Tononi et al., 1994). Related to the 433 

Lf, the Diameter provides information about the distance between all pairs of nodes. In fact, lower 434 

Diameter, as showed by PD patients in the delta band, is indicating a more compact, star-like network 435 

(Boersma et al., 2013). Finally, the tree hierarchy quantifies the trade-off between efficient 436 

communication (large-scale integration) and prevention of the overload of the most important nodes. 437 

A higher tree hierarchy, as found in PD-CI, may suggests a sub-optimal balance, with respect to both 438 

PD-NC (in the alpha band) and HS (in the alpha and the gamma band), in the sense that, in 439 

pathology, the network integration becomes reliant on a small subset of important areas, hence 440 

losing resiliency. This mechanism might underlie the reduction of functional connectivity found in 441 

some brain areas (see Fig 1 and 2) linked to cognitive deterioration.  442 

 443 

Correlation analysis 444 

Interestingly, as reported in Fig. 7, we found statistically significant correlation between the 445 

MoCA test and both the Diameter in delta band (direct correlation) and the Tree Hierarchy in the 446 

alpha band (inverse correlation). These correlations are in line with our findings and support the 447 

hypothesis of reduced synchronization in some brain areas, as well as hyperconnected network 448 

topology, that might capture sub-optimal large-scale functional organization underpinning cognitive 449 

impairment development in PD patients.  450 

 451 

Conclusion 452 
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In conclusion, in this work, we show that in PD patients in the early phase of the disease, 453 

the functional connectivity changes, as well as the topological rearrangements within the large-scale 454 

functional networks, are correlated to cognitive impairment. In particular, we found reduced 455 

functional connectivity in PD-CI (with respect to both PD-NC and HS) in terms of reduced overall 456 

synchronization, as estimated by the PLM, as well as specifically in the posterior hubs. Furthermore, 457 

analyzing the brain networks, we found a more star-like topology in PD-CI. 458 

It is noteworthy to observe that both PD groups (i.e. PD-CI and the PD-NC group) did not 459 

differ with regard to the disease stage as well as to the motor impairment. Nonetheless, the group 460 

affected by earlier development of cognitive impairment was the one showing reduced 461 

synchronization in the posterior areas. These data are in line with the hypothesis that two distinct 462 

clinical phenotypes (although with overlapping elements) exist and that involvement of the posterior 463 

regions relates to earlier cognitive decline. 464 

 465 
 466 

 467 
  468 
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