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Abstract 

Episodic memory enables recollection of past experiences to guide future behavior. Humans 

know which memories to trust (high confidence) and which to doubt (low confidence). How 

memory retrieval, memory confidence, and memory-guided decisions are related, however, is 

not understood. Additionally, whether animals can assess confidence in episodic memories to 

guide behavior is unknown. We developed a spatial episodic memory task in which rats were 

incentivized to gamble their time: betting more following a correct choice yielded greater reward. 
Rat behavior reflected memory confidence, with higher temporal bets following correct choices. 

We applied modern machine learning to identify a memory decision variable, and built a 

generative model of memories evolving over time that accurately predicted both choices and 

confidence reports. Our results reveal in rats an ability thought to exist exclusively in primates, 

and introduce a unified model of memory dynamics, retrieval, choice, and confidence.   

                                                
* hannah.joo@ucsf.edu, † loren@phy.ucsf.edu 
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Introduction 

Animals rely on two sources of information to guide behavior: the external world as it exists in 

the present, and memory, the internal store of past experience. Perception and memory are 

both imperfect. Metacognitive monitoring of their possible errors can valuably inform future 

action, for instance by motivating information seeking prior to decisions, or decreased resource 

investment afterward1-6.  

Overall, studies of confidence have focused primarily on information perceived from the external 

world (e.g., motion detection, odor discrimination), reporting confidence-related behaviors 

across multiple species including dolphins7, non-human primates8-12, honey bees13, and rats14,15. 

A statistical framework that formally defines confidence and its signatures14,16,17 has established 

a correspondence between statistical confidence in perceptions and the subjective sense of 

human confidence18, and enabled the identification of behavioral and neural confidence markers 

in species including macaques10,19, pre-verbal infants20, and rats21,22.  

By comparison, our understanding of confidence in information retrieved from memory is limited. 

This is particularly true for confidence in episodic memories. This internal computation is 

thought to correspond to the human sense of confidence in recollections and to go awry in 

psychiatric conditions23-26. Episode memory confidence is also thought to have special 

implications for consciousness: in Leonard Tulving’s original formulation, three different forms of 

phenomenal subjective experience (i.e., forms of consciousness) emerge from metacognitive 

monitoring of the procedural, semantic, and episodic memory systems27. Only the third level, 

autonoetic or ‘self-reflective’ consciousness, is proposed to require — and to imply — conscious 

self-representation, or self-awareness. It has been argued to exist only in humans28-30, and no 

animal model of episodic metamemory, and thus no demonstration of this state of 

consciousness or starting point for neurobiological study, has previously been established31.  

While there is evidence that humans32 and primates12,33-35 compute memory confidence, studies 

have focused exclusively on visual recognition memory33-36, which can be solved by familiarity 

rather than true episode recollection37. Thus, whether these findings generalize to episodic 

memories is unclear. Moreover, these studies have not employed explicit models of memory 

relating choice and confidence, and have not been extended to non-primates. Whether non-

primate species compute confidence in memories of any type, and how this computation 

influences behavior, remains unknown.  
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Here, we developed a behavioral task in rats that enabled quantitative assessment of memory 

accuracy and confidence for personally experienced events in their temporal and spatial 

contexts (i.e., where, when, and what, defining features of episodic-like memories in animals38). 

On each trial, rats first made a choice based on information retrieved from memory and were 

incentivized to then place a bet on whether the choice was correct by waiting for a period of self-

determined length. Temporal betting provided a graded confidence report on every trial, 

improving on task designs that assess only a binary confidence14,34, do not allow confidence and 

choice to be collected in the same trials8,10,36, or can only assess confidence on a subset of 

trials6,21,22. This task design enabled collection of thousands of trials from each rat, comprising 

spatial memory decisions spanning a range of difficulties, each associated with a behavioral 

confidence report. We found that rats consistently bet more time on correct trials, suggestive of 

a memory confidence computation. To evaluate this possibility, we constructed a computational 

model that intuitively unifies memory retrieval, choice, and confidence, and found that it 

accurately predicts choices and temporal bets. 

Results 

Episodic memory choice and confidence task 

We designed a spatial decision task for rats based on episodic memory, augmented with a post-

decision wager to assess confidence.  Each trial of the episodic memory confidence task 

requires a binary, memory-guided choice, followed by confidence report (Fig. 1a, b; 

Supplementary Fig. 1). A randomly selected two of six spatially remote choice ports are cued by 

a light, and a valid choice is made by entering one of the lit choice ports. The correct choice, or 

target, is the more temporally remote in the ongoing sequence of visits in the session, while the 

other, more recently visited port, is the distractor. Next, rats have an option to bet on their 

choice by remaining at the choice port for a self-determined duration, with the total time spent 

serving as a bet (Fig. 1b).  For correct choices only, longer bets will yield more reward. 

Importantly, the task takes place in fixed, hour-long sessions, with self-paced trials. Longer 

temporal bets thus have a higher possible reward payout in the case of a correct choice, but 

also a higher penalty in the case of an incorrect choice, in the form of the opportunity cost of not 

initiating a next trial. If rats are able to compute confidence in their memories, to maximize 

reward over the session they should bet more time on choices based on memories they are 

more confident in. 
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The reward payoff function was designed to incentivize rats to meaningfully gamble time by  

countering the possible effects of temporal discounting. Like humans, rats show hyperbolic 

discounting, preferring smaller rewards sooner to larger rewards later39,40, which could 

counteract the incentive to bet high. Therefore we chose a convex reward payoff function, 

producing super-linearly increasing reward returns for bets up to 2.2 s (R(t) = 0.27e+.,-(./+.0); 

Fig. 1b). To discourage excessively long gambled times, we chose a concave payoff function 

beyond 2.2 s, producing sub-linearly increasing reward returns R(t) = 2.6 × log(0.44 × (t + 0.8)) 

that delivered 300 µL of reward for the longest typically observed gambled time of 10 s. The 

briefest registered gamble delivers an approximately 60 µL drop (one minim) of reward, 

ensuring that rats received an appreciable reward for all correct choices.  

The task takes place on a large, branched track, to test memory of episodes occurring at distinct 

locations as well as times (Fig. 1c). To restrict the number of spatial trial types, the random 

selection of target and distractor requires that they are always adjacent, resulting in six possible 

spatial pairs (Fig. 1d). To probe a range of memory difficulties, distractor-target pairs were 

selected spanning a range of ages (trials since last visit; Fig. 1e). This enabled study of choice 

accuracy and confidence as a function of how long ago the queried episodes occurred. The 

distractor age was restricted to 1, 2, or 3. The target age was strictly higher than the distractor 

age (e.g., for distractor age 1, allowable target ages are 2, 3, 4, etc.). Importantly, because 

distractor-target pairs 1-2, 1-3, and 2-3 are allowable, the task cannot be solved by simply 

remembering and universally avoiding ports aged 1, 2, and 3. For each rat, the proportion of 

trials with distractor ages 1, 2, and 3 was approximately one third each, across and within 

sessions (Supplementary Fig. 2). After each trial, the choice is appended to the ongoing 

sequence of port visits within the session (Fig. 1f). The correct choice on any given trial 

therefore depends on the history of actual visits, even if they were errors.  

Rats learn and apply the memory rule with high choice accuracy.  

Rats took an average of approximately 45 seconds to perform a trial, and thus memory 

judgments typically related to past experiences on the timescale of minutes. They performed 50 

- 100 trials per session and approximately 3000 total trials each, maintaining stable performance 

accuracy across sessions (see Methods). Choice accuracy was 80.2 ± .04 percent (mean ± 

s.e.m., 𝑛 = 192 sessions pooled across 4 rats), substantially higher than what could be 

achieved by a random decision strategy, either across all six choice ports or between the two 

cued ports (Fig. 2a; Supplementary Fig. 3 a, d, g).  
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Choice accuracy could not be explained by a preference for individual ports or learned port 

sequences, or by any of a variety of alternative strategies to the true rule (e.g., choose the 

leftmost of the two cued ports; see Methods; Supplementary Fig. 4). Critically, the stable 

performance accuracy indicates that temporal bets reflect uncertainty regarding the specific 

choice rather than uncertainty in the rule itself.  

Temporal bets reflect decision confidence.  

Rats consistently gambled more time on choices that turned out to be correct (Fig. 2b and 

Supplementary Fig. 3 b, e, h; average AUC 0.74 ± .03 s.e.m., 𝑛 = 4 rats; for each rat, one-

sided rank-sum test p ≪ 1 × 10>?), and temporal bets predicted overall choice accuracy in a 

graded manner (Fig. 2c). The difference was striking and consistent across rats: on average, 

temporal bets were 1.45 ±	0.33 seconds higher for correct than error trials (average ± s.e.m., 

𝑛 = 4 rats). Temporal bets were also longer for correct trials considering each port pair 

separately (Supplementary Fig. 5; for each rat p ≪ 1× 10>?, one-sided rank-sum test). We 

ruled out the possibility that gambled times were simply a reflection of choice latencies, with 

longer gambles for decisions that took less time to make. There was only a slight negative 

correlation (RA < 0.05) despite latency being slightly lower on correct than error trials for each 

rat (average AUC of 0.55 ± 0.26 s.e.m., n = 4 rats; one-sided rank-sum test, p < 0.05 for each 

rat). These results demonstrate that rats can predict choice outcome, consistent with a 

computation of confidence in their memories.  

The rats’ behavior on the occasional visits to one of the two uncued, invalid ports (4.6	±	0.2 

percent of trials, n = 4 rats) also provided evidence for both the knowledge of the rule and a 

metacognitive assessment of memory choice. The low fraction of these choices indicates that 

the rats had learned that only cued ports yield reward. 

Given that rats understood the task contingencies, their confidence in receiving reward following 

an invalid choice is predicted to be low, hence little or no time investment in these choices is 

optimal. Consistent with this prediction, the time gambled on invalid choices was significantly 

lower than for error trials (Fig. 2d, and Supplementary Fig. 3 c, f, i; average AUC 0.74 ± .01 

s.e.m., n = 4 rats; each rat, one-sided rank-sum test p < 1 × 10>?). The fraction of trials that 

were invalid was highest for the shortest temporal bets, consistent with the possibility that rats 

understood these trials as exploratory trials with low expected reward (Fig. 2f). Also consistent 

with this possibility, errors to invalid ports were most common (69.1 ± 3.2 percent, n = 4 rats) on 

distractor age 1 trials (Supplementary Fig. 6), which had the highest proportion correct (Fig. 3a-
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d), indicating a strategy of selective exploration on easy trials. Hence time bet in invalid trials 

can be viewed as another form of appropriate metacognitive assessment of memory choice, 

albeit one that is not formally considered to be decision confidence41. Excluding invalid errors, 

temporal bets were still significantly higher for correct than error trials (Fig. 2d, e, and 

Supplementary Fig. 3 c, f, i; average AUC 0.71 ± .02 s.e.m., n = 4 rats; each rat, one-sided 

rank-sum test p < 1 × 10>?). 

Choice accuracy depends on memory age and discriminability.  

What information do rats use to predict choice outcome? We had designed the task to deliver 

trials spanning a range of difficulties determined by distractor and target ages. If, we 

hypothesized, choices are based on memory, they should be progressively harder for older 

targets and distractors42. Choices should also be harder for lesser age differences between 

target and distractor, as episodes that occur closer together in time are more likely to be 

confused with one another43.  

Both of these predictions proved to be correct. The average choice accuracies for distractor 

ages 1, 2, and 3 respectively were 89.5 ±	0.5, 77.7 ± 0.7, and 72.7 ±	0.7 percent (n = 192 

epochs pooled from 4 rats; Fig. 3a-d). In addition, choice accuracy increased with the age 

difference between distractor and target when controlling for distractor age (Fig. 3a-d).    

Constructing a synthetic decision variable.  

Together, these results suggest a memory confidence computation. To evaluate this possibility, 

we aimed to construct a model of memory confidence, fit to choice accuracy, that would 

accurately predict confidence and temporal bets as a function of memory discriminability. We 

therefore had two related goals: first, to characterize the memory discriminability axis for these 

memory confidence signatures; second, to build a model of memory dynamics as a function of 

discriminability.  

The first step, corresponding to a longstanding challenge in the study of memory confidence, 

was to identify an appropriate memory discriminability axis, or decision confidence variable44. In 

studies of perceptual confidence the relevant decision variable is typically defined by external 

task parameters (e.g., motion coherence; odor concentrations) where a simple monotonic 

relationship between the task parameter and task difficulty can be demonstrated17. Alternatively, 

in the context of value-based decisions, the decision variable is often inferred using a model-

based approach that posits a concrete computational model to explain choice behavior45. 
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Neither approach was applicable here: multiple task parameters could potentially influence the 

rats’ choices, and we are not aware of an existing computational model that could be used to fit 

the choice behavior.  

We therefore sought a model-agnostic approach to derive a synthetic memory decision variable 

(MDV) that is a scalar summary of the available information that rats could potentially access 

from memory, with the key property that higher values of the MDV predict higher accuracy. To 

do so, we trained a deep neural network (DNN) to predict rat choice per-trial based on an 

exhaustive 20-feature set (Fig. 3e; Methods). We included only those features accessible in 

memory, not directly observable on the given trial (e.g., previous reward amounts, but not 

current port identities); hence, a memory decision variable. A DNN in particular enabled the 

agnostic approach we sought: because it is robust to inclusion of redundant and correlated 

features, an intuitive or model-based feature selection step was not necessary; likewise, 

selection of interaction terms was not required.   

Eighteen of the 20 features were, for each of target and distractor: age in units of trials and time; 

their last, maximum, and cumulative delivered reward amounts; time since last reward; last and 

cumulative dwell times; number of trials since any part of its trajectory was last traversed. The 

final two features were, for the target and distractor, their spatial and temporal (target age – 

distractor age) trial types. The DNN, trained by five-fold cross-validation for each rat, output a 

single value, a detection statistic between 0 and 1 that corresponds to a predicted probability 

that the trial will be correct. As expected, this model outperformed both a model that learned 

only the overall proportion of correct trials, and a model trained on memory age alone (Fig. 3f). 

We reasoned that a higher DNN-predicted probability of correct output corresponded to lower 

trial difficulty, equivalent — because the input features were those available in memory — to 

memory discriminability. Thus, we defined the output of the DNN trained on the full feature set 

as the MDVDNN, with higher values corresponding to memory discriminability and predicting 

more accurate recall (Fig. 3g). We note that any monotonic function of the inferred MDV will 

also have the same properties; hence, it is not unique. 

A generative episodic memory model (GEMM).  

Having identified a memory discriminability axis, we moved to the second step: building a model 

of memory dynamics. The MDV provides an index of trial difficulty, but not, in itself, a model of 

the computation of memory confidence. Moreover, understanding the relationship between the 

inputs and outputs of a DNN is typically difficult, and may not yield insights into the actual neural 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.420174doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.420174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

computations that underlie animal behavior. We therefore took a more principled approach to 

develop a computational model of memory confidence, leveraging an understanding of memory 

phenomena to develop a generative episodic memory model (GEMM) that could predict choice 

and confidence (gambled time) given an underlying representation of memory.  

For this model we focused on memory age, an interpretable and established determinant of 

memorability that, in our task, independently influenced choice accuracy. We began with a 

formulation where memory age is represented as a random variable with probability distribution 

centered on a mental timeline at its time of occurrence. Realizations of this random variable 

represent specific memory retrievals, corresponding to estimates of how long ago the 

experience occurred. The distribution’s variance represents mnemonic noise from errors in 

encoding, consolidation, and/or retrieval. We postulated that (i) these errors accumulate over 

time such that the memory is less precise, reflected in an increasing variance over time; (ii) the 

distribution should always take on positive values, as it is not possible to mistakenly retrieve an 

episode from memory as having occurred in the future, and (iii) an episode should never be 

completely forgotten.  

Given those  we developed a mathematical formulation of the model. We define Ma 

as the actual number of trials since the last visit to port a (i.e., the age of that port). Furthermore, 

we define Ma’ as the subject’s recollection of the port age. Requirements (ii) and (iii) together 

specify an asymmetric noise profile with greater spread into preceding than subsequent times. 

We therefore model Ma’| Ma = ma as a lognormal random variable (uppercase symbols denote 

random variables, while lowercase symbols represent realizations of those random variables). 

To satisfy requirement (i), the family of lognormal distributions defined by ma = 1, 2, ... nelapsed trials 

represents the memory’s evolution over time (Fig. 4a). This family of lognormal distributions has 

a time-dependent mean a0ma and a time-dependent standard deviation s0(1	+	

a1ma + a2ma
2).  We parametrized memory age by elapsed trials and not elapsed time, since a 

separate regression analysis revealed the number of elapsed trials was a better predictor of 

choice outcome than elapsed time (Supplementary Fig. 7, see Methods). The separation 

parameter a+ sets the unit increment on the mental timeline that corresponds to one real-life 

trial; the standard deviation σ+ sets the baseline precision of each memory distribution; the 

coefficients a1 and a2 set the rate of change for the standard deviation as a second-order 

polynomial function of its age ma, giving it flexibility to increase or decrease as a function of 

time, though our hypothesis was that it should strictly increase. For a given trial, two ports a and 

b are cued, with Ma < Mb, corresponding to target and distractor, respectively. Choice (Fig. 4b) is 
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determined by the sign of the difference ma’- mb’, and confidence by its magnitude, |ma’- mb’| 

(Fig. 4c).  

Given that model, we iteratively fit the GEMM parameters for each rat to choice accuracy (Fig. 

4d) across trial types based on a c2 metric (see Methods). Based on that fit to memory accuracy 

(Fig. 4e; Supplementary Fig. 8 a-c, e-g, i-k, m-o), we then generated predictions for memory 

confidence.  

Embedding the GEMM in data enables prediction of choice and confidence as a function 
of the MDV. 

Finally, we combined the MDV and the GEMM to produce a series of confidence tuning curves22 

to which we could compare behavioral data (Fig. 5). Generating GEMM predictions as a 

function of the MDVDNN enabled the best possible estimates, and ensured our predictions 

spanned the full range of per-trial memory discriminability. First, for each trial, we input target 

and distractor age to the previously fitted GEMM to generate a distribution of simulated trial 

outcomes (correct vs. error) and confidence values (Fig. 5a, GEMM simulation). Next, we 

converted these GEMM-predicted confidence values to gambled times by mapping, for each rat, 

the inverse cumulative distribution function (CDF) of the observed gambled time distribution 

(Supplementary Fig. 8 d, h, l, p; see Methods). Note that this mapping has no free parameters. 

Further, it only considers the full gambled time distribution, not individual trials, and does not 

separately map correct versus error trials or any other subset of the data, nor does it make 

assumptions about the match between the mappings of trial outcome to confidence for the 

model and data. Conceptually, this procedure captures the economic aspect of waiting based 

on the model, that is, how long the animal is willing to wait given a specific degree of 

confidence.  

Every one of these simulated trials has the same MDVDNN, straightforwardly computed as the 

DNN output from the 20 input features of the data trial (Fig. 5a, MDV calculation). Together, this 

procedure generated for each trial, (i) a predicted outcome (correct vs. error), (ii) a predicted 

gambled time, and (iii) a calculated MDVDNN, which we used to generate three nominal tuning 

curves for memory confidence based on memory discriminability, temporal bets, and choice 

accuracy (Fig. 5b). In effect, this procedure generates GEMM-predicted trends for gambled time 

that are based on all 20 features of the MDVDNN: although the GEMM only explicitly takes as 

input distractor and target ages, the GEMM-simulated trials inherit the 20 MDVDNN inputs from 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.420174doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.420174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

the data trial they are based on, thereby preserving the covariance structure of the data (i.e., 

they are embedded in the data, as for hybrid data-simulation models in collider physics)46. 

The GEMM accurately predicts memory confidence behavior. 

We observed a striking match between GEMM predictions and observed behavior. Since all the 

assumptions of statistical decision confidence also apply to our episodic memory-guided 

confidence task, we could quantitatively assess the relationship of behavioral confidence reports 

and GEMM-derived confidence levels by focusing on the established set of comparisons to 

evaluate confidence as a decision variable16. First, a calibration curve makes the intuitive 

prediction that trials with longer gambled times should have higher choice accuracy (Fig. 6a, d, 

g, j). Consistent with this prediction, accuracy as a function of gambled time rises for both the 

model and the data. Second, for any given choice difficulty level (memory discriminability), 

accuracy should be higher on trials with higher confidence, where more time was gambled. We 

tested this prediction using a conditioned psychometric curve that divides the data into high and 

low predicted (GEMM) or actual (data) gambled times. We found consistent and highly similar 

relationships across data and the model predictions for choice accuracy as a function of 

memory discriminability (Fig. 6b, e, h, k): longer gambled times predict higher choice accuracy 

over a range of memorability. Third, for any given trial difficulty level, gambled times should be 

higher for correct as compared to error trials. Indeed, this “vevaiometric” curve shows 

consistently higher gambles for correct than error trials over a range of memory 

discriminabilities in both the model and data (Fig. 6c, f, i, l). For all three signatures and all four 

rats, the majority of the data points are within two standard deviations of the model, indicating 

surprisingly accurate fits given the small number of model parameters. This analysis also 

revealed evidence of an intuitive signature of confidence consistent with the standard model of 

perceptual decision confidence: the difference in gambled time between correct and error trials 

is greater for more memorable trials.   

 

Discussion 

We designed a spatial episodic memory task to study choice and confidence together. To 

evaluate memory age as a potential decision and confidence variable, a variety of trials 

spanned a range of target and distractor ages. We incorporated a novel form of confidence 

report, time gambling, which was available on every trial. Critically, we found that temporal bets 

predicted choice accuracy in a graded manner. Our task also allowed us to address the long-
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standing challenge of defining a memory decision variable (MDV): we trained a deep neural 

network (DNN) on an exhaustive list of task observables to predict choice accuracy, and 

interpreted its output detection statistic as defining a synthetic memory difficulty axis or decision 

variable, the MDVDNN. Next, we developed a novel generative episodic memory model (GEMM) 

that posited that the age of memories is represented in the brain as a lognormal distribution that 

evolves with experiences. We integrated the GEMM and MDVDNN in a final model that used the 

MDVDNN to assign a difficulty to each trial and found that across the range of difficulties, GEMM 

predictions recapitulated the choice and confidence behavior of the animals. These findings 

provide a demonstration of episodic memory confidence in rats and introduce a simple, 

interpretable model of the underlying computation.  

Studies of learning and memory in animals have typically focused on measures of accuracy, 

such as time spent freezing in a conditioned context, character of navigation to a hidden 

platform, or proportion correct47. Our results indicate that not only do rats execute behaviors 

related to representations of past experience, but also that they maintain and can access a 

representation of confidence related to the retrieval and use of those memories. Rats gambled 

more time on trials where they had made a correct decision, even though the outcome of the 

trial was not revealed until after the gambling period ended. Their behavior on trials where they 

made a choice that was never rewarded (invalid choices) was also consistent with an internal 

representation of confidence. Rats consistently gambled the shortest times on these trials, 

consistent with low confidence in a rewarded outcome. In addition, rats rarely made invalid 

choices and when they did, these tended to be on easy trials (distractor age = 1) with low 

gambled times. In fact, the lowest gambled times correspond to below-chance accuracy, 

attributable to a high proportion of invalid trials. This is consistent with an exploration strategy 

employed selectively on the subset of trials where the true answer is known and “throwing” a 

trial can therefore ascertain that the optimal strategy is unchanged. Together, these results 

provide strong support for the hypothesis that rats can access confidence in their memories to 

guide behavior.  

A model of memory confidence  

These findings inspired a two-step approach to understanding the memory confidence 

computation. First, we inferred a memory decision variable using a DNN with inputs that 

included variables potentially available to the rats in memory, such as port histories of targets 

and distractors, and the last reward and last dwell time at each port. The network reached a 

high degree of prediction accuracy (~80%), outperforming a network based on port age alone. 
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The output of the network could be interpreted as a decision variable corresponding to trial 

difficulty. Crucially, in contrast to perceptual 48 or value-based 49 tasks where the experimenter 

controls the difficulty of each trial, we did not know how the various elements of each trial would 

interact to define the difficulty. Thus, this approach has potential to be broadly useful when trial 

difficulty cannot be established a priori.  

At the same time, the inclusion of the full 20 parameters, and the complex structure of the 

network, precluded an immediate understanding of how memory confidence might be 

computed. We thus focused, in the second, modeling step, on a subset of parameters, 

specifically target and distractor ages, to design a model to predict choice and memory 

confidence. Under the GEMM, a few parameters govern the evolution of the underlying 

lognormal distributions based on known features of episodic memory. Each memory is 

represented at the time of encoding (t = 0) as a delta function and therefore does not include 

perceptual noise. At later timepoints, its variance represents mnemonic noise from processes 

including encoding. The fitted GEMM parameters defined an increasing standard deviation with 

age, consistent with the understanding that memories become less precise over time and that 

when a memory is retrieved for consolidation or use it can become labile again50. The 

instantiation of known features of memory, combined with flexibility in their evolution 

parameters, means that the GEMM could be applied to other tasks as well (e.g., recognition 

memory tasks). The GEMM could also be adapted to describe memory dynamics not just for the 

recalled time of episode occurrence, but for the details of those episodes themselves. For 

instance, remembered places or faces might blur over time into similar ones with an increasing, 

time-dependent variance as in the GEMM and, for complex stimuli such as these, its 

asymmetric noise profile as well. 

Although the GEMM describes memory dynamics as a function of age only, the other MDVDNN 

features are taken into account by its embedding in the data in the full ensemble model. 

Importantly, the GEMM was fit only on the trial outcomes, and it nevertheless provided 

remarkably accurate predictions of gambled time. The key feature that enabled those 

predictions is the asymmetric noise profile, which is motivated by known dynamics of memory 

decay. Critically, this differentiates it from the fixed-variance Gaussian noise profile that is 

typically used in perceptual discrimination and that is implicit in many models of recognition 

memory 37,51. We found that behavioral data for all four rats were well described by the GEMM, 

which predicted confidence tuning curves similar to those of statistical confidence with one 
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exception: only the GEMM explained the relatively constant gambled times for correct trials a 

function of memory discriminability seen on the vevaiometric curve.  

Importantly, achieving relatively constant gambled times for correct trials is non-trivial. An 

alternative approach to generating confidence predictions from the GEMM would be to use the 

MDVDNN as a decision axis, assume that on each trial the memory decision and memory 

confidence are both determined based on a simple noise profile (e.g., Gaussian noise with fixed 

variance), and from this predict gambled time21,22 (Lak et al, 2014; Masset et al, 2020). Such a 

model would predict that confidence increases for correct trials and decreases for error trials as 

a function of discriminability16. However, in our data, gambled times do not increase with the 

ease of the decision. This emphasizes the importance of identifying the appropriate noise 

distribution producing choice variability. Further, even an approach combining the MDVDNN with 

a non-Gaussian, non-fixed noise profile would have limited utility: reliance on the DNN would 

obscure the minimal set of variables that were sufficient to construct the GEMM. As such, this 

approach would make it more difficult to make specific predictions about potential 

representational substrates of a memory confidence calculation in the brain.  

A framework for understanding a memory confidence computation 

Our findings constitute evidence of an ability to compute and act on a representation of memory 

confidence in a non-primate consistent with the notion of autonoetic consciousness, opening the 

door to a mechanistic understanding of the underlying neural processes. Previously, human and 

non-human primate studies have identified spiking activity reflective of recognition memory 

confidence33,34,36,52, but the relationship of this activity to the neural activity underlying memory 

itself is unknown, and difficult to quantitatively model in the absence of clearly defined memory 

decision variables (i.e., discriminability axes). A possibility suggested by the GEMM is that a 

memory confidence computation receives input from the circuitry of memory retrieval itself. 

Indeed, lognormal distributions are commonly observed in the hippocampus, a brain structure 

critical for episodic memory processes53. The GEMM suggests such questions as whether 

memory age might be encoded as a lognormal distribution of firing rates during memory 

retrieval54.  

Information from the hippocampus and related structures might provide input to a confidence 

computation, but current evidence suggests this computation most likely occurs outside the 

hippocampus. In rats, many studies have localized perceptual decision confidence, but not the 

decision itself, to the lateral orbitofrontal cortex (lOFC)21, including, most recently, modality-
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general perceptual confidence representations22. It is possible that the same lOFC neurons 

could also represent memory confidence, particularly since memory itself is multi-modal. We 

hypothesize that perceptual and memory confidence are integrated in decision-making, which 

optimally depends on evidence from varied sources, on long timescales. Prior to this step, 

different forms of memory confidence may be computed differently, by different circuits35.  

While aberrant confidence computations have been proposed to account for a variety of 

psychiatric symptoms including hallucinations, these ideas are based on models of 

perception26,55,56. In contrast, the study of memory has not had the requisite behavioral tasks, 

animal models, or theoretical framework for understanding memory, confidence, and their roles 

in disease. A deeper understanding of memory confidence has potentially broad applications, 

for instance in judging the credibility of eyewitness testimony (e.g., in the 2018 Kavanaugh 

hearings)57. Ultimately, a complete description of how memory guides behavior should include 

confidence. Toward such an understanding of total recall, we propose as possible starting 

points trial-based memory tasks, DNN-derived synthetic decision variables, and the GEMM as a 

first phenomenological account.  
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Methods 

Behavioral training and task 

All procedures followed the guidelines from the University of California San Francisco 

Institutional Animal Care and Use Committee and US National Institutes of Health. Male Long-

Evans hooded rats were trained to perform an episodic memory task with time gambling for 

liquid reward. Behavioral testing was controlled by custom software written in Python using data 

acquisition hardware (Trodes ECU, SpikeGadgets LLC) to record rat pokes and unpokes at the 

ports and to control reward delivery. 

Habituation: Three cohorts of Long Evans male rats (3-4 months old, 450-600g, 6-8 rats per 

cohort) were habituated to daily handling for a week and to hand-delivered liquid food reward 

(evaporated milk plus 5 percent sucrose) from a syringe in the home cage for three days.  

Stage I: Raised linear track plus delayed reward. Animals were then food deprived to 85-90 

percent of their baseline weight and pre-trained on a raised linear track for 3-4 days, 2-3 

epochs/day, 10 mins/epoch. A port was located at each end of the track, equipped with an LED 

light and an IR beam, to detect entry and exit from the port.  Each port could automatically 

deliver reward, which was available for only a specified length of time as it flowed through the 

port at a rate of 0.17mL/sec to a drainage outlet and did not remain in the port. A variable delay 

τ between nose-poke and reward delivery was drawn from an exponential distribution, which 

was gradually incremented from τ = 0.2 − 0.5 seconds to τ = 1 − 8 seconds. Only one port was 

cued by a light on each trial. After nose-poke detection, the light went out and reward was 

delivered. The two ports were lit alternatingly over the course of the epoch. Rats learned to run 

back and forth on the track to visit the currently lit port and to wait for the delayed reward. From 

each cohort, 2-3 rats with the highest accuracy and speed were selected for training on the 

episodic memory confidence task. 

Stage II: Full episodic confidence task sequence with experimenter-delayed reward. In 

Stage II, rats learned the basic task structure (Supplementary Fig. 1), but with only one cue lit 

per trial and a pseudo-gambled time determined by the experimenter. The track has eight ports 

in total: one home port at the center, one back port, six choice ports at each end of six 

branches. As in Stage I, each port could be cued with a light and deliver liquid milk reward. 

Each epoch was of a fixed length per animal, during which trials were self-paced. The lit cue 

corresponded to the target selected by the same code as in the final task logic; lighting of the 

distractor port was suppressed. The sequence of visits within a trial was: home port light on; rat 
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pokes at home port for a small fixed reward (350 ms); home port light off; after a variable cue 

delay, one choice port light on; rat pokes lit choice port; choice port light off and port delivers 

initial reward (350 ms) and, after a variable, experimenter-controlled reward delay, a wait-

dependent reward; back port light on; rat pokes back port; back port light off and port delivers 

back reward. Choice accuracy was measured as the percentage of trials for which the rat visited 

the lit choice well. 

The cue delay was introduced to jitter the events of each trial relative to every other trial, to 

control for across-trial temporal correlations between behavioral and neural events. To train rats 

to wait for the cue lights to come on, the cue delay was gradually increased from range [0.2, 0.5] 

to [0.5, 2.0] seconds. Initially, the back port delivered the same reward amount as the wait-

dependent reward regardless of trial outcome, which encouraged the animals to solidify 

knowledge of the port visit sequence (i.e., to not skip the back port). After three epochs, back 

port reward was only delivered on correct trials. The reward delay was determined by sampling 

from an exponential distribution with rate parameter λ = 1/2, accepting only samples that were 

between 1-3 at the start of this training phase and 2-10 by the end, with a wait-dependent 

reward amount that increased accordingly, to allow rats to learn that a longer period spent nose-

poked in the port would result in a larger reward.  

Stage III: From delayed reward to gambling. After rats were consistently performing at above 

80 percent choice accuracy and waiting for the full reward delay, the initial reward was omitted. 

Once rats were able to wait for the majority of the reward delays (6-10s), the switch was made 

to gambling logic. In the gambling logic of the final task, rats voluntarily reported the time they 

were willing to wait for a potential reward. The gambled time began at the time of nose-poke in 

the choice port and ended when rats withdrew from the port. Nose-poke withdrawal was 

detected with a ‘grace period’ (800 ms for rats T, S, D; 700ms for rat R in final behavior, 

calibrated based on how quickly each rat moved) to allow for small head movements during the 

gambling period: rats were only declared to have ended the gambling period after a grace 

period had passed between the port’s IR beam re-forming (un-poke) and being broke again (re-

poke). After gambled times were observed to be stable across at least three epochs, the 

distractor cue was introduced alongside the target cue, starting with distractor age 1. Distractors 

age 2 and 3 were introduced when choice accuracy was approximately 80 percent and stable. 

Stage IV: Data collection. Approximately 3000 - 4000 trials were collected from each of four 

rats. Each rat had a typical length of time for which he would continuously perform the task, 

after which he would occasionally perform trials but otherwise sleep or lean off the edge of the 
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track and attempt to eat the milk tubes or CAT6 cables. Epochs shorter than 20 minutes (Rat T, 

n = 5 excluded epochs), 40 minutes (Rat S, n = 0 excluded epochs, and Rat D, n=2 excluded 

epochs) or 45 minutes (Rat R, n = 2 excluded epochs) were excluded from final analyses. This 

resulted in the following epoch and trial counts: From rat T, 2978 epochs over 42 trials; from rat 

S, 4111 trials over 40 epochs; from rat D, 4369 trials over 61 epochs; from rat R, 3660 trials 

over 49 epochs. Typically rats ran an average of 350-400 meters per day (the human equivalent 

of approximately five miles) and consumed 50 mL of sweetened evaporated milk. 

Parameter setting: distractor and target selection. The selection of distractor and target was 

random with temporal weighting, to guarantee that trials with distractor ages 1, 2, and 3 were 

evenly distributed throughout the epoch. During an initialization period, the rat was cued to visit 

each of the six choice ports in a randomly generated order, establishing a history of visits. After 

every port was visited at least once, the logic used for selection of the two cued ports on each 

trial was: from the list of possible port pairs with their ages, for example, the top row of Fig. 1f, 

[AB(4,5), BC(5,3), CD(3,1), DE(1,6), EF(6,2), FA(2,4)], select candidate pairs for which at least 

one of the ports has an allowable distractor age (1, 2, or 3), which are [BC(5,3), CD(3,1), 

DE(1,6), EF(6,2), FA(2,4)] here. If there is more than one candidate pair in this list, remove from 

it the candidate pairs with distractor ages equal to those presented on the last trial, the 

penultimate trial, and the trial before that, in that order, until candidate pairs with only one 

distractor age remain. If there is only one candidate pair in this set, select it as the presented 

pair. If there is more than one candidate pair in this set, randomly select between them with 

equal probability. For example, if the last three trials were distractor ages 1, 2, 3 (N.B.: 

regardless of which ports these distractor ages corresponded to), then on the upcoming trial, the 

candidate pair(s) with distractor age 3, [BC(5,3)], would be removed first, then the candidate 

pair(s) with distractor age 2, [EF(6,2), FA(2,4)]. The candidate pair(s) with distractor age 1, 

[CD(3,1), DE(1,6)], would be selected; if there were more than one candidate pair with distractor 

age 1 remaining, the cued pair would be selected randomly from this set. On every trial, there 

will necessarily be a candidate pair with distractor age 1. There will not, however, be candidate 

pairs with distractor ages 2 and 3 on every trial; this can occur in the case of revisits, where the 

port with distractor age 3 is the same as the port with distractor age 1 (or the age 2 port = the 

age 1 port, or the age 3 port = the age 2 port = the age 1 port). This selection algorithm has the 

effect of sampling evenly across distractor types, resulting in approximately 1/3 each per epoch 

and preventing an alternation sequence from developing. 
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Parameter setting: reward function. The reward function was designed to counter the 

potential effects of temporal discounting on gambled times. The expected effect of such 

temporal discounting is that rats would reduce their gambled times to receive a smaller reward 

sooner rather than waiting for a larger one. This effect may be greater on trials where they are 

highly confident in their memories and choice, as the option of a smaller reward sooner is more 

certain. This effect could obscure the difference between gambled times on correct and error 

trials by inducing a left shift of gambled times on correct trials. To counter this possible effect, 

the reward amount delivered was a piecewise function of gambled time with a relatively low 

derivative for the first 2.2 seconds and a relatively high derivative after 2.2 seconds (Fig 1b). On 

correct trials, for investments less than 2.2 seconds, the length of time for which a sweetened 

evaporated milk reward was delivered at a constant rate of 0.17 mL/sec was given by R =

0.27e+.,-(./+.0); for investments greater than 2.2 seconds, R = 2.6 × log(0.44 × (t + 0.8)). A ten-

second wait, for example, will yield a four-second reward. The desired effect was to bias the rat 

toward longer gambled times on trials for which he would already have waited at least 2.2 

seconds, as he could double the reward amount by waiting just one second longer. If rats were 

able to access memory confidence, these longer waits should be more common for correct 

trials, and the reward function could help resolve them from error trials. The non-zero intercept 

ensured that the rat received an appreciable reward amount (350 ms, 60 µL, equal to 

approximately one drop, or minim) even for very short waits on correct trials, preventing the 

development of uncertainty in the memory rule itself following correct trials that resulted in zero 

reward due to short gambled times. To ensure a high enough number of trials per epoch to 

sample trial types evenly, we discouraged extremely long gambled times greater than 9.5 

seconds by choosing a reward function with a derivative that fell by 9.5 seconds to the level it 

was prior to 2.2 seconds. Rats took an average of 15 seconds to perform a trial excluding 

gambled time. With a 9.5 second gambled time and the resulting 4-second reward delivered at 

both choice and back ports, this yields approximately 30-second trials and our aim of 80 trials 

per 40-minute epoch. 

Rats that performed many trials per epoch with a large spread in gambled times were implanted 

with hardware for recording neural data. Following a week or more of recovery, behavioral data 

in the final task were acquired from implanted rats. 
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Correlation of choice latency and gambled time 

For analysis of correlation between gambled times and latency to choice, outliers with gambled 

times greater than 10 seconds or latency to choice greater than 20 seconds were excluded, 

leaving over ninety percent of the data per rat. Linear regression was implemented in SciPy. 

Evaluation of alternative strategies 

For each rat, the proportion of times that each port was presented as target versus distractor 

were compared. Per epoch, these values were rarely above or below 50 percent by greater than 

3 percent, and the majority of differences were not statistically significant at p = 0.05 by a t-test 

for independent samples. 

We tested whether there existed an alternative strategy that could better explain the rat’s 

choices than the true rule, which is to select the least recently visited of the two cued ports. For 

every trial in every epoch, for each rat, we determined whether the alternative rule would have 

resulted in the same choice as the one the rat made, or the same choice dictated by the true 

rule. This resulted in two proportions per epoch for each rat.  

Evaluation of logistic regression and neural network models of choice accuracy 

We used a DNN model to predict choice outcome (correct or error) as a function of an 
exhaustive feature set, or a feature set comprised of target age and distractor age alone. The 

exhaustive feature set included for each of target and distractor: age in trials and time; their last, 

maximum, and cumulative delivered reward amounts; time since last reward; last and 

cumulative dwell times; number of trials since any parts of its trajectory was last traversed. The 

feature set also included, for the target and distractor, their spatial trial type (branch/stem) and 

temporal (target age – distractor age) relationships. The features were each standardized to 

have zero mean and unit variance. The DNNs were feedforward, fully connected networks 

implemented in KERAS using the TENSORFLOW backend and optimized using ADAM. Each 

network has three hidden layers with 32 nodes each and the rectified linear unit activation. The 

output of the last layer is a sigmoid and the binary cross-entropy is the loss function. Networks 

were trained with 200 epochs with early stopping using a patience of 5 epochs. A k = 5-fold 

training procedure is used whereby 1/kth of the data are withheld for testing, 1/kth are withheld 

for validation and the rest are used for training. Datasets used for training were subsets of the 

full dataset for each of rats T, S, D, R (N = 2857, 4031, 4246, 3452, respectively) due to the 

requirement that training trials have data for every feature in the exhaustive set. The trials that 
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comprise each fold are uniformly selected at random. A total of 10 networks are trained for this 

configuration and the network with the best validation loss is used to evaluate on the test set. 

The test set is then rotated k times until all data are used for testing. The loss is weighted during 

training so that the weighted number of instances from the two trial outcomes (i.e., correct or 

error) are the same. 

Logistic regression was implemented in KERAS, where it is simply a neural network without any 

hidden layers.  

Fitting the generative episodic memory model (GEMM) parameters 

The GEMM was fit on a subset of distractor-target trial types for which there was enough data, 
excluding invalid errors. The reduced datasets were 1877, 2593, 2722, and 2284 trials for rats 

T, S, D, R, respectively. Model parameters a+, aM, aA and σ+ were fit for each rat based on its 

performance across trial types defined by distractor and target - distractor ages (excluding 

invalid error trials and target - distractor ages > 4). The probability density of the difference 

between two lognormal distributions (whose negative density is the error rate) does not have a 

closed-form analytic solution, so we simulated 10- trials for each trial type within the fit. Each 

simulated trial generated an mM′ and m+′, from which we computed an outcome (correct or 

error). Across many simulated trials, this returned a predicted error rate pattern across trial 

types for the current set of parameters. 

A χA metric was used to evaluate model performance and find the best fit parameters: 

P Q
εS,data − εS,model

σTU,data

V
A

trial type S

, 

where ε is the error rate and σε is the uncertainty in the error rate. The uncertainty σε is 

determined via bootstrapping, accounting for correlations between the number of trials that were 

incorrect (Ni) and the total number of trials (NT) by modeling each as an independent Poisson 

random variable and taking the standard deviation of Ni/(Ni + Nc) over 100,000 simulated trials. 

We use the Nelder-Mead method with 200 maximum iterations as implemented in SCIPY, 

minimizing the χA fit to error rates across trial types. Then, using these parameters, we 

generated the distributions corresponding to each episode memory and sampled from each 

100,000 times to generate target memories, distractor memories, the outcome of the trial 

(correct/error) and a confidence (absolute value of the difference between target and distractor). 
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Mapping GEMM-predicted confidence to gambled time 

To convert the simulated confidence values to invested times, we mapped the confidence (C) 

probability density onto the probability density of the rat’s invested times (T). Let F(x) = Pr(C ≤

x) be the cumulative distribution function (CDF) for C and G(x) = Pr(T < x) be the CDF of the 

invested times. Then, the mapping procedure proceeds as follows: 

1. Compute the empirical CDF of the confidence values from the model F] using ECDF from 

STATSMODELS. Trials are generated from the model such that the number of trials from 

each trial type follows the relative rates in data which are not uniform. The minimum 

number of trials generated is 10-. 

2. Compute the empirical CDF of the wait times from data Ĝ using ECDF from STATSMODELS. 

This is inclusive over trial types. 

3. For each confidence value c, evaluate Ĝ>M(F](c)). The inverse Ĝ>M is computed via linear 

interpolation (using NUMPY’s interp function) inverting the x and y coordinates. 
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Figures 

 

 

FIG 1. Spatial episodic memory task with time gambling. (a) Self-paced trials are initiated by 
nose-poke at a home port. Two choice port options are cued with a light; four are uncued, 
invalid options that are not correct. One cued port was visited longer ago in the ongoing visit 
sequence (remote, the target) than the other (recent, the distractor), and is correct. Memory 
choice is indicated by nose-poke at a port. Time investment: rats gamble on the choice outcome 
by maintaining the nose-poke position for a self-determined interval. Reward payoff depends, 
for correct trials only, on gambled time. (b) Reward amount (blue) is a function of gambled time, 
and is received at the choice port. On error trials (red) no reward is received. (c) Track geometry 
showing back (black), home (gray), and choice ports A-F. After leaving choice port, rats receive 
at back port the same, gamble-dependent reward, completing the trial. (d) Cued ports are 
always adjacent, producing three pairs on the same branch that differ by a stem (top, stem 
trials: AB, CD, EF) and three that differ by both branch and stem (bottom, branch trials: BC, DE, 
FA) trials. (e) Distractor ages 1, 2, and 3, with targets older than given distractor, are allowed 
(yellow). (f) Example sequence (top to bottom) of cued ports (yellow) and correct (left, blue 
outlines) or error (right, red outlines) choices for a range of target (bold number) and distractor 
(number) ages. After each trial, unvisited port ages increment; last-visited port is set to age 1. 
Note that trials following error could, but did not usually, present again the same ports.  
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FIG. 2. Gambled time predicts choice accuracy. (a) Choice accuracy is stable per epoch, as 
shown for representative rat T at 80.9 ± 0.9%, significantly above random choice between all six 
ports (light gray line, 17%) or the two cued ports (dark gray line, 50%). (b) For representative rat 
T, average gambled times (dashed vertical lines) were significantly higher for correct (blue) than 
error choices (red), inclusive over all trials in all epochs (p = 4.8 x 10-69). (c) For each rat, 
gambled time (10 percentile bins) predicts choice accuracy, measured as proportion correct. For 
rats T, S, D, R, n trials = 2978, 4111, 4369, 3660. (d) For representative rat T, average gambled 
times (dashed vertical lines) were significantly shorter for invalid choices (yellow) than for errors 
to the cued port (red; p = 2.5 x 10-10). Invalid choices represented the following percentages of 
total trials: rat T, 3.3%; rat S, 1.7%; rat D, 2.7%; rat R, 4.6%. Excluding invalid choices, average 
gambled time on correct trials (blue dashed line) is still significantly longer than for errors (red 
dashed line; p = 6.6 x 10-48) (e) For all four rats, gambled times for correct trials were 
significantly higher than error trials (rat S, p = 4.9 x 10-60; rat D, p = 5.0 x 10-81; rat R, p = 6.5 x 
10-118.), which were significantly higher than invalid error trials (rat S, p = 2.2 x 10-9; rat D, p = 
5.6 x 10-14; rat R, p = 2.2 x 10-17). (f) Low gambled times (10 percentile bins) predict a higher 
proportion of invalid trials for all four rats. All error bars represent s.e.m. and all statistical tests 
were one-sided rank sum.   
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FIG. 3. Defining a memory decision variable. (a-d) Choice accuracy depends on target and 
distractor ages. For rats S, T, R, and D, the proportion of correct trials decreases with distractor 
age (columns) and, for a given distractor, increases with target age (rows); marginal 
performance at left and bottom, respectively. Black boxes indicate trial types not permitted by 
task logic. (a) For Rat S, proportion correct and s.e.m. are annotated. Target ages below 6 are 
shown, with n trials: rat S, 2720; rat T, 2008; rat R, 2499; rat D, 2881. Color bar (a) applies to all 
four rats. (e) A DNN trained by 5-fold cross-validation for each rat takes as input 20 features, a 
subset of which are depicted in the input layer (left, dark blue). The DNN has three hidden 
layers, each with 32 nodes (gray), and outputs a detection statistic related to the probability a 
trial will be correct, defined as a memory decision variable (MDVDNN; green). (f) Performance 
(receiver operating characteristic, area under the curve; ROC AUC) of the DNN trained on the 
full feature set far exceeded that of a constant model using only the overall proportion correct 
(constant, cyan), as well as that of a model trained on target and distractor ages only (teal). 
Error bars = s.e.m. (g) For all four rats, a higher MDVDNN predicts a higher proportion of correct 
choices. Horizontal and vertical error bars = s.e.m.. 
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FIG. 4. The generative episodic memory model (GEMM). (a) Family of lognormal 
distributions representing the probability density of recalled episode ages Ma’|Ma =	ma as the 
true age ma increments from 1 to 4 for port a.  Uppercase symbols denote random variables 
(e.g., Ma’,Ma) while lowercase symbols represent realizations of those random variables (e.g., 
ma’,ma).  (b)  Example trial has target port with age ma = 4 and distractor port with age mb = 1.  
A correct (blue) and error (red) realization of the recalled ages for the two ports are shown as 
vertical dashed lines for the target (purple) and distractor (orange) at values ma’ and mb’, 
respectively. (c) The probability density of Ma’ – Mb’ given Ma  and Mb; the area to the right of 0 is 
the proportion correct for this target-distractor age pair.  Confidence (c) is computed as |	ma’ – 
mb’ | and the average confidence is indicated for correct (blue) and error (red) trials.  (d) 
Observed choice accuracy across 12 specified trial types, excluding invalid choices. (e) Model-
predicted choice accuracy across 12 specified trial types, excluding invalid choices. 
Representative rat D is used for all plots. For rat D, the GEMM uses fitted parameters a0 = 1.20,	
a1 = 0.32,	a2 = 0.38, and	s0	= 0.38, for a lognormal distribution with mean	a0ma  and standard 
deviation s0(1	+	a1ma + a2ma

2).		Positive a1 and a2	define distributions with increasing variance 
with elapsed trials; σ+ ≪ 1 sets a low overlap between neighboring densities, consistent with 
high observed choice accuracy. 
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FIG. 5. Ensemble model: A. For each trial in data, task features (left) include: the 20 features 
used to calculate the MDVDNN; gambled time; and trial outcome. A subset of these, the distractor 
age and target age, are input to the fitted GEMM (top panel) to simulate two GEMM outputs: a 
predicted trial outcome (correct or error; lime), and a predicted confidence value, which is 
converted by a monotonic mapping function, shown for representative rat T, to predicted 
gambled time (pink). The process is repeated n = 10 times per trial in data to produce a 
distribution of model-simulated gambled times per observed gambled time, all with the same 
MDVDNN (bottom panel). The MDVDNN is calculated from the 20 input features to the trained DNN 
(green). B. The ensemble model makes three signature predictions of memory confidence 
based on accuracy (lime), gambled time (pink), and the MDVDNN  (green), as a memory 
discriminability axis, to which trends in data can be compared (here, representative schematics). 
Middle panel: blue represents upper half of gambled times; red represents lower half of gambled 
times. Right panel: blue represents correct trials; red represents error trials.   
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FIG. 6. The GEMM predicts trends in memory discriminability, choice, and gambled times 
in data. GEMM predictions (lines) with data (points) overlaid. (a, d, g, j) GEMM-predicted 
calibration curves (gray lines) for accuracy as a function of mean-normalised gambled time 
compared to data (black points), for the lowest 14 of n = 15 percentile bins. Horizontal bars 
represent bin widths. (b, e, h, k) Conditioned psychometric curve predicted by the GEMM 
shows proportion correct for upper half (dark blue) versus lower half (red) of gambled times 
compared to proportion correct in upper half (light blue) versus lower half (orange) in data, each 
in n = 7 percentile bins. (c, f, i, l) Vevaiometric curve depicts gambled times predicted by the 
GEMM for correct (dark blue) and error (red) trials compared to correct (light blue) and error 
(orange) in data, each in n = 7 percentile bins. Vertical error bars represent s.e.m. for all plots. 
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