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15 Abstract

16 Motivation: Polysome profiling is novel, and yet has proved to be an effective approach to detect 

17 mRNAs with differential ribosomal load and explore the regulatory mechanisms driving efficient 

18 translation. Genes encoding regulatory proteins, having a great influence of the organism, usually reveal 

19 moderate to low transcriptional levels, compared, for example, to genes of house-keeping machinery. 

20 This complicates the reliable detection of such genes in the presence of technical and/or biological 

21 noise. 

22 Results: In this work we investigate how cleaning of polysome profiling data on Arabidopsis thaliana 

23 influences the ability to detect genes with low level of total mRNA, but with a highly differential 

24 ribosomal load, i.e. genes translationally active. Suggested data modelling approach to identify a 

25 background level of mRNA counts individually for each dataset, shows higher power in detection of low 

26 transcribed genes, compared to the use of thresholds for the minimal required mRNA counts or the use 

27 of raw data. The significant increase in detected number of regulation–related genes was demonstrated. 

28 The described approach is applicable to a wide variety of RNA-seq data. All identified and classified 

29 mRNAs with high and low translation status are made available in supplementary material. 

30

31
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33 1. Introduction

34 Investigation of the mechanisms underlying differential gene expression is one of the fundamental tasks 

35 in understanding the functional organization of genomes and their dynamic properties. To date, most 

36 attention has been focused on the stage of transcriptional regulation, partly due to the relative 

37 simplicity and the variety of established experimental techniques. From another side, there is a growing 

38 number of studies showing a large discrepancy between levels of transcription and the levels of the 

39 target proteins, suggesting the importance of the intermediate steps like the regulation of translation 

40 (also called ‘translational buffering’) [1-3]. One of the most fascinating studies shows that fluctuations in 

41 transcriptomes do not necessarily lead to changes in the protein levels [1]. This discrepancy is mainly 

42 attributed to the active regulation of translation. The rise of novel experimental techniques such as 

43 polysome profiling and ribosome profiling [4] forms a solid ground for deciphering such regulation. The 

44 basic idea behind all of these techniques is to separate mRNA in a quiet state (monosomal fraction) and 

45 active state, i.e. mRNA heavily loaded with ribosomes (polysomal fraction), followed by sequencing or 

46 hybridizing on chips [3]. The resulting quantitative measure of translational state allows a better 

47 correlation of the number of mRNA transcripts and the observed protein levels [5]. Additionally, such 

48 data can be used to investigate regulatory mechanisms of the observed differential translation.  

49 There are a number of programs used for analysis of ribosome sequencing data, most of which were 

50 originally developed for the analysis of gene transcription [6-8]. The major problem of the mathematical 

51 methods behind these programs is the estimation of the variance, that is the key point for the 

52 calculation of the statistical significance of the observed differences. Estimation of the variance of the 

53 measured expression values can be based on variations between replicates or in more advanced 

54 approaches, on genes from the same replicate with similar absolute expression [7]. This allows having 

55 even a single sample to estimate gene expression variance and then a statistical significance of 

56 differences between genes.

57 Some programs were specifically developed for analysis of polysome and ribosome profiling 

58 experiments, which are usually designed to measure polysomal and total mRNA fractions. Programs like 
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59 anota2seq [9] or RiboDiff [10] can directly adjust their mathematical models for the changes in total 

60 level of transcription. The idea behind anota2seq is to pool genes with similar transcription to increase 

61 statistical power using the generalization of random variance model [11], when the number of replicates 

62 is not sufficient. 

63 Still, there are other factors, apart from variability, affecting statistical calculations, such as outliers and 

64 noise, that cannot be fully considered by these programs. The problem of removing the noise and the 

65 selection of the “correct” threshold for minimal value of mRNA count is very controversial, and there is 

66 no agreement on this in the bioinformatics community. In anota2seq [9] RNA counts equal to zero are 

67 automatically removed. DESeq2 [7] performs independent filtering by default using the mean of 

68 normalized counts as filter statistics. Software Corset [12] filters any transcripts with fewer than ten 

69 reads by default and in the analysis of microRNAs, it was suggested to set the threshold to 32 reads [13]. 

70 In this work it is suggested to define a threshold for the minimal required mRNA count based on the 

71 analysis of the investigated datasets. We demonstrate that this approach is more effective, compared to 

72 universal, pre-defined thresholds, especially in searching genes with low transcription, i.e. with low 

73 values of the measured mRNA counts. This approach can also be used for the analysis of transcriptome 

74 RNA-seq data and the idea of data modelling can be applied to any suitable dataset. 

75

76 2. Materials and Methods

77 2.1. Plant material

78 Plants of A. thaliana type Columbia-0 were grown at 22°C, 12h lighting period, light intensity of 100 

79 μmol*m-2*s-1 and sampled on the stage of third rosette leaf (approx. 28 days). Three independent 

80 samples were prepared. 

81 2.2. Preparation of monosomal, polysomal and total mRNA fractions
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82 Plant material (leaves) was homogenized in a buffer containing 0.2 M Tris pH 9.0, 0.2 M KCl, 0.025 M 

83 EGTA, 0.035 M MgCl2, 1% DOC, 1% Triton, 5 mM DTT, 50 mg/ml cycloheximide, 50 mg/ml 

84 chloramphenicol. Cell extracts were applied over 5 ml of a 15-60% (W/v) sucrose gradient and 

85 centrifuged at 237000g for 1.5 hours at 4 ° C. Fractions with a volume of 400 μl were taken manually. 

86 Total RNA was extracted from each fraction using the ExtractRNA kit (Evrogen, Russia). In each fraction, 

87 the RNA content was evaluated using a Nanodrop ND-1000 instrument (LabTech International, UK). 

88 Total cytosolic RNA was isolated from the part of the cell extract before loading onto the sucrose 

89 gradient. RNA was extracted using the ExtractRNA kit (Evrogen, Russia), the quality and quantity of 

90 preparations of total RNA and RNA from polysomal and monosomal fractions of plants was evaluated on 

91 an Agilent Bioanalyzer 2100. More detailed description of the protocol can be found in [14]. Altogether, 

92 nine samples were prepared for sequencing. 

93 2.3. Preparation of RNA samples, sequencing, assembling and mapping

94 RNA libraries were prepared with TruSeq Stranded mRNA Sample Prep Kit (Illumina), quality control 

95 were performed on Agilent Bioanalyzer 2100 and by qRCR. Sequencing was done on Illumina HiSeq 4000 

96 (101 cycle, paired end) with HiSeq 4000 sequencing kit version 1. FASTQ files were filtered to remove 

97 adapters, low-quality reads and reads with more than 10% mismatches.

98 2.4. Statistical analysis

99 All statistical calculations were done in R [15] and MS Excel. Statistical difference between polysomal 

100 and monosomal fractions were calculated using edgeR version 3.24.3 with default arguments [6]. Fitting 

101 the exponential model was done using lm(log(#mRNAs)~mRNA_count) function in R. Differences in 

102 functional classifications are evaluated using binomial test. Genomic sequences were downloaded from 

103 EnsemblPlants (http://plants.ensembl.org/index.html) and processed using Perl scripts. Gene ontology 

104 analysis was performed using DAVID [16] and PANTHER v.14.0 [17].

105

106
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107 3. Results and Discussion

108 3.1 Polysome profiling experiment

109 Protein production is a multistep process including transcription, transport, mRNA maturation, 

110 translation and final protein modifications. One way to study the regulation of translation is to measure 

111 the differential ribosomal load by polysome profiling [4]. Briefly, the method consists in mRNA 

112 extraction, separation in sucrose gradient into mRNA fractions with high (polysomal fraction) and low 

113 (monosomal fraction) ribosomal load [18]. mRNA released from ribosomes is sequenced, reads are 

114 mapped to the genome, count values for mRNA are calculated and analyzed with programs like DESeq2 

115 or edgeR [6, 7], designed for differential analysis of NGS data and available as R [15] packages. 

116 In this work, in addition to classical polysome profiling experiment design, the measurement of total 

117 cytosolic mRNA was also included. It was based on considerations, that mechanisms of translational 

118 regulation may be different in classes of abundant and rare mRNAs. Indeed, the regulation of rare mRNA 

119 is thought to be very sensitive, as for example, for genes encoding regulatory factors, where from a few 

120 mRNA copies many protein molecules can be produced via intensive translation. Taking into account the 

121 possible variety of the gene regulatory mechanisms on stages of transcription and translation, it seems 

122 necessary to be able to isolate groups of mRNAs similar not only by translational status, but also by 

123 transcriptional. Altogether, our experiment consists of measuring the levels of mRNAs in polysome, 

124 monosome and total cytosolic mRNA fractions, each performed in three replicates (Figure 1). 

125 Figure 1. Schematic representation of the experimental design.

126

127 3.2 Modelling the raw data

128 Raw RNA counts coming from sequencing represent the amount of RNA found in the sample. In total 

129 610M reads and 89G bases were sequenced, which were mapped to 37336 different mRNAs on the 

130 TAIR10 genome. Let Nf,i be the number of reads for mRNA i = 1, …, 37336 in fraction f=(polysome, 

131 monosome, total), averaged over the three replicates. Figure 2 represents the number of mRNAs with 
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132 respect to their counts (Nf,i). It is interesting to observe a very high number of mRNAs with close to one 

133 counts, which decays as count number increases. Usually these small counts are regarded as noise and 

134 mRNAs with counts less than some predefined values are removed [7, 12, 13]. Here we suggest modelling 

135 the data distributions and to find exact values which should be subtracted from the raw values. 

136 Overall, the distributions have two local maxima – one is around one and the other is around 3400 

137 counts for total RNA fraction (2800 and 2500 for monosomal and polysomal fractions). One can speculate 

138 that this curve represents a sum of two independent processes, one is exponentially distributed and the 

139 other distributed negative binomially. The former can be interpreted as a background noise, which usually 

140 decay exponentially [19], and may originate from DNA debris, reverse transcription or sequencing 

141 artefacts. The letter is a real signal that has negative binomial distribution [20]. Formally this can be 

142 represented as a sum of two independent random variables, one following negative binomial distribution 

143 and the other exponential: 

144 𝑁𝑓,𝑖,𝑟 = 𝛼 + 𝛾.  𝛼 ∈ 𝑁𝐵(𝑟,𝑝), 𝛾 ∈ 𝐸𝑥𝑝(𝜆).

145

146 In other words, it is assumed that every measured mRNA count value contains real and random parts. 

147 It is not possible to decompose each value of mRNA count into two components due to the random nature 

148 of the process, but one can estimate the maximum contribution of the exponential part and then subtract 

149 it from the raw value. It is possible, because the contribution of the binomial part with its peak around 

150 3000 is negligible at low values, therefore it will be assumed that points with very low values are of pure 

151 random nature.

152 The exponent distribution has one parameter and can be found by fitting the exponential model into 

153 data below ten counts (first several points on the red curve, fig. 2). Having built the exponential model 

154 (grey dashed curve, fig.2), one can extrapolate the curve to the point where the exponent drops to some 

155 acceptably low value, or in other words, solve for m the equation e-αm=10-3, where α is the estimated 

156 decay parameter. For example, the exponent equals 10-3 when mRNA count equals 24 for total mRNA 

157 fraction. That means, that one mRNA out of thousand with the count value of 24 is expected to appear by 

158 chance. The value of 24 can be used as a threshold for the minimal required counts instead of pre-defined 
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159 threshold [7, 12, 13]. But following our logic, that the observed counts consist of two independent 

160 components, this value should be subtracted from all raw mRNA count values to maximally exclude 

161 possible random effect. If the resulting value is negative, a zero value is assigned:

162 𝑁𝑓,𝑖,𝑟 = {𝑁𝑓,𝑖,𝑟 ― 24, 𝑖𝑓 ≥ 0
0         ,𝑒𝑙𝑠𝑒 , (1)

163 The distribution of the cleaned data is now very close to negative binomial distribution as it is usually 

164 assumed [6, 21] (blue curves, fig. 2). Overall, the three datasets of total, monosomal and polysomal 

165 fractions were modified by subtracting 24, 16 and 28 from each mRNA count respectively. So for 

166 example, if mRNA for a transmembrane protein gene AT3G55790 has 95 raw counts in first repetition of 

167 total mRNA fraction, then 95-24=71 counts will be the cleaned count value for that gene. After cleaning, 

168 mRNAs with all zero counts were removed, resulting in 23102 mRNAs out of 37336 in the raw data. 

169 Figure 2. Distribution of mRNAs according to mRNA counts. These graphs show how many 

170 mRNAs have specified number of counts (empirical distributions, red curves) and its approximation by 

171 the exponent in the area of low values (grey dashed curves). Data, cleaned by subtraction the specified 

172 count value from every mRNA, is shown by the blue curves. The cleaned data is very close to negative 

173 binomial distribution (black curves). Graphs represent A) total B) monosomal C) polysomal mRNA 

174 fractions.

175

176 Evidently, this transformation mainly affects mRNAs with low counts and have no or minor 

177 effect on highly transcribed mRNAs. In the next section, the advantage of data-specific thresholds and 

178 the suggested data modification will be shown for detection of genes with regulatory function. 

179

180

181
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182 3.3 Detection of signal transduction and regulatory related genes is sensitive to the data cleaning 

183 procedure. 

184 Genes encoding regulatory proteins, including so-called master regulator genes [22], have a great 

185 influence on the organism development and represent the key elements in response to external and 

186 internal signals. Usually such genes reveal low to moderate transcriptional levels [23, 24] compared, for 

187 example, to genes of house-keeping machinery or structural genes. Still, such genes are actively 

188 transcriptionally regulated and assuming moderate absolute transcriptional levels, it may become 

189 difficult to differentiate between real changes in expression and random fluctuations. In this section we 

190 investigate if an accurate data cleaning step may assist the detection of such genes. 

191 Here we are interested in detection of genes with low to moderate transcriptional, but high translational 

192 status, i.e. genes whose few mRNA copies intensively produce protein products. The criterion for the 

193 definition of such genes will be as follows: 

194 • mRNA counts for gene i in total fraction is lower 300 (Ntotal,i≤300, 7945 genes out of 23102);

195 • logarithm of the ratio of mRNA counts in polysomal and monosomal fractions is grater 1.5: 

196 log2(Npolysomal,i/Nmonosomal,i) ≥ 1.5;

197 • significance (p-value) of the difference between polysomal and monosomal fractions identified 

198 by edgeR ≤ 10-4.

199

200 This criterion was applied to three datasets – raw data, data cleaned by setting a threshold for minimal 

201 accountable mRNA counts (24, 16 and 28 counts for total, monosomal and polysomal fractions 

202 respectively), and data cleaned by subtraction of the maximal “noise contributions” from the all mRNA 

203 counts (formula 1). The resulted gene lists were analyzed for functional annotation using DAVID [16] for 

204 the term “signal”. The keyword “signal” was selected, because it comprises genes involved in signaling 

205 pathways, like cytokines, gibberellin, auxin and ethylene signaling pathways regulating many aspects of 
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206 plant growth and development including seed germination, stem and leafs, flower, pollen and fruit 

207 development etc. The results are presented in table 1. 

208 It is evident from the table, that the data cleaning step is essential for detection of genes with regulatory 

209 function. The suggested cleaning via subtraction of the “noisy counts” results in detection of more 

210 genes, moreover, the percentage of regulation-related genes has also slightly increased. The results also 

211 support our hypothesis, that regulatory genes tend to show only moderate levels of transcription, but 

212 the most significant overrepresentation is observed for the data cleaned by subtraction (table 1). 

213 Comparison of the identified gene sets revealed 122 genes found only using the data cleaned by 

214 subtraction, 72 genes found only by raw data and 155 genes found by both (gene lists are available in 

215 supplementary material). Focusing on genes annotated with “signal” term the corresponding numbers 

216 will be 39, 18, 56 (cleaned, raw and both datasets). This demonstrates, that the data cleaning procedure 

217 objectively extends the number of identified genes of interest. For example, there are such genes like 

218 root meristem growth factor (RGF3, AT2G04025), embryo-specific protein (ATS3, AT5G62210), 

219 transmembrane protein (DUF1191, AT4G23720) and many others directly related to gene regulation and 

220 signal transduction, all found exclusively after the suggested data cleaning. 

221 It is interesting to note, that the commonly accepted approach to remove mRNA with counts below 

222 some pre-defined threshold leads to significantly fewer genes even compared to the raw data (table 1) 

223 and therefore, it was not used in the above comparisons. We also do not apply conventional pre-

224 selected thresholds for the counts for the following reasons. First, the variation of those is quite 

225 significant and ranges from just a few in most studies [7, 9] to 32 counts [13] and the reasoning for 

226 preferring one to another is not evident. Second, even application of data-specific thresholds in the 

227 range of 16-28 led to significant reduction in number of identified genes, making this way of data 

228 cleaning ineffective. Programs like EdgeR or DESeq2 already have a built-in noise reduction logic, which 

229 probably makes the use of fixed thresholds unnecessary. 

230 Another discussion point is the exponent estimation and how many data points should be included in 

231 more general cases. It can be suggested to use a local minimum in the area of small RNA counts as a last 
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232 point. On the graph for total and monosomal fractions (fig. 2) this selection is quite evident. In contrast, 

233 data in polysomal mRNA fraction have greater variation, which objectively allows less exact estimation 

234 of parameters. Our investigation shows that as small as four points are sufficient to estimate the 

235 parameters of the exponent. 

236 Overall, data modelling allows identifying characteristics of exponential distribution and thereby to 

237 exclude possible noise from the measured mRNA counts.  Such data modification allows to fine-tune the 

238 conventional search algorithms, especially when genes with moderate transcriptional levels are in focus. 

239

240 Table 1. Genes with moderate to low transcription and high translation. Differentially translated genes 

241 were identified using EdgeR in three datasets: raw data, trimmed data and data cleaned by subtraction 

242 (see text for explanation). To limit the search to genes with moderate transcription, only genes with 

243 lower than 300 counts were considered (corresponds to approx. a lower third of all genes).  

244 Classification of genes using DAVID were performed to find genes with regulatory potential. Gene lists 

245 are available as supplementary material. Significance values as reported by DAVID.

246

Modification No of genes 

identified by the 

criteria

Number of genes 

annotated with 

the term “signal”

% of genes 

annotated with 

the term “signal”

Significance

Raw counts 227 73 32.2% 2.6*10-16

Cleaned by 

trimming
200 67 32.5% 9.7*10-15

Cleaned by 

subtraction
277 95 34.3% 1.1*10-21

247

248
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249 3.4. Detailed functional analysis

250 The use of functional classification of genes like Gene Ontology is practical to give a quick overview on 

251 underlying differences in functionality of the investigated genes. Here the resource PANTHER v.14.0 [17] 

252 was used to classify the mRNAs in four datasets. These datasets were compiled using “symmetrical” 

253 criteria to the criterion defined above. Particularly, mRNA are classified according to the level of 

254 transcription into low and high (Ntotal,i≤300 and Ntotal,i≥1200, respectively) and according to the level of 

255 translation into monosomal and polysomal mRNAs (log2(Npolysomal,i/Nmonosomal,i) ≤ -1.5 and ≥ 1.5 

256 respectively, in both cases p-value by edgeR ≤ 10-4). The values of 300 and 1200 for total mRNA were 

257 selected as the lowest and highest 3-quantiles of all genes (7945 and 7846 genes respectively). The four 

258 datasets comprise 330, 444, 277 and 473 genes (high & polysomal, high & monosomal, low & polysomal 

259 and low & monosomal respectively) and are available in the supplementary material. 

260 PANTHER classification system is designed to classify genes according to families of evolutionary related 

261 proteins, protein molecular functions, pathways etc. The four datasets were classified according to Gene 

262 Onthology (GO) molecular function and PANTHER protein class categories, the latter is used to 

263 categorize protein families (fig. 3). Classification by GO “molecular function” demonstrate the significant 

264 overrepresentation of genes with molecular function “regulator” (GO:0098772) in the polysomal mRNAs 

265 with low transcription (p-value=5.89*10-5, observed 14.5%, expected 3.2%, here and further binomial 

266 test, fig. 3A dark blue slice marked with *). Genes in this category include, for example, cyclin-B1, root 

267 meristem growth factors, pectinesterase inhibitors. Corresponding category in PANTHER protein class 

268 “gene specific translational regulator” (PC00264) is also overrepresented only in the same mRNA group 

269 (p-value=2.07*10-4, observed 11.6%, expected 2.0%, fig. 3B). To regulator-related could also be regarded 

270 genes with a function of molecular transducers (GO:0060089, p-value= 1.87*10-3, observed 7.3%, 

271 expected 1.6%), which work as compound molecules with one or more regulatory components. Genes 

272 involved in pore formation regulating the transit of other of molecules (transporter activities) are also 

273 overrepresented in low transcribed genes (p-value=2.64*10-6, observed 10.9%, expected 2.4%) with no 
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274 preference to polysomal or monosomal mRNA groups. This particularly may indicate potential active 

275 differential regulation of translation of genes in this group.

276 An interesting exception is the group of “translational regulators” (GO:0045182), which is represented 

277 only in highly transcribed genes, although the significance is only at the moderate level (p-

278 value=8.38*10-3, observed 4.6%, expected 1.6%, fig. 3A marked with x). Genes classified into this group 

279 are genes of a close family of eukaryotic translation initiation factors: eIF-2, 4B2, 4B3, 4G and Ts. 

280 Therefore, we may speculate, that high transcription of the above translation initiation factors cannot 

281 be extrapolated on all genes related to regulation of translation, because it is not confirmed by the 

282 “protein class” classification scheme, by which translation related genes are equally distributed among 

283 groups (PC00263, fig. 3B marked with x). The above genes may represent a closely related gene family 

284 with similar transcriptional regulation, that may indeed have high transcriptional levels and is an 

285 exception to the general rule, or it could be just a statistical artefact. 

286 Figure 3. Functional classification of mRNA depending on transcriptional and translational status. 

287 mRNAs were classified into four groups according to transcriptional and translational levels (see text). A. 

288 Classification using GO “molecular function” demonstrates the significant overrepresentation of genes 

289 with molecular function “regulator” in the mRNA with low transcription and high translation (p-

290 value=5.89*10-5, dark blue slice marked with *). Regulation related “translational regulator” group 

291 shows only moderate significance (p-value= 8.38*10-3, marked with x) in the group of genes with high 

292 transcription. B. Classification according to “protein class” by PANTHER classification system. Similarly, 

293 transcriptional regulator genes are significantly overrepresented (p-value=2.07*10-4, green slice marked 

294 with *). Translational proteins do not reveal any significant biases (dark blue slice marked with x).

295

296 Conclusion

297 Investigation of regulatory genes is crucial for the understanding of the functioning of any organism, but 

298 the experimental detection of such genes is complicated by the low to moderate levels of their 
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299 expression and the significant influence of experimental and biological noise. One way to overcome this 

300 is to investigate target genes with strong expression and apply reverse engineering or use databases of 

301 regulatory pathways to find the regulators. Direct methods utilize complex mathematical models to 

302 discern weak signals of regulation. 

303 The data cleaning procedure suggested here is assumed not to further complexify the methods, but to 

304 “personalize” parameters, used to dissect noise and real values. The idea consists in defining a 

305 maximum contribution, which could originate from technical or biological noise, with a subsequent 

306 subtraction of that value from the raw measurements. This is different to other approaches, where only 

307 values below some noise threshold are removed and the rest is left intact. As shown in the results, the 

308 suggested cleaning procedure increases the number of detected genes with differential expression.  

309 Moreover, the ratio of genes with regulatory functions is also increased after suggested data cleaning. 

310 We believe that data modelling should be used to define dataset–specific thresholds and the use of 

311 “universal” values avoided, since variation caused by experimental settings could be significant. The 

312 polysomal and monosomal fractions in our experiment differs almost twice in the level of the 

313 introduced noise, despite standardized sample preparation and sequencing procedures. The suggested 

314 in the literature threshold values cover a very broad range, so the selection of a particular threshold to 

315 our view needs transparent justification, no matter if they are used to trim the low values or to clean 

316 the data as suggested here. 

317 Finally, the suggested experimental design to measure three mRNA fractions allows investigation of 

318 both quiet and highly translated mRNA, since the investigation of potential mechanisms of translational 

319 repression are of the same importance as mechanisms of activation. Understanding of both will provide 

320 the complete picture of translational regulation.
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