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One Sentence Summary: This work proposes a rapid (<1 min.), label-free testing method for 

SARS-CoV-2 detection, using quantitative phase imaging and deep learning. 

 

Abstract:  Efforts to mitigate the COVID-19 crisis revealed that fast, accurate, and scalable 

testing is crucial for curbing the current impact and that of future pandemics. We propose an 

optical method for directly imaging unlabeled viral particles and using deep learning for 

detection and classification. An ultrasensitive interferometric method was used to image four 

virus types with nanoscale optical pathlength sensitivity. Pairing these data with fluorescence 

images for ground truth, we trained semantic segmentation models based on U-Net, a particular 

type of convolutional neural network. The trained network was applied to classify the viruses 

from the interferometric images only, containing simultaneously SARS-CoV-2, H1N1 

(influenza-A), HAdV (adenovirus), and ZIKV (Zika). Remarkably, due to the nanoscale 

sensitivity in the input data, the neural network was able to identify SARS-CoV-2 vs. the other 

viruses with 96% accuracy. The inference time for each image is 60 ms, on a common graphic 

processing unit. This approach of directly imaging unlabeled viral particles may provide an 

extremely fast test, of less than a minute per patient. As the imaging instrument operates on 

regular glass slides, we envision this method as potentially testing on patient breath condensates. 
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The necessary high throughput can be achieved by translating concepts from digital pathology, 

where a microscope can scan hundreds of slides automatically. 
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Introduction 

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), which reached pandemic proportions in 2020. (1)  The global impact of the 

disease on the healthcare systems and its socio-economic ramifications are severe and, likely, 

long-lasting.(2) The prompt response and public health measures have proven effective in 

limiting the spread of the virus, decreasing the number of active cases, and, ultimately the 

mortality rate. (3) Fast, accurate, and scalable testing has been recognized unanimously as crucial 

for mitigating the impact of COVID-19 and future pandemics. (4)  

 Diagnostic test accuracy is characterized by the sensitivity, defined as the probability of a 

positive result in a diseased patient, and specificity, given by the probability of a negative result 

in a healthy patient. Furthermore, the negative predictive value represents the chance of an 

individual with a negative test to be disease-free and, conversely, the positive predictive value is 

the chance that a person with a positive test is infected. In addition to these accuracy metrics, 

throughput and cost are important for deploying testing at scale. Recently, Weissleder et al. have 

reviewed the current status of the COVID-19 diagnostic tests (4). Briefly, nucleic acid tests 

(NATs) rely on the viral RNA being amplified via polymerize chain reaction (PCR) and are the 

most broadly used in the clinic today. NATs have been implemented on automated instruments 

and provide a result in several hours. Their accuracy may vary, with false negative rates reported 

in the order of 30% (4, 5). Serological tests assess the patient’s response to the viral infection 

through proteins such as immunoglobulin G. The efficacy of these tests relies on prior 

knowledge about the patient’s immune status as well as potential previous exposures to other 

virus types. The accuracy of serological tests is very high when performed ~20 days after the 

infection or first symptoms, but may lead to high false negative rates for early patients and false 
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positives for patients previously exposed to other viruses (4). Common antigen tests can be 

performed using nasopharyngeal swabs and yield results in less than one hour. These tests 

operate on detecting proteins associated with the SARS-CoV-2 virus (nucleocapsid or spike 

proteins) using lateral flow or enzyme-linked immunosorbent assay (ELISA) tests.  

 Recently, accelerated efforts have been devoted to developing alternative testing 

procedures. These alternative detection schemes involve the use of plasmonic biosensors (6-8), 

fluorescence imaging of labelled virus particles and detection through machine learning (9), 

microfluidic immunoassays coupled with fluorescence detections (10) etc. While these 

approaches represent advances in SARS-CoV-2 detection methodologies, they still require either 

labelling or addition of foreign particles/solutions for the detection of SARS-CoV-2.  

 Here, we present a new approach for SARS-CoV-2 detection, which relies on direct, 

label-free imaging of viral particles. We employed spatial light interference microscopy (SLIM), 

a highly sensitive interferometric method, to image viruses deposited on a glass slide. Although, 

individual viruses are below the diffraction limit of the microscope, the optical path length 

information retrieved by SLIM unravels the nanoscale distribution of the refractive index 

associated with the individual and aggregated viral particles. We paired these data with deep 

learning algorithms, specifically optimized for viral particle detection and classification. Using 

fluorescence markers for specific virus tagging, we retrieved “ground truth” data by imaging the 

same field of view with both SLIM and epi-fluorescence. To emulate a more realistic application 

environment, we synthesized datasets where different virus types were “digitally mixed” onto the 

same SLIM image for deep learning development and evaluation. Thus, in addition to SARS-

CoV-2, we imaged H1N1, HAdV and ZIKV. While a situation where a patient is exposed 

simultaneously to these four viruses is highly unlikely, we wanted to test it as a challenging task 
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for our method and evaluate the specificity of our deep learning model. Following the training 

process, we tested the convolutional neural network (CNN) on unseen samples, classifying one 

virus type vs. the rest. Our results indicated a 96% area under the receiver operating 

characteristic curve for SARS-CoV-2, 99% for H1N1, 92% for HAdV and 91% for ZIKV.  

This pre-clinical study demonstrates that sensitive imaging of unlabeled particles, paired 

with artificial intelligence (AI) can provide the foundation for a rapid, high-throughput, scalable 

test. The fact that the assay can be performed on the specimen placed on a glass slide allows for 

simple and fast sample collection, via, e.g., breath condensates. The image acquisition and 

inference take 100 ms total, which means that the entire test, including specimen collection, can 

be performed within a minute. Throughput can be scaled-up by borrowing engineering concepts 

from whole slide scanners in digital pathology, where hundreds of slides can be automatically 

fed into the imaging instrument. As the specimen requires minimum preparation and the 

instrument can be made portable, in principle, the technology can be deployed as a point-of-care 

solution.  

The paper is structured as follows. First, we present the workflow for multimodal 

imaging and ground truth data acquisition. Next, we describe the SLIM imaging system and its 

sensitivity to the nanoscale ultrastructure of viral particles. We show 3D tomograms of the four 

virus types, to illustrate the subtle texture difference that the instrument captures, which the AI 

tools exploit for classification. We describe the convolutional neural network, which is a version 

of U-Net optimized for this problem. Finally, we present the accuracy of classifying the four 

virus types. We end with a discussion of the next steps necessary to implement this technology 

as a reliable clinical testing solution. 

Results 
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Workflow  

Figure 1 depicts the workflow of our approach (see Fig. S1 and Supplementary Section S1 for 

details on sample preparation). We tagged the deactivated virus samples with Rhodamine B 

isothiocynate as detailed in Materials and Methods. The staining was followed by dialysis to 

remove unbound fluorophores. The sample was deposited on a glass slide, fixed with EtOH, and 

air dried (Fig. 1A). The slide was imaged using multimodal SLIM and epi-fluorescence, overlaid 

for the same field of view (Fig. 1B). The resulting images were processed to extract pairs of 

images associated with individual particles (Fig. 1C). A U-Net convolutional neural network was 

trained using these data, with the fluorescence images acting as ground truth. The U-Net output 

provides a semantic segmentation map, i.e., an image that classifies and labels the various virus 

types (Fig. 1D). 

 

Figure 1. Virus particle classification using SLIM and machine learning. A. Sample preparation 

protocol, viruses were deactivated, stained with Rhodamine B isothiocyanate and dialyzed for 2 days to 

reduce fluorescence background and then placed on slide, fixed with 90% EtOH and air-dried B. We 
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added a SLIM module to a traditional phase contrast microscope for quantitative phase information. C. 

SLIM and fluorescence were registered, single 48 x 48 regions were cropped from the image and 

segmented to provide label for multiclass classification. D. We synthesized a new dataset by randomly 

placing the cropped virus particles onto a background image acquired during the same experiment. A 

deep neural network was trained with this dataset to perform virus particle classification. Given a SLIM 

image, the model will output a class label for each pixel in the image. 

Imaging procedure 

A key element in our approach is the spatial light interference microscope described in 

Fig. 2A. SLIM belongs to the family of quantitative phase imaging (QPI) instruments (11) which 

have found broad applications in biomedicine (12-23) due to their ability to image unlabeled, 

highly transparent structures. SLIM is implemented as an add-on module to an existing phase 

contrast microscope and, in essence, controls rigorously the phase shift between the incident and 

scattered field emerging from the specimen (24, 25). We used a Nikon Eclipse Ti inverted 

microscope outfitted with a SLIM module (CellVista SLIM Pro, Phi Optics, Inc.), which allows 

for fully automated data acquisition. The microscope objective pupil is relayed onto the surface 

of a phase-only spatial light modulator (SLM), such that the phase shift between the incident and 

scattered light is controlled precisely (Fig. 2A). We record four intensity frames associated with 

individual phase shifts, applied in increments of  𝜋 2⁄  , as shown in Fig. 2B. The four intensity 

images are combined as described in (25, 26) to decouple the amplitudes of the incident and the 

scattered fields from the phase information and obtain a quantitative phase map associated with 

specimen (Fig. 2B). Because the interfering fields in SLIM propagate along a common path, the 

phase measurement is highly stable, to within a fraction of a nanometer pathlength (25). Due to 

the white light illumination associated with the phase contrast microscope, the SLIM images are 
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free of speckles, which converts into sub-nanometer spatial pathlength sensitivity (25). These 

attributes make SLIM ideal for the challenging task of imaging viral particles on a glass slide. 

Figure 2C illustrates the significant boost in contrast present in SLIM compared to traditional 

phase contrast microscopy. 

 

Figure 2. SLIM: A. Optical configuration of SLIM B. Image reconstruction, with color bar representing 

optical path length (s), in nm C. Profile through the dotted line in B, showing high sensitivity of SLIM 

over phase contrast. 

Virus detection and classification via SLIM 

SARS-CoV-2, H1N1, HAdV and ZIKV were separately stained as illustrated in Fig. S1 (see 

Methods Section and Supplementary Section S1 for more details) with Rhodamine B 

isothiocyanate which has an emission at 595nm. We performed dual channel phase-fluorescence 

imaging on the samples. Figure 3 illustrates the imaging results for SARS-CoV-2, with SLIM 

(Fig. 3A) and fluorescence (Fig. 3B) images obtained on the same field of view. We registered 

the dual channel images using MATLAB for perfect overlay (see Supplementary Section S2 for 

details on image acquisition and processing). The regions denoted by the dash rectangular 
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selections in Figs. 3(A, B) are zoomed-in and shown in Figs. 3(C, D). The discrete particles 

shown in the yellow rectangles reveal a 100% correspondence between phase and fluorescence, 

proving that SLIM is sensitive to the refractive index of the viral particles. For machine learning, 

we cropped out single particles within 48 × 48 pixel images. Figures 3 (E-J) show two examples 

of the cropped image set comprising of SLIM (Fig. 3(E, H)), fluorescence (Fig. 3(F, I)) and 

binary mask (Fig. 3(G, J)).  

 

Figure 3. Correlated SLIM-Fluorescence imaging results for SARS-CoV-2: A. SLIM, colorbar 

represents optical path length fluctuations in nm, and B. fluorescence image, colorbar represents intensity 

in a.u., for the same field of view. C, D. Cropped SLIM and fluorescence images from the region inside 

white rectangle in A and B., yellow boxes highlight correspondence between SLIM and fluorescence. E. 

One 48 x 48 cropped image of SLIM, F. fluorescence and G. corresponding segmentation mask prepared 

for AI. Another cropped set for H. SLIM, I. fluorescence J. segmentation mask. Scale bar represents 5μm 

for A, B and 1μm for E-J.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422601


Following same imaging procedure, we imaged H1N1 (Fig. S2), HAdV (Fig. S3) and ZIKV 

(Fig. S4) for SLIM and fluorescence. We cropped out 48 × 48 pixel images and performed 

segmentation to produce labels for four classes of virus. Although our images are still diffraction 

limited, SLIM’s nanoscale sensitivity to pathlength allows for efficient detection of viral 

particles. 

 The ultrastructure present in our SLIM data is demonstrated in deconvolved images 

(Supplementary Section S3). Using this operation, one can see that clumps of particles can be 

separated via deconvolution (Fig. S5).  

Deconvolution SLIM  

Resolution of our imaging system is approximately 335nm (illumination at 550nm, objective 

100x/1.45 with condenser NA 0.55). Following Rayleigh’s resolution criterion, two objects with 

separation less than the width of point spread function (PSF), cannot be fully resolved. The 

individual virus particles used in this study have an average diameter of less than 150nm, which 

makes them sub-diffraction objects for optical imaging. In order to push the resolution beyond 

the diffraction limit, we performed a deconvolution with the microscope’s PSF (Supplementary 

Section S3). To estimate the PSF, we identified the smallest spot in the images via a Matlab 

script. Using this PSF, the images were deblurred by employing the iterative Richardson-Lucy 

algorithm with total variation regularization (see Supplementary Section S3 for more details) 

(27, 28). Figure S5 illustrates the deconvolution results for the four virus classes. Thus, the 

deconvolution is able to produce deblurred images with clumps separated into smaller groups. 

However, it should be noted that the size of the deconvolved particles does not necessarily match 

the actual size of the virus particles as the decoupling of PSF and virus is still not perfect. 
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However, we can successfully separate clumps into subsequent individual viruses, which the 

neural network is likely to pick-up for classification. 

Quantitative analysis 

One advantage of SLIM over fluorescence is the inherent ability to measure not only shape 

descriptors like, diameter, orientation, circularity etc., but also quantify the phase information 

associated with the sample, which can then be used to extract biophysical information, such as, 

cell dry mass density. From the SLIM images, we extracted the total dry mass and surface dry 

mass density for each measured particle (see Supplementary Section S3 for details). We 

observed shifts in the dry mass density for different virus classes as shown in Fig. S6A. Figure 

S6(B-D) with p-values 1.35e-12, 8.84e-6 and 1.23e-5, respectively, demonstrate the statistical 

significance of the dry mass density differences between SARS-CoV-2 and H1N1, HAdV and 

ZIKV respectively, obtained by applying Kruskal-Wallis test (in MATLAB). These results 

indicate that dry mass density, which is incorporated in the SLIM data, is a marker that helps the 

machine learning algorithm to detect SARS-CoV-2.  

Tomographic Reconstructions  

To get a better understanding of the viral particles, we performed a tomographic reconstruction 

of diffraction limited SLIM, using the Amira (Thermo Scientific) software (see Supplementary 

Section S4 for details). The results are shown in Fig. 4, where volumetric reconstructions of the 

particle cores (Fig. 4 (A-D)), and surface reconstructions (Fig. 4 (E-H)) for each particle are 

illustrated. These reconstructions provide an insight into structural dissimilarities that exist even 

in the diffraction limited SLIM images. Surface irregularities can be seen for SARS-CoV-2 in 

Fig. 4 (A, E). Figure 4 (B, F) show the H1N1 particle, which again has irregular surface but of 
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different texture. Figure 4 (C, G) show a clump of at least two HAdV particles with hexagonal 

boundary visible in lower portion of Fig. 4G. ZIKV (Fig. 4 (D, H)) is significantly smoother 

compared to SARS-CoV-2. The structural signatures present in these reconstructions agree with 

the TEM images showing irregular surface morphology for SARS-CoV-2 (29, 30) and H1N1 

(31), hexagonal cross-section for HAdV (32) and comparatively smoother surface of ZIKV (33, 

34). These reconstructions suggest that signatures of structural information still exist in the 

diffraction limited SLIM images, due to the nanoscale pathlength sensitivity of SLIM. These 

subtle features help the machine learning algorithm to successfully classify these particles.  

 

Figure 4: 3D Tomograms: Volume reconstruction of A. SARS-CoV-2 B. H1N1 C. HAdV D. ZIKV. 

Surface reconstructions of E. SARS-CoV-2 F. H1N1 G. HAdV H. ZIKV. All reconstructions were 

performed using the Amira Software. 

To assess the structural differences on a large scale, we performed volumetric reconstructions of 

groups of particles. Supplementary movies S1-S4 show the overall structural differences in 

diffraction-limited SLIM images. It can be seen that the maximum intensity projections of four 

virus classes exhibit differences in the structure, mainly, irregular surfaces for SARS-CoV-2 
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(Supplementary movie S1) and H1N1 (Supplementary movie S2), while hexagonal projections 

for HAdV (Supplementary movie S3) and comparatively smoother surface for ZIKV particles 

(Supplementary movie S4). 

Convolution Neural Network 

We formulated the virus detection task as a semantic segmentation problem: given an input 

SLIM image containing several virus particles, our model predicts a probability distribution for 

each pixel, denoting the chance of this pixel belonging to one of the 5 classes: background, 

SARS-CoV-2, H1N1, HAdV, and ZIKV. An argmax operation turns the model output into a 

class label for each pixel. As all our raw SLIM images were of pure-culture virus particles, we 

synthesized a new dataset via “digital mixing” for machine learning development and evaluation 

(see Supplementary Section S5 for details).  

The deep neural network we used was adapted from the U-Net (Fig. 5A and Fig. S7A) (35). Our 

model was trained using the digitally mixed SLIM images as input and the corresponding 

segmentation maps as ground truth (Fig. 5(B-C) and Fig. S7(B-C)). We divided machine 

learning task into two steps. Two types of datasets were prepared based on two data curation 

strategies. First dataset was semiautomatic, with manual cropping followed by automatic 

segmentation, fixed concentration of viruses per digitally mixed image and placement of virus 

particles on a grid with artificial phase background. Second dataset was fully automatic, with 

automatic segmentation followed by automatic cropping, varying (but balanced) concentration of 

viruses per digitally mixed image and random placement of virus particles on a blank image for 

digital mixing. 
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Figure 5. Training a deep neural network to perform classification of virus particles for the second 

dataset. A. We used a modified version of U-Net for this semantic segmentation task. Besides reducing 

the number of parameters in the network to around 0.8 million, we also added in residual connection and 

batch normalization for faster convergence. Model inference on images from the test set. B.  Synthesized 

images of mixed virus particles. C. ground truth label. D. model inference.  

Our first model (Fig. S7) was a proof-of-concept test-run. We manually cropped out 48 × 

48 pixels regions of single virus particles from the images for all four viruses, collecting 

approximately 1200 cropped images. These cropped images were segmented, digitally mixed 

with an artificial background (see Methods Section and Supplementary Sections S2 and S5). 

Every digitally mixed image has five particles per class. We kept 500 particles out as the test 

dataset, and trained the neural network on the remaining particles (see Supplementary Section 5). 

During evaluation, we noticed that our model sometimes predicted more than one label per 

particle. To solve this issue, we used a post-processing strategy to enforce particle-level 

consistency in our model prediction (see Fig. S8 and Supplementary Section S5 for details on 

post-processing method). After the post-processing, we achieved the following area under the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422601


ROC curve (AUC) values for four viruses (Fig. S9A): 98% for SARS-CoV-2, 98% for H1N1, 

96% for HAdV and 97% for ZIKV. The average precision and recall for this model are: 0.80 and 

0.88 (SARS-CoV-2), 0.82 and 0.73 (H1N1), 0.88 and 0.78 (HAdV), 0.82 and 0.84 (ZIKV) (see 

Fig. S9B).  

Our model’s excellent performance on this small, test-run dataset was the first step achieved in 

the direction of clinically usable, fast testing method. For the second phase of development, we 

moved on to a more realistic approach for data curation. To avoid bias in data selection and to 

focus on automation, we employed automatic processing to segment all the images and then crop 

out 48 × 48 particles from each image, based on the bounding box information of each particle,  

through a MATLAB script (see Supplementary Section S2). We emulated real life scenario 

where concentration and position of particles per sample can vary. So, each image in our 

digitally mixed dataset had between 2 to 8 particles of each virus type, resulting in between 8 to 

32 virus particles in total. In this dataset, all 4 types of virus particles were randomly placed onto 

over 1600, 240 × 240 blank (background removed by segmentation) images (see Supplementary 

Sections S2 and S5 for more details of the procedure). We randomly selected around 1000 

images for training and kept the remaining 564 SLIM images as the test dataset to evaluate our 

model. Similar as the first dataset, we enforced instance-level consistency on our model 

prediction via the same post-processing step (see Supplementary Section S5 and Fig. S8). Figure 

5D shows the predictions after post processing. Quantitative results for this dataset are shown in 

Figure 6, where Fig. 6A shows the one-versus-all receiver operating characteristic (ROC) curve 

and Fig. 6B shows the complete confusion matrix to better illustrate our model’s sensitivity. 

AUC for all four virus classes is above 91%. We anticipate that, in clinical situations, the most 

challenging issue will be to detect the SARS-CoV-2 class alone, or, occasionally, distinguish it 
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from the influenza virus (H1N1). The fact that the areas under the curve yield values of 96% and 

99%, for SARS-CoV-2 and H1N1, respectively, is very encouraging. Average precision and 

recall values on the test dataset are: 0.80 and 0.85 (SARS-CoV-2), 0.98 and 0.99 (H1N1), 0.73 

and 0.73 (HAdV), 0.74 and 0.63 (ZIKV) (Fig. 6B).  

 

Figure 6: Model performance on the test dataset. A. The receiver operating characteristic (ROC) curve 

of the model on the test dataset. The model achieved over 0.9 area-under-curve (AUC) for all 4 virus 

types on the test dataset. The area-under-curve (AUC) for each class is computed by setting that class as 

label 1 and all other classes (the 3 remaining virus types and the background) as label 0. B. The confusion 

matrix of the model inference on the test dataset. Each row represents the ground truth label while each 

column represents the prediction. For visualization purposes, each entry in the confusion matrix was 

normalized with respect to the number of true labels (sum of each row). The precision, recall are averaged 

across all images in the test dataset. Both the ROC curve and the confusion matrix are evaluated on a per-

particle level, where weighted average is computed to resolve conflict in model raw prediction. 

We also plotted the precision and recall for SARS-CoV-2 on every image in the second test 

dataset into a histogram (Fig. S10). The majority of the detections have precision/recall values 

nearing unity. The learning curve plots for both our models (for first and second datasets) are 

shown in Fig. S11. The loss on the validation dataset and on the training dataset converged 

properly, indicating that our models did not overfit or underfit.  
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Summary and Discussion 

We presented a method for detection and classification of SARS-CoV-2 in the presence of other 

viruses, by using interferometric imaging and AI. Our results indicate that highly sensitive phase 

imaging is capable of providing subtle structural specificity of the viral particles, which in turn, 

allows for their accurate classification. There are two main components that help our model 

detect and classify viruses with high accuracy. First, the specific texture of the dry mass density 

can report on the differences in the refractive index caused by the specific protein compositions 

of the virus. Second, the nanostructure signature of individual viruses, e.g., irregularities on the 

surface of SARS-CoV-2 and H1N1, hexagonal shapes in HAdV, and the smoother surface of 

ZIKV, are subtle features in the SLIM images, exploited by the neural network.  

The most likely combination of multiple viruses is SARS-CoV-2 and H1N1, a situation 

which can pose a challenge for accurate testing. However, our model proved to be successful in 

detecting and differentiating SARS-CoV-2 and H1N1 with a one versus all AUC of 96% and 

99%, respectively. Pending successful clinical testing of this approach, we anticipate that the 

instrument can be implemented into a portable device controlled by a laptop. As the inference 

per field of view takes 60 ms, it is likely that the test per specimen, sampling several fields of 

view, will complete in a few seconds. Due to the lack of labels or other reagents, the test itself is 

bound to be inexpensive. Finally, to scale up throughput, we envision translating automatic slide 

scanning engineering concept from digital pathology devices.  
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Material and Methods: 

Sample preparation: The viruses used in this study are: Heat-inactivated SARS-CoV-2 

(ATCC® VR-1986HK™), Influenza A virus (H1N1) (ATCC® VR­1894™), Human adenovirus 

2 (HAdV) (ATCC® VR-846™), and Zika (BEI: Zika Virus, PRVABC59, Infected Cell Lysate, 

Gamma-Irradiated (NR-50547)). HAdV and H1N1 were deactivated by UV. For fluorescence 

imaging, each virus solution was stained with Rhodamine B isothiocynate, separately for each 

experiment. Dialysis was carried out to remove unbound fluorophores from the stained solution. 

Stained virus sample was dropped on glass slide, fixed with 90% ethyl alcohol and air dried 

(more information in Supplementary Section S1). 

Image acquisition and processing: We performed dual channel correlative SLIM-fluorescence 

imaging on Nikon Eclipse Ti inverted microscope with add-on SLIM module (CellVista, Phi 

Optics, Inc.). Images were acquired with Nikon Plan-Apo 100x/1.45, phase contrast oil 

objective. Exposure was kept at 30ms and 200ms for SLIM and fluorescence, respectively. For 

3D reconstructions, we acquired a z-scan passing through focus, with a step size of 5nm for the 

SLIM channel only. After the image acquisition, offline processing involved image registration 

of SLIM and fluorescence through MATLAB (see Supplementary Section S2). For the first 

dataset, we extracted 48 × 48 crops from SLIM and fluorescence images. We then segmented 

SLIM images to prepare the masks, which served as labels for the corresponding virus type 

during automated classification. For the second dataset, we first segmented the SLIM and 

fluorescence images and then performed automatic cropping based on bounding box information 

(more information in Supplementary Section S2).  

We performed deconvolution using Richardson-Lucy iterative algorithm with Total 

Variation (TV) regularization (27, 28). We first converted phase map obtained from SLIM to 
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complex field. This complex field was then used as an input to the algorithm. We derived an 

initial estimate for PSF from the images themselves, by choosing the smallest spot in the images. 

Utilizing the properties obtained from segmentation (area, integrated phase values, centroid, 

etc.,) we carried out quantitative analysis on single virus particles using MATLAB (see 

Supplementary Section S3). 

We produced tomographic reconstructions using Amira software (Thermo Scientific). We 

cropped out single particles from whole image and upsampled them by a factor of 10 with 

bilinear interpolation to remove pixelations. We then used Volren and Isosurface rendering to 

reconstruct volume and surface tomograms (see Supplementary Section S4) for each virus type. 

Machine learning 

For both the first (manual selection, with background) and second (automatic selection, without 

background) datasets, we prepared digitally mixed images to train and test our network. We 

placed single cropped viruses from each class, randomly in a 240 × 240 image, in fixed 

concentration for first dataset (5 particles per class) and varying concentrations (2 to 8 particles 

per class per image) for second dataset. During training, the model weights were updated using 

the Adam optimizer (36) against a categorical cross-entropy loss function. During evaluation, we 

found that in some cases, our model inferred more than 1 label for different parts of the same 

particle. To enforce instance-level consistency onto our model prediction, we performed a post-

processing step via connected component analysis to ensure that all pixels in each individual 

particle are predicted as one class. After this post-processing step (see Supplementary Section 

S5), our model’s performance was summarized into a confusion matrix on over 10,000 virus 

particles from the test dataset for the second dataset. 
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Figure S1: Fluorescence staining and sample preparation process: The process of fluorescent 

tagging for virus particles.  

Figure S2. Correlated SLIM-Fluorescence imaging results for H1N1 Virus: A. SLIM B. 

fluorescence for the same field of view, colorbar representing optical path length fluctuations in 

nm. C, D. Cropped single virus particles for SLIM and fluorescence, respectively. E. SLIM mask 

for AI training. Scale bar represents 5μm for A, B and 0.5 μm for C, D. 

 

Figure S3. Correlated SLIM-Fluorescence imaging results for HAdV:  A. Phase map obtained 

from SLIM, colorbar representing optical path length fluctuations in nm B. Fluorescence image 

for same field of view. C and D represent an example of one cropped virus particle (48 × 48 pixels) 

for SLIM and fluorescence respectively, with E representing the segmentation mask for labelling. 

Scalebar: 5µm for A, B and 0.5 μm for C, D. 
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Figure S4. Correlated SLIM-Fluorescence imaging results for ZIKV: A. SLIM B. 

fluorescence for the same field of view, colorbar representing optical path length fluctuations in 

nm. C, D. Cropped single virus particles for SLIM and fluorescence, respectively. E. SLIM mask 

for AI training. Scale bar represents 5μm for A, B and 0.5 μm C, D. 

Figure S5. Deconvolution results: Inside each subfigure, raw SLIM images are in top row and 

deconvolved SLIM images are in bottom row for A. SARS-CoV-2 B. H1N1 virus C. HAdV , with 

hexagonal shape highlighted in 4th example and D. ZIKV, respectively. Scalebar is 0.5μm for all 

images. 

 

Figure S6. Quantitative analysis: A. Dry mass density histogram for all four viruses, showing 

distinct peak for SARS-CoV-2. B, C, D. Kruskal-Wallis test results for dry mass density 

differentiation between SARS-CoV-2 and H1N1, HAdV and ZIKV, respectively. p-value in all 

cases is <0.0001, indicating high significance. Number of particles in each test is mentioned on 

the graphs. 

Figure S7. Training a deep neural network to perform classification on the first digital-

mixing dataset. A. We used a modified version of U-Net for this semantic segmentation task. 

Besides reducing the number of parameters in the network to around 3 million, we also added in 

residual connection and batch normalization for faster convergence. Model inference on images 

from the validation set and the test set. B.  Synthesized images of mixed virus particles. C. 

ground truth label. D. model inference.  

 

Figure S8. Post-processing to enforce particle-level consistency. A. To ensure all pixels in one 

virus particle has the same predicted label, we performed connected component analysis and 
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averaged the probability distribution within each connected component. Left column: raw 

probability prediction; right column: probability distribution after post-processing. B. After post-

processing, the predicted segmentation map no longer had different labels within one particle-

region. This enabled us to compute, on an instance-level, the performance of our model. 

 

Figure S9. Model performance on the first test dataset (consisting of 32 240 × 240 images). 

A. The receiver operating characteristic (ROC) curve of the model on the test dataset. The model 

achieved over 0.96 area­under­curve (AUC) for all 4 virus types on the test dataset. The area­

under­curve (AUC) for each class is computed by setting that class as label 1 and all other class 

labels (background and the 3 remaining virus types) as label 0. B. The confusion matrix of the 

model inference on the test dataset. Each row represents the ground truth label while each 

column represents the prediction. For visualization purposes, each entry in the confusion matrix 

was normalized with respect to the number of true labels (sum of each row). The precision, recall 

are averaged across all images in the test dataset. Both the ROC curve and the confusion matrix 

are evaluated on a per­particle level.  

Figure S10. Model Performance for SARS-CoV-2 with post-processing on the second 

dataset. A. Histogram of particle-wise precision for SARS-CoV-2 evaluated on all 564 images in 

the test dataset. The average precision is 0.80. B. Histogram of particle-wise recall for SARS-CoV-

2 evaluated on all 564 images in the test dataset. The average recall is 0.85. 

Figure S11. Learning Curve Plot. A. The learning curve plot of our model developed for the first 

dataset. B. The learning curve plot of our model developed for the second dataset. Both plots 

showed a good convergence between the validation loss and training loss of our models, indicating 

that our models did not underfit or overfit. E represents categorical cross-entropy Loss 
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Movie S1. Volumetric reconstruction of a group of SARS-CoV-2 particles with maximum 

projection emphasizing the irregular boundaries of the virus particles. 

 

Movie S2. Volumetric reconstruction of a group of H1N1 particles with maximum projection 

emphasizing the irregular boundaries of the virus particles and pleomorphic shapes of H1N1 

particles. 

 

Movie S3. Volumetric reconstruction of a group of HAdV particles with maximum projection 

emphasizing the hexagonal shape of the virus particles. 

 

Movie S4. Volumetric reconstruction of a group of ZIKV particles with maximum projection 

emphasizing the relatively smoother surface of the virus particles. 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422601

