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ABSTRACT 40 

Mutational signature analysis is commonly performed in genomic studies surveying cancer and 41 

normal somatic tissues. Here we present SigProfilerExtractor, an automated tool for accurate de 42 

novo extraction of mutational signatures for all types of somatic mutations. Benchmarking with a 43 

total of 33 distinct scenarios encompassing 1,106 simulated signatures operative in more than 44 

200,000 synthetic genomes demonstrates that SigProfilerExtractor outperforms ten other tools 45 

across all datasets with and without noise. For simulations with 5% noise, reflecting high-quality 46 

genomic datasets, SigProfilerExtractor outperforms other approaches by elucidating between 47 

20% and 50% more true positive signatures while yielding more than 5-fold less false positive 48 

signatures. Applying SigProfilerExtractor to 2,778 whole-genome sequenced cancers reveals 49 

three previously missed mutational signatures. Two of the signatures are confirmed in 50 

independent cohorts with one of these signatures associating with tobacco smoking. In summary, 51 

this report provides a reference tool for analysis of mutational signatures, a comprehensive 52 

benchmarking of bioinformatics tools for extracting mutational signatures, and several novel 53 

mutational signatures including a signature putatively attributed to direct tobacco smoking 54 

mutagenesis in bladder cancer and in normal bladder epithelium. 55 
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INTRODUCTION 57 

De novo extraction of mutational signatures1 is an unsupervised machine learning approach 58 

where a matrix, M, which corresponds to the somatic mutations in a set of cancer genomes under 59 

a mutational classification2, is approximated by the product of two low-rank matrices, S and A. 60 

The matrix S reflects the set of mutational signatures while the matrix A encompasses the 61 

activities of the signatures; an activity corresponds to the number of mutations contributed by a 62 

signature in a sample. Algorithmically, de novo extraction of mutational signatures has relied on 63 

nonnegative matrix factorization (NMF)3 or on approaches mathematically analogous to NMF4-6. 64 

The main advantage of NMF over other factorization approaches is its ability to yield 65 

nonnegative factors that are part of the original data, thus, allowing interpretation of the 66 

identified nonnegative factors3. Biologically, mutational signatures extracted from cancer 67 

genomes have been attributed to exposures to environmental carcinogens, failure of DNA repair 68 

pathways, infidelity/deficiency of replicating polymerases, iatrogenic events, and others7-14.  69 

 70 

Since we introduced the mathematical concept of mutational signatures1, a number of 71 

computational frameworks have been developed for performing de novo extraction of mutational 72 

signatures (Table 1)15-25. Notably, the majority of existing de novo extraction tools (i) 73 

predominately support the simplest mutational classification, viz., SBS-96 which encompasses 74 

single base substitutions with their immediate 5’ and 3’ sequence context2; (ii) lack automatic 75 

selection for the number of mutational signatures; (iii) do not identify a robust solution leading to 76 

different results following re-analysis of the same dataset; (iv) require pre-selection of a large 77 

number of priors and/or hyperparameters; (v) do not decompose de novo signatures to the set of 78 
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reference COSMIC signatures11. Importantly, there has been no extensive benchmark of the 79 

existing tools for de novo extraction leading to uncertainty in regard to their performance. 80 

 81 

To address these limitations, here, we present SigProfilerExtractor – a reference tool for de novo 82 

extraction of mutational signatures. SigProfilerExtractor allows analysis of all types of 83 

mutational classifications, performs automatic selection of the number of signatures, yields 84 

robust solutions, requires only minimum setup, and decomposes de novo extracted signatures to 85 

known COSMIC signatures. A comprehensive benchmark including 2,879 applications of 86 

SigProfilerExtractor and ten other tools across a total of 33 distinct scenarios reveals that 87 

SigProfilerExtractor is robust to noise and it outperforms all other computational tools for de 88 

novo extraction of mutational signatures (Supplementary Tables 1–3). Applying 89 

SigProfilerExtractor to the recently published set of 2,778 whole-genome sequenced cancers 90 

from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project26 elucidates three novel 91 

signatures that were not found in the original PCAWG analysis of mutational signatures11. Two 92 

of the signatures are confirmed in independent cohorts and a putative etiology of tobacco-93 

associated mutagenesis is attributed to one of these signatures. 94 
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RESULTS 96 

Overview of SigProfilerExtractor and its implementation 97 

SigProfilerExtractor is implemented as a Python package, with an R wrapper, allowing users to 98 

run it in both Python and R environments: 99 

https://github.com/AlexandrovLab/SigProfilerExtractor . The tool is also extensively 100 

documented including a detailed Wiki page: https://osf.io/t6j7u/wiki/home/. By default, the tool 101 

requires only a single parameter – the input dataset containing the mutational catalogues of 102 

interest. SigProfilerExtractor supports most commonly used formats outputted by variant calling 103 

algorithms (e.g., VCF and MAF), which are internally converted to a matrix, M, by 104 

SigProfilerMatrixGenerator2. SigProfilerExtractor can also be applied to a text file containing a 105 

matrix, M, thus supporting nonnegative matrix factorization for any custom matrix dataset. By 106 

default, the tool decomposes the matrix M searching for an optimal solution between 1 and 25 107 

mutational signatures (Figure 1a). For each decomposition, SigProfilerExtractor performs 500 108 

independent factorizations and, for each repetition, the matrix M is first Poisson resampled and 109 

normalized and, subsequently, factorized with the multiplicative update NMF algorithm3 by 110 

minimizing an objective function based on the Kullback–Leibler divergence measure27 (Figure 111 

1b). Custom partition clustering, that utilizes the Hungarian algorithm28 for comparing different 112 

repetitions, is applied to the 500 factorizations to identify stable solutions29 (Figure 1b). 113 

Specifically, SigProfilerExtractor selects the centroids of stable clusters as optimal solutions, 114 

thus, making these solutions resistant to fluctuations in the input data and to the lack of 115 

uniqueness of NMF due to the potential existence of multiple convergent stationary points in the 116 

solution30. Lastly, when applicable, the optimal set of de novo signatures are matched to the set 117 
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of reference COSMIC mutational signatures (Figure 1c) with any de novo signature reported as 118 

novel when it cannot be decomposed by a combination of known COSMIC signatures. 119 

 120 

Framework for benchmarking tools for de novo extraction of mutational signatures 121 

To allow comprehensive benchmarking of tools for de novo extraction of mutational signatures, 122 

more than 200,000 synthetic cancer genomes were generated with known ground-truth 123 

mutational signatures (Supplementary Note 1). These synthetic data included 32 distinct 124 

noiseless scenarios and one scenario with five different levels of noise. Each scenario contained 125 

between 3 and 40 known signatures operative in 200 to 3,000 simulated cancer genomes 126 

(Supplementary Tables 1–3). Some of the scenarios were generated up to 20 times to account 127 

for variability in the simulated data. The majority of noiseless scenarios (20/32) were based on 128 

SBS-96 mutational classification; 12 scenarios based on extended mutational classifications, i.e., 129 

matrices with more than 96 mutational channels, were also included (Supplementary Table 3). 130 

To avoid bias in evaluating each tool’s performance, three sets of SBS-96 mutational signatures 131 

were used for generating the synthetic data: (i) COSMICv3 reference signatures11; (ii) SA 132 

signatures previously extracted by SignatureAnalyzer11; and (iii) randomly generated signatures. 133 

For presentation simplicity, scenarios were labeled based on their complexity as easy, medium, 134 

or hard. Easy scenarios were generated using ≤5 signatures and provide a good indication of each 135 

tool’s performance on approximately 7.4% of human cancer types (e.g., pediatric brain tumors). 136 

Medium scenarios contained 11 to 21 signatures and biologically reflect 15.9% of cancer types 137 

(e.g., cervical cancer). Hard scenarios have more than 25 signatures and reflect 59.5% of human 138 

cancer types (e.g., breast, lung, liver, etc.) as well as pan-cancer datasets. In addition to the 32 139 
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noiseless scenarios, one SBS-96 scenario with five different levels of noise (average noise per 140 

sample ranging between 0% and 10%) was included in the benchmark (Supplementary Note 1). 141 

 142 

To compare the performance between different tools for de novo extraction of mutational 143 

signatures, we developed a standard set of evaluation metrics (Supplementary Figure 1). 144 

Specifically, each de novo extracted signature is classified as either a true positive (TP), false 145 

positive (FP), or false negative (FN) signature. An extracted signature is considered TP if it 146 

matches one of the ground-truth signatures above a cosine similarity threshold of 0.90. In 147 

contrast, a signature is classified as FP when it has a maximum cosine similarity below 0.90 with 148 

all ground-truth signatures. Lastly, FN signatures are ground-truth signatures that were not 149 

detected in the data. These standard metrics allow calculating each tool’s precision, sensitivity, 150 

and F1 score. Precision is defined as !"
!"#$"

, sensitivity as !"
!"#$%

, and F1 score is the harmonic 151 

mean of the precision and sensitivity: 2 ∗ 	 "&'()*)+,	∗	/',*)0)1)02
"&'()*)+,	#	/',*)0)1)02

. 152 

 153 

Benchmarking SigProfilerExtractor and ten other tools using SBS-96 noiseless data 154 

SigProfilerExtractor and ten other tools (Table 1) were first applied to all noiseless scenarios 155 

based on the SBS-96 mutational classification. Each tool was applied to each scenario by using 156 

its suggested method for selecting the number of operative signatures and, with the exception of 157 

SignatureAnalyzer which lacks this capability, by forcing each tool to extract the known number 158 

of ground-truth signatures. Results from the suggested approach reflect the expected outcome 159 

from running a tool on an unknown dataset, while results from the forced approach allow 160 

understanding limitations in each tool’s implementation. Our evaluation reveals that most tools 161 

are able to successfully extract mutational signatures from easy scenarios with the majority of F1 162 
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scores between 0.90 and 1.00 (Figure 2a). This is perhaps unsurprising as many of these tools 163 

used synthetic data with ≤5 signatures to evaluate their performance in the respective original 164 

publications15-25. In contrast, medium scenarios have proven to be a challenge for the majority of 165 

tools with only SigProfilerExtractor and SignatureAnalyzer exhibiting an F1 score above 0.90. 166 

All tools had worst performance for the hard set of scenarios with F1 scores below 0.70; only 167 

SigProfilerExtractor had an F1 score above 0.85 (Figure 2a).  168 

 169 

To evaluate whether the type of ground-truth signatures affects the de novo extraction, we 170 

compared the ratio of F1 scores (rF1) from scenarios generated using COSMIC, SA, or random 171 

signatures (Figure 2b). Most tools had similar performance (rF1≈1) between COSMIC and 172 

random signatures and worst performance with SA signatures (rF1<1). SomaticSignatures was an 173 

exception as it performed well on random signatures but had similarly suboptimal performance 174 

on COSMIC and SA signatures. SigProfilerExtractor outperformed all other tools regardless of 175 

whether the synthetic data were generated using COSMIC, SA, or random signatures 176 

(Supplementary Table 1).  177 

 178 

To examine the performance of de novo extraction between the suggested and forced selection of 179 

the total number of signatures, we evaluated rF1 across all medium and hard scenarios (Figure 180 

2c). SigProfilerExtractor exhibited almost identical F1 scores between the suggested and forced 181 

selection indicating a good performance of the automatic selection algorithm. Most other tools 182 

had similar F1 scores between the suggested and forced selection albeit with more variability 183 

across the different scenarios (Figure 2c). For example, MutSpec had rF1≈1 in both medium and 184 

hard scenarios indicating that MutSpec is performing worse than SigProfilerExtractor (Figure 185 
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2a) not because of its algorithm for selecting the total number of signatures but likely due to its 186 

implementation of the utilized numerical factorization. SigneR (hard scenarios), SigMiner 187 

(medium), and SigFit (all) had lower F1 scores for automatic solutions compared to forced 188 

solutions (rF1<1), thus, indicating that their automatic approaches for selecting the total number 189 

of signatures are not optimally performing (Figure 2c). Surprisingly, EMu had higher F1 scores 190 

for automatic solutions in some hard scenarios. Considering the overall performance of EMu 191 

(Figure 2a), this outcome likely reflects the lack of convergence during the minimization of the 192 

EMu objective function for certain number of signatures in the hard scenarios.  193 

 194 

Overall, across all suggested extractions from noiseless medium and hard scenarios, 195 

SigProfilerExtractor outperformed all other tools. SigProfilerExtractor was able to identify 196 

between 7% and 25% more true positive signatures while yielding between 3.7-and 16-fold less 197 

false positive signatures compared to the next six best performing tools: SignatureAnalyzer, 198 

SigneR, MutationalPatterns, MutSpec, SomaticSignatures, and SignatureTools (Figure 2d and 199 

Supplementary Table 1). 200 

 201 

Extended benchmarking of SigProfilerExtractor and the other six top performing tools 202 

The reported comparisons for SBS-96 scenarios rely on a cosine similarity ≥0.90 for determining 203 

TP signatures and <0.90 for determining FP signatures. Note that a cosine similarity ≥0.90 is 204 

highly unlikely to happen purely by chance (p-value = 5.90 x 10-9) as two random nonnegative 205 

vectors are expected to have an average cosine similarity of 0.75 purely by chance31. 206 

SigProfilerExtractor’s performance does not depend on the specific value of the cosine similarity 207 

threshold (Figure 3a) as the tool consistently outperforms other bioinformatics approaches for 208 
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almost any value of the threshold above 0.80 (p-value: 0.057). Cosine similarity thresholds 209 

below 0.80 were not explored as extracted signature may be similar to ground-truth signatures 210 

purely by chance. 211 

 212 

Additional benchmarking was performed by generating 12 scenarios simulated using between 3 213 

and 30 signatures with an extended number of mutational channels (Supplementary Note 1). 214 

SigProfilerExtractor and SignatureAnalyzer are the only two tools that support analysis of 215 

custom size matrices and also provide GPU support (Table 1), thus, allowing analysis of data 216 

with extended number of mutational channels within a reasonable timeframe. In contrast, all 217 

other tools rely solely on CPU implementations with full runs expected to take many months for 218 

each tool applied to these scenarios (Table 1). SigProfilerExtractor and SignatureAnalyzer 219 

exhibited similar performance on the extended noiseless scenarios to that observed on SBS-96 220 

noiseless scenarios. Overall, SigProfilerExtractor outperformed SignatureAnalyzer with average 221 

F1 scores of 0.92 and 0.85, respectively (Supplementary Table 2). 222 

 223 

To further compare SigProfilerExtractor with the other six top performing tools, we applied each 224 

tool to a dataset with 30 ground-truth SBS-96 signatures operative in 1,000 genomes and random 225 

noise between 0% and 10%. Analysis for each noise level was repeated 20 times to account for 226 

any variability in the noise. SigProfilerExtractor, SomaticSignatures, MutSpec, 227 

SignatureToolsLib were robust to noise with mostly unaffected performance (Figure 3b and 228 

Supplementary Table 3). In contrast, SignatureAnalyzer, SigneR, and MutationalPatterns were 229 

susceptible to noise (Figure 3b). For example, 2.5% noise reduced SignatureAnalyzer’s F1 from 230 

0.76 to 0.66 while 10% noise reduced its F1 to 0.07. Similarly, 10% noise reduced the F1 of 231 
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SigneR from 0.61 to 0.43 and the F1 of MutationalPatterns from 0.60 to 0.37. 232 

SignatureAnalyzer’s reduced performance on data with noise is due to its automated approach 233 

for selecting total number of signatures. SignatureAnalyzer uses automatic relevance 234 

determination32 for selecting the number of signatures with this number increasing from 26 (no 235 

noise; 30 ground-truth signatures) to 96 signatures (10% noise; Supplementary Table 3). In 236 

contrast, SigneR and MutationalPatterns exhibit similar performance between forced and 237 

suggested solutions on data with noise (Supplementary Table 3) indicating that their reduced 238 

performance is likely due to the numerical implementation of their respective factorization 239 

approaches. 240 

 241 

SigProfilerExtractor outperformed all other tools regardless of the levels of noise. Simulations 242 

with 5% noise reflect genomics datasets with ~0.95 average sensitivity and precision of single 243 

base substitutions, similar to the recently published PCAWG cohort which has 95% sensitivity 244 

(90% confidence interval, 88–98%) and 95% precision (90% confidence interval, 71–99%)26. 245 

For simulations with 5% noise, SigProfilerExtractor was able to identify between 20% and 50% 246 

more true positive signatures while yielding more than 5-fold less false positive signatures 247 

compared to the next six best performing tools: SignatureAnalyzer, SigneR, MutationalPatterns, 248 

MutSpec, SomaticSignatures, and SignatureTools (Figure 3c and Supplementary Table 3). 249 

 250 

Analysis of 2,778 whole-genome sequenced human cancers with SigProfilerExtractor 251 

To demonstrate its ability to yield novel biological results, SigProfilerExtractor was applied to 252 

the recently published set of 2,778 whole-genome sequenced cancers26. As previously done in 253 

our original PCAWG analysis of mutational signatures11, extraction of mutational signatures was 254 
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performed within each cancer type as well as across all samples (Supplementary Data). In 255 

addition to all previously detected signatures11, three novel mutational signatures were identified 256 

in the PCAWG dataset: SBS92, SBS93, and SBS94 (Figure 4 and Supplementary Table 4).  257 

 258 

Signature SBS92 was found predominately in PCAWG bladder cancers; the signature was 259 

characterized by T>C mutations with strong transcriptional strand bias consistent with damage 260 

on purines for all types of single base substitutions (Figure 4a). Signature SBS92 was 9-fold 261 

elevated (Figure 4d; p-value: 7.6 x 10-3 using Wilcoxon rank sum test) in bladder cancers of ever 262 

smokers compared to never smokers in the PCAWG cohort. An almost identical signature was 263 

identified by re-analyzing a recently published cohort of 88 whole-genome sequenced 264 

microbiopsies of histologically normal urothelium33 with the similarity extending to both 265 

trinucleotide context and transcriptional strand bias (Figure 4a; cosine similarity: 0.98; p-value < 266 

10-256). Indeed, this signature was reported in the original publication and found to be enriched in 267 

smokers33. In our analysis, SBS92 was found to be 3-fold elevated in the normal urothelium of 268 

tobacco ever smokers compared to never smokers (Figure 4d; p-value: 8.3 x 10-3 using 269 

Wilcoxon rank sum test).  270 

 271 

Signature SBS93 was identified almost exclusively in PCAWG stomach cancers. SBS93 was 272 

characterized by T>C and T>G mutations with a strand bias consistent with damage on 273 

pyrimidines for TpTpA contexts (mutated base underlined; Figure 4b). De novo extraction from 274 

the Mutographs cohort of 552 whole-genome sequenced esophageal squamous cell carcinomas34, 275 

a cancer type not included in the PCAWG dataset26, identified an analogous mutational signature 276 

with the similarity extending to both trinucleotide context and transcriptional strand bias (Figure 277 
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4b; cosine similarity: 0.88; p-value: 1.1 x 10-6). Signature SBS94 was found at high levels in a 278 

single colorectal PCAWG cancer with smaller contributions to another 8 colorectal cancers. The 279 

pattern of SBS94 was characterized by C>A mutations with a strand bias indicative of damage 280 

on guanine (Figure 4c). Validation of somatic mutations by visual inspection confirmed that 281 

98% of mutations contributed by SBS94 are likely real. Signatures SBS93 and SBS94 did not 282 

associate with any of the available PCAWG metadata26 and their etiologies remain unknown.  283 

284 
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DISCUSSION  285 

The performed large-scale benchmarking demonstrates that SigProfilerExtractor outperforms ten 286 

other tools for de novo extraction of mutational signatures for noiseless datasets as well as for 287 

datasets containing matrices with different levels of random noise. Importantly, 288 

SigProfilerExtractor generates almost no false positive signatures while still identifying a higher 289 

number of true positive signatures when compared to any of the other tools (Figure 2d and 290 

Figure 3c). De novo extraction of mutational signatures relies both on a factorization approach 291 

and on a model selection algorithm for determining the total number of operative signatures 292 

(Figure 1). Benchmarking with forced model selection, where tools were required to extract the 293 

known number of ground-truth mutational signatures, reveals that SigProfilerExtractor’s 294 

factorization performs better when compared to the factorizations of other tools (Figure 2a and 295 

Supplementary Tables 1-3). Similarly, benchmarking with suggested model selection, which 296 

most closely matches analysis of a real dataset with unknown number of signatures, further 297 

demonstrates SigProfilerExtractor’s ability to reveal novel biological results (Figure 2a and 298 

Supplementary Tables 1-3). 299 

 300 

While our benchmarking evaluated ten additional tools, six of the ten tools internally rely on the 301 

same computational engine. Maftools, MutationalPatterns, MutSpec, SignatureToolsLib, 302 

SigMiner, and SomaticSignatures use the NMF R package35 to perform their factorization (Table 303 

1), albeit with slightly different hyperparameters and, in some cases, distinct pre-processing of 304 

the input matrix. Predictably, these six tools have similar performance across many of the 305 

scenarios (Supplementary Tables 1-3). SigFit also uses a previously developed nonnegative 306 

factorization method, viz., Stan R package36. In contrast, EMu, SignatureAnalyzer, SigneR, and 307 
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SigProfilerExtractor provide original implementations of their factorization algorithms (Table 308 

1). EMu was originally developed and tested on small datasets (e.g., 21 breast genomes)15 and its 309 

benchmarking performance is perhaps unsurprising considering the large number of synthetic 310 

samples used in all scenarios. Surprisingly, the original implementations of SignatureAnalyzer 311 

and SigneR were susceptible to noise, yielding high numbers of false-positive signatures (Figure 312 

3b).  313 

 314 

Six of the other ten tools did not provide an automatic approach for selecting the total number of 315 

operative signatures in a dataset (Table 1). Instead, these tools offered methodologies for 316 

manually selecting the optimal number of signatures bringing user-dependence and arbitrariness 317 

in selecting solutions. EMu, SigFit, SignatureAnalyzer, SigMiner, SigneR, and 318 

SigProfilerExtractor provided capabilities for automatically selecting the total number of 319 

signatures. EMu and SigneR select the total number of signatures using Bayesian information 320 

criterion (BIC)37, while SignatureAnalyzer and SigMiner utilize automatic relevance 321 

determination (ARD)32. SigFit’s selection approach is based on the Elbow method38. 322 

SigProfilerExtractor leverages a modified version of the NMFk selection approach which was 323 

previously tested on more than 55,000 synthetic random matrices with pre-determined latent 324 

factors and shown to outperform other model selection approaches39. Importantly, our 325 

simulations demonstrate that SigProfilerExtractor’s model selection is robust to noise while the 326 

implemented BIC and ARD approaches are affected even by low levels of noise (Figure 3b). 327 

 328 

In addition to outperforming ten other tools on simulated datasets, SigProfilerExtractor is able to 329 

reveal additional biological results as demonstrated by identifying three novel signatures from 330 
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reanalysis of the PCAWG dataset. Importantly, SigProfilerExtractor identifies signature SBS92 331 

(Figure 4) which is associated with tobacco smoking in whole-genome sequenced bladder 332 

cancers and in whole-genome sequenced microbiopsies from normal bladder urothelium. The 333 

strong transcriptional strand bias observed in SBS92 is indicative of an environmental mutagen 334 

exposure that damages purines. Tobacco smoke is a complex mixture of at least 60 chemicals14, 335 

many capable of causing damage on purines. Interestingly, our and other prior analyses of exome 336 

sequenced bladder cancers from The Cancer Genome Atlas (TCGA) project14,40 did not reveal 337 

SBS92. Reanalysis of the set of TCGA bladder cancer exomes41 with SigProfilerExtractor was 338 

also unable to detect SBS92 (Supplementary Data). We suspect that the lack of SBS92 in the 339 

TCGA bladder cancers was due to the use of exome sequencing; note that SBS92 is 340 

predominately found in intergenic regions (Figure 4a) with most samples expected to have less 341 

than 15 mutations from SBS92 in their exomes. To confirm this hypothesis, we downsampled the 342 

whole-genome sequenced bladder cancers and the whole-genome sequenced microbiopsies from 343 

normal bladder urothelium to exomes. SigProfilerExtractor’s analysis of these downsampled 344 

genomes was unable to detect SBS92 confirming that exome sequencing is insufficient to 345 

identify signature SBS92 (Supplementary Data). 346 

 347 

In summary, here we report SigProfilerExtractor – a computational tool for de novo extraction of 348 

mutational signatures. We demonstrate that SigProfilerExtractor outperforms ten other tools by 349 

conducting the largest benchmarking of bioinformatics approaches for extracting mutational 350 

signatures. Further, we apply SigProfilerExtractor to 2,778 whole-genome sequenced cancers 351 

and reveal several novel mutational signatures including a signature putatively attributed to 352 

tobacco smoking mutagenesis in bladder cancer and in normal bladder epithelium. 353 

354 
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ONLINE METHODS 355 

Computational implementation of SigProfilerExtractor and its seven modules 356 

The implementation of SigProfilerExtractor can be separated into seven distinct modules which 357 

are packaged together into a single bioinformatics tool. Module 1 processes the initial input data, 358 

which can be provided as either a mutational catalogue containing a set of somatic mutations or a 359 

mutational matrix. Module 2 is responsible for resampling and normalization of the mutational 360 

matrix prior to performing nonnegative matrix factorization. Module 3 performs matrix 361 

factorization using nonnegative matrix factorization with multiple replicates. Module 4 utilizes 362 

custom clustering to derive consensus solutions and to perform model selection. Module 5 363 

decomposes the derived set of de novo signatures to a set of previously derived COSMIC 364 

signatures. Module 6 is responsible for calculating the activities of different signatures in 365 

individual samples. Module 7 handles the extensive outputting and plotting of the different 366 

analysis performed by SigProfilerExtractor. In principle, each of these modules allows extensive 367 

customization. SigProfilerExtractor provides a seamless integration of these seven modules that 368 

allows using them in an orchestrated and preconfigured manner with little input from a user.  369 

 370 

Module 1: Processing of input mutational catalogues or input mutational matrices 371 

SigProfilerExtractor deciphers mutational signatures from a mutational matrix M with t rows 372 

and n columns; rows represent mutational channels while columns reflect individual cancer 373 

samples (Figure 1a). The value of each cell in the matrix, M, corresponds to the number of 374 

somatic mutations from a particular mutational channel in a given sample. The mutational matrix 375 

can be provided as a text file with the first column containing the names of the mutational 376 

channels and the first row containing the names of the examined samples. Alternatively, users 377 
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can provide a mutational catalogue of somatic mutations in a commonly used format (e.g., VCF, 378 

MAF, etc.) and this mutational catalogue will be internally converted into the appropriate 379 

mutational matrix by SigProfilerMatrixGenerator2. 380 

 381 

Module 2: Resampling of the input mutational matrix and normalizing the resampled matrix 382 

SigProfilerExtractor does not factorize the original input matrix. Rather, prior to performing 383 

matrix factorization, SigProfilerExtractor performs independent Poisson resampling of the 384 

original matrix for each replicate1. As such, the matrix factorized in each replicate is never the 385 

same for a given value of k (Figure 1b). The resampling is performed to ensure that Poisson 386 

fluctuations of the matrix do not impact the stability of the factorization results. Additional 387 

normalization is performed after resampling to overcome potential skewing of the factorization 388 

from any hypermutators. SigProfilerExtractor supports four standard normalization methods42: 389 

(i) Gaussian mixture model (GMM) normalization (default); (ii) 100X normalization; (iii) log2 390 

normalization; (iv) no normalization. No normalization does not perform any additional 391 

transformation on the Poisson resampled matrix. In log2 normalization, the sum of each column 392 

in the matrix is derived and logarithm with base 2 is calculated for each of these sums. Each cell 393 

in a column of the matrix is multiplied by the log2 of the column-sum and subsequently divided 394 

by the original column sum. In 100X normalization, the sum of each column in the matrix is 395 

derived. For each column where the sum exceeds 100 times the number of mutational channels 396 

(i.e., 100 times the number of rows in the matrix), each cell in the column is multiplied by the 397 

100 times the number of mutational channels and subsequently divided by the original column 398 

sum. This normalization ensures that no sample has a total number of mutations above 100 times 399 

the number of mutational channels. GMM normalization encompasses a two-step process. The 400 
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first step derives the normalization cutoff value in a data-driven manner using a Gaussian 401 

mixture model (GMM). The second step normalizes the appropriate columns using the derived 402 

cutoff value. The first step uses a GMM to separate the samples into two groups based on their 403 

total number of mutations; the total number of mutations in a sample reflects the sum of a 404 

column in the matrix. The group with larger number of samples is subsequently selected, and the 405 

same process is applied iteratively until it converges. Convergence is achieved when the mean of 406 

the two groups is separated by no more than four standard deviations of the larger group. A 407 

cutoff value is derived as the average value plus two standard deviations from the total number 408 

of somatic mutations in the last large group. If the derived cutoff value is below 100 times the 409 

number of mutational channels, the cutoff value is adjusted to 100 times the number of 410 

mutational channels. For each column where the sum exceeds the derived cutoff value, each cell 411 

in the column is multiplied by the cutoff value and subsequently divided by the original column 412 

sum. Note that no normalization is performed if the means of the first two groups are not 413 

separate by at least four standard deviations. In all cases, columns with a sum of zero, reflecting, 414 

genomes without any somatic mutations, are ignored to avoid division by zero. 415 

 416 

 417 

Module 3: Matrix Factorization Using Nonnegative Matrix Factorization with Replicates 418 

By default, SigProfilerExtractor factorizes the matrix M with different ranks searching for an 419 

optimal solution between k=1 and k=25 mutational signatures. For each value of k, by default, 420 

the tool performs 500 independent nonnegative matrix factorizations of the normalized Poisson 421 

resampled input matrix. Thus, for each value of k, SigProfilerExtractor generates 500 distinct 422 

factorizations of normalized Poisson resampled matrices resulting into 500 different matrices S, 423 
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each matrix reflecting the patterns of the de novo mutational signatures, and 500 different 424 

matrices A, each matrix reflecting the activities of the de novo mutational signatures (Figure 1b). 425 

To perform each of these factorizations, SigProfilerExtractor utilizes a custom implementation of 426 

the multiplicative update algorithm3. Specifically, SigProfilerExtractor initializes the S and A 427 

matrices in the first step of the factorization using either random initial conditions (default) or 428 

one of the derivatives of nonnegative double singular vector decomposition43. 429 

SigProfilerExtractor provides internal support for minimizing three different objective functions 430 

based on: (i) generalized Kullback-Leibler updates (default); (ii) Euclidean updates; (iii) Itakura-431 

Saito updates. By default, the tool performs all factorization using multithreading of central 432 

processing units (CPUs) and also provides support for factorization using graphics processing 433 

units (GPUs) by leveraging PyTorch44. In all cases, by default, the implemented minimization 434 

performs at least 10,000 iterations (also known as NMF updates or NMF multiplicative update 435 

steps) with a maximum of 1,000,000 iterations. By default, the convergence tolerance of the 436 

algorithm is set to 10-15. Note that SigProfilerExtractor allows configuring all factorization 437 

parameters.  438 

 439 

Module 4: Custom partition clustering and performing model selection 440 

The previously described Module 3 generates a number of sets with each set containing, by 441 

default, 500 different matrices S, where each matrix reflects the patterns of de novo mutational 442 

signatures for a particular factorization of a normalized Poisson resampled matrix. One set, 443 

containing 500 different matrices S, is generated for each of the interrogated total number of 444 

operative signatures, k, with a default range for k between 1 and 25 signatures. For each value of 445 

k, Module 4 first performs custom clustering of the S matrices and, subsequently, applies a 446 
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modified version of the NMFk model selection approach to select the optimal value of k39 447 

(Figure 1b). Specifically, for each value of k, the clustering is initialized with k random 448 

centroids. One of the S matrices is randomly chosen, and its columns matched to the most similar 449 

centroids with no two columns assigned to the same cluster. The process is repeated until the 450 

columns of all S matrices in the set are assigned to their respective clusters. SigProfilerExtractor 451 

implements the Hungarian algorithm28 to pair consensus vectors from two matrices (i.e., cluster 452 

centroids and mutational signature from a matrix S); the Hungarian algorithm maximizes the 453 

total cosine similarities of all paired vectors between two matrices28. After assigning all columns 454 

to a cluster, the centroids of each cluster are recalculated by evaluating the average of all 455 

columns/vectors in a cluster. This process continues iteratively until the average silhouette 456 

coefficient converges (i.e., its value does not change by more than 10-12). After convergence for a 457 

given value of k, the centroids of the clusters are reported as consensus mutational signatures, an 458 

overall reconstruction error is calculated for describing the original input matrix, M, and stability 459 

is calculated for each signature by computing the silhouette value45 of the cluster corresponding 460 

to that signature (Figure 1b). The silhouette value of a cluster measures the similarities of the 461 

objects assigned to that cluster compared to any other cluster. Silhouette values range from -1.0 462 

to +1.0 with values above zero indicating that, on average, objects have a higher similarity with 463 

their own cluster compared to their nearest clusters. Note that signatures with low stability 464 

correspond to a lack of uniqueness of the NMF due to Poisson resampling and/or to the potential 465 

existence of multiple convergent stationary points in the NMF solution30. 466 

 467 

Our custom clustering is performed for each of the interrogated total number of operative 468 

signatures, k, with a default range for k between 1 and 25 signatures. After performing clustering, 469 
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for each value of k, one has derived: (i) the consensus set of mutational signatures; (ii) an overall 470 

reconstruction error for describing the original input matrix; and (iii) stability value for each of 471 

the identified consensus mutational signatures.  472 

 473 

SigProfilerExtractor performs a solution selection based on the stability of signatures in a 474 

solution and the ability of these signatures to reconstruct the original input matrix. By default, 475 

SigProfilerExtractor will consider solutions stable if the signatures derived in the solution have 476 

an average stability above 0.80 with no individual signature having stability below 0.20. To 477 

reduce overfitting, the tool also measures the information gained from the extracted set of 478 

signatures in each solution. SigProfilerExtractor compares, using Wilcoxon rank-sum tests, the 479 

reconstruction errors across all samples from the stable solution with the greatest number of 480 

signatures to the reconstruction errors across all samples from stable solutions with lower 481 

number of signatures. Stable solutions with lower number of signatures are compared in a 482 

decreasing order to their total number of signatures with comparison stopping if the Wilcoxon 483 

rank-sum test yields a p-value below 0.05 (i.e., reflecting that a solution does not describe the 484 

original data as good as the stable solution with the greatest number of signatures). The stable 485 

solution with lowest number of signatures and a Wilcoxon rank-sum test p-value above 0.05 is 486 

selected as the optimal solution. If no solution has a Wilcoxon rank-sum test p-value above 0.05, 487 

the stable solution with the greatest number of signatures is selected as the optimal solution. Note 488 

that while SigProfilerExtractor selects an optimal solution, it outputs all the information 489 

necessary to evaluate mutational signatures and their activities for all other stable and unstable 490 

solutions. 491 

 492 
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Module 5: Decomposing de novo extracted signatures to known COSMIC signatures  493 

SigProfilerExtractor provides a module for decomposing each of the de novo extracted 494 

mutational signatures to a set of previously derived signatures. By default, the tool decomposes 495 

each of the signatures in the optimal solution to a set of COSMICv3 reference signatures11 with 496 

support for signatures of single base substitutions (SBS), doublet base substitutions (DBS), and 497 

small insertions and deletions (ID). Since the SBS COSMICv3 reference signatures were derived 498 

under the SBS-96 classification2, any extended classification of single base substitutions (e.g., 499 

SBS-288 and SBS-1536)2 is first collapsed to the SBS-96 classification and, subsequently, 500 

decomposed to the COSMICv3 reference signatures11. The decomposition functionality 501 

leverages nonnegative least square (NNLS) algorithm46 as its main computational engine. A 502 

mixture of addition and removal steps (add-remove functionality) were developed to estimate the 503 

list of COSMIC signatures for a de novo signature. Specifically, for each de novo signature, a 504 

COSMIC signature is iteratively added to a list of signatures used to explain the de novo 505 

signature, NNLS is applied, and the signature which addition causes the greatest decrease of the 506 

L2 error is selected. If this greatest decrease is more than a specific threshold (default value of 507 

0.05) then the signature is included in the list of signatures used to explain the de novo signature. 508 

The addition is immediately followed by a removal step. Each COSMIC signature in the list of 509 

signatures used to explain the de novo signature are iteratively removed, NNLS is applied, and 510 

the signature that causes the least decrease of the L2 error is selected. If this least decrease is less 511 

than a specific threshold (default value of 1%) then the signature is removed from the list of 512 

signatures used to explain the de novo signature. The addition and removal steps are iterated until 513 

no signatures are added or removed from the list of signatures used to explain the de novo 514 

signature. Several previously implemented rules for mutational signatures are incorporated by 515 
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default in the decomposition module11. Specifically, for signatures of single base substitutions: 516 

(i) the list of signatures used to explain the de novo signature is initialized with clock-like 517 

signatures SBS1 and SBS5;12 (ii) biologically connected signatures are included as previously 518 

done in Ref 11 (e.g., if SBS17a is included in the list then SBS17b is also included the list). The 519 

decomposition module is highly customizable as it allows changing all default parameters as 520 

well as adding additional new rules or removing existing rules for inclusion and exclusion of 521 

particular signatures. 522 

 523 

Module 6: Evaluating activities of mutational signatures in individual samples 524 

De novo extracted and COSMIC derived signatures are refitted to individual samples using 525 

nonnegative least squares (NNLS)46. Module 6 internally utilizes the add-remove functionality of 526 

Module 5 with each sample in the original matrix, M, being individually examined. For de 527 

novo mutational signatures, all de novo signatures are initially added to the list of signatures used 528 

to explain the sample and a removal step with a cutoff of 2% is applied. To assign COSMIC 529 

signatures in a sample, the module first derives the set of de novo signatures in that sample. 530 

Decomposition to the COSMICv3 signatures using Module 5 is performed for each of the de 531 

novo signatures and the identified COSMICv3 signatures are refitted using the add-remove 532 

functionality with a removal and addition cutoffs set at 5%. Finally, the activity matrix is 533 

constructed by combining the activity vectors generated for all samples in the dataset. 534 

 535 

Module 7: Outputting and plotting of analysis results 536 

All previous modules make use of Module 7 for outputting and plotting of the generated results. 537 

It should be noted that SigProfilerExtractor provides extensive output for the interrogated total 538 
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number of operative signatures, k, with a default range of k between 1 and 25 signatures. For 539 

each value of k, SigProfilerExtractor outputs the set of operative de novo mutational signatures, 540 

the activities of the operative signatures, and an extensive set of information related to individual 541 

samples, individual de novo signatures, and the overall convergence of the factorization and 542 

clustering. Module 7 also provides additional information when ran in debug mode. In addition 543 

to outputting information, SigProfilerExtractor also generates a bouquet of plots both for each 544 

value of k as well as for the suggested optimal solution. SigProfilerExtractor utilizes all 545 

previously implemented plots in SigProfilerPlotting2 as well as includes a number of newly 546 

developed plots. 547 

 548 
 549 
Analysis of the genomics data from cancer and normal somatic tissues 550 

For all examined cancer and normal somatic tissues, de novo extraction of mutational signatures 551 

was performed with SigProfilerExtractor with default parameters using two distinct mutational 552 

classifications: SBS-96 and SBS-288. The SBS-96 mutation classification incorporates the six 553 

types of single base substitutions: C>A, C>G, C>T, T>A, T>C, and T>G. Each type of single 554 

base substitution is further separated into 16 subtypes determined by the four possible bases 5’ 555 

and 3’ adjacent to each mutated base. The SBS-288 mutation classification extends the SBS-96 556 

mutation classification by adding additional information for each of the 96 subtypes. 557 

Specifically, SBS-288 incorporates whether a single base substitution is in non-558 

transcribed/intergenic DNA, on the transcribed strand of a gene, or on the untranscribed strand of 559 

the gene. De novo extraction was performed separately for all examined datasets. Specifically, 560 

SigProfilerExtractor was applied: (i) to all 2,778 whole-genome sequenced cancers from the Pan-561 

Cancer Analysis of Whole Genomes project26; (ii)  to all samples in each of the 37 cancer types 562 
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of Pan-Cancer Analysis of Whole Genomes project26 with each cancer type examined separately; 563 

(iii) to all 88 whole-genome sequenced microbiopsies of histologically normal urothelium33; (iv) 564 

to the complete set of bladder cancers from TCGA41; (v) to exome downsampling of all bladder 565 

whole-genome sequenced cancers from  the Pan-Cancer Analysis of Whole Genomes project26; 566 

(vi) to exome downsampling of all 88 whole-genome sequenced microbiopsies of histologically 567 

normal urothelium33. In all cases, the mutational catalogues of each samples were taken from the 568 

respective original publications. The results from all performed de novo extractions can be found 569 

in Supplementary Data. Downsampling of a whole-genome sequenced sample to a whole-570 

exome was performed using SigProfilerMatrixGenerator2. 571 

 572 

Additional approaches for miscellaneous analysis  573 

Synthetic scenarios were labeled as easy, medium, and hard based on the number of operative 574 

signatures in each scenario. Based on our most recent analysis of mutational signatures in 82 575 

cancer types11, approximately 7.4% of human cancer types have 5 or less signatures (reflected in 576 

simulations of easy scenarios), 15.9% have 11 to 21 signatures (medium scenarios), and 59.5% 577 

have 25 or more signatures (hard scenarios). Note that 17.2% of cancer types have either 578 

between 5 and 10 signatures or between 22 and 24 signatures.  579 

 580 

Cosine similarity was used to compare the profiles of different mutational signatures. P-values 581 

can be attributed to cosine similarities based on a null hypothesis of uniform random distribution 582 

of nonnegative vectors31. 583 

 584 
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Briefly, the prevalence of somatic mutations in a whole-exome sample was calculated based on 585 

the identified mutations in protein coding genes and assuming that an average whole-exome has 586 

sufficient coverage of 30.0 megabase-pairs in protein coding genes. The prevalence of somatic 587 

mutations in a whole-genome sample was calculated based on all identified mutations and 588 

assuming that an average whole-genome has sufficient coverage of 3.00 gigabase-pairs. 589 

 590 

All methods related to the generation of the benchmarking scenarios and the application of the 591 

different tools to these scenarios can be found in Supplementary Note 1.  592 

593 
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 594 

TABLES  595 

 596 

Table 1: Overview of bioinformatics tools for de novo extraction of mutational signatures. 597 

Tools are ordered alphabetically. Notations: ^ denotes the default approach for selecting the total 598 

number of signatures when a tool supports both manual and automatic selection; 1-to-1 refers to 599 

one de novo signature being matched with exactly one COSMIC signature; 1-to-many refers to 600 

Tool Name Input Platform 
Factorization Approach Selection Approach Supported Contexts 

COSMIC 
Comparison 

Method Computational 
Engine GPU  Manual Automatic Automatic 

Algorithm 
Mutational 

Catalogue Support Plotting 

EMu15 Matrix C++ EM 

 
Original 

implementation15 
 

No Yes Yes^ BIC37 SBS-96  No No 

Maftools16 Matrix 
MAF 

 
R-Bioconductor 

 
NMF NMF R package35 No Yes No - SBS-96 SBS-96 1-to-1 

MutationalPatterns17 Matrix 
VCF 

R-Bioconductor 
 NMF NMF R package35 No Yes No - SBS-96 

SBS-192 

 
SBS-96 

SBS-192 
 

1-to-1 

MutSpec18 
Matrix 
VCF 

Custom 

 
Galaxy 

Perl 
R 
 

NMF NMF R package35 No Yes No - SBS-96 
SBS-192 

SBS-96 
SBS-192 1-to-1 

SigFit19 Matrix R Bayesian 
Inference Stan R package36 No Yes Yes^ Elbow 

method38 SBS-96 SBS-96 
SBS-192 1-to-1 

SigMiner20 Matrix 
MAF R 

[automatic] 
Bayesian NMF 

  
[manual]  

NMF  

 
[automatic] 

SignatureAnalyzer 
implementation21  

 
[manual]  

NMF R package35  
 

No Yes^ Yes ARD32 
SBS-96 
DBS-78 
ID-83 

Generic 1-to-1 

SignatureAnalyzer21,22 Matrix 
MAF 

R [CPU]18 
Python [GPU]19 Bayesian NMF Original 

implementation21,22 Yes No Yes ARD32 

 
SBS-96 
DBS-78 
ID-83 

 

SBS-96 
DBS-78 
ID-83 

1-to-1 

SignatureToolsLib23 
Matrix 
VCF 

Custom 
R NMF NMF R package35 No Yes No - 

 
SBS-96 
DBS-78 
ID-83 
SV-32 

 

SBS-96 
SV-32 

Generic  
No 

SigneR24 Matrix 
VCF 

 
R-Bioconductor 

C++ 
 

Bayesian NMF Original 
implementation24 No Yes Yes^ BIC37 SBS-96 SBS-96 No 

SigProfilerExtractor 

Matrix 
VCF 
MAF 

Custom 

Python 
R wrapper NMF 

[current report] 
Original 

implementation 
Yes Yes Yes^ NMFk39 

SBS-96 
DBS-78 
ID-83 

Others2 
Any 

 
SBS-96 
DBS-78 
ID-83 
SV-32 
Others2 
Generic  

 

1-to-many 

SomaticSignatures25 Matrix 
VCF 

R-Bioconductor 
 

NMF 
PCA 

 
NMF R package35 

pcaMethods R 
package47 

 

No Yes No - SBS-96 SBS-96 No 
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one de novo signature being matched with a combination of one or more COSMIC signatures. 601 

Abbreviations: MAF: mutation annotation format; VCF: variant call format; EM: expectation-602 

maximization algorithm; NMF: nonnegative matrix factorization; ARD: automatic relevance 603 

determination; BIC: Bayesian information criterion; COSMIC: catalogue of somatic mutations in 604 

cancer; SBS: single base substitutions; DBS: doublet base substitutions; ID: small insertions and 605 

deletions; SV: structural variants. 606 

607 
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FIGURE LEGENDS 608 

Figure 1. Overview of SigProfilerExtractor. (a) SigProfilerExtractor’s general workflow is 609 

outlined starting from an input of somatic mutations and resulting in an output of de novo 610 

mutational signatures. An example is shown for a solution with three de novo signatures. 611 

Somatic mutations are first converted into a mutational matrix. Subsequently, the matrix is 612 

factorized with different ranks using nonnegative matrix factorization. Model selection is applied 613 

to identify the optimal factorization rank based on each solution’s stability and its reconstruction 614 

of the original data. (b) Schematic representation for an example decomposition with a 615 

factorization rank of k=3. By default, SigProfilerExtractor performs 500 independent 616 

nonnegative matrix factorizations with the matrix M being Poisson resampled and normalized 617 

(denoted by ^) prior to each factorization. Partition clustering of the 500 factorizations is used to 618 

evaluate the factorization stability rank, measured in silhouette values; clustering can also be 619 

presented as two-dimensional projections revealing more similar mutational signatures as shown 620 

for the three example signatures. The centroid of the clustered solutions (denoted by –) is 621 

compared to the original matrix M. (c) All identified de novo signatures are matched to a 622 

combination of known COSMIC mutational signatures. An example is given for de novo 623 

extracted signature SBS96B which matches a combination of COSMIC signatures SBS1, SBS2, 624 

and SBS13. 625 

 626 

Figure 2. Benchmarking of bioinformatics tools for de novo extraction of mutational 627 

signatures using SBS-96 noiseless scenarios. (a) Average precision (x-axes), sensitivities (y-628 

axes), and F1 scores (harmonic mean of precision and sensitivity; red curves) are shown across 629 

the three types of scenarios. Different tools are displayed using circles and triangles with 630 
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different colors. Circles are used to display results for suggested model selection, which most 631 

closely matches analysis of a real dataset. Triangles are used to display results for forced model 632 

selection, where tools were required to extract the known total number of ground-truth 633 

mutational signatures. All triangles are located on the diagonal as the forced model selection 634 

results in equal numbers of false positive and false negative signatures. (b) Evaluating the effect 635 

of ground-truth signatures on the de novo extraction by different tools (x-axes). Ratio of F1 636 

scores (y-axes) with confidence intervals were calculated for medium complexity scenarios 637 

simulated using COSMIC, SA, or random signatures. Ratio of approximately 1.00 indicates a 638 

similar performance between different types of signatures. (c) Evaluating the performance of de 639 

novo extraction between suggested and forced selection for different tools (x-axes). Ratio of F1 640 

scores (y-axes) with confidence intervals were calculated for all medium and hard scenarios. 641 

Ratio of approximately 1.00 indicates a similar performance between suggested and forced 642 

model selection. (d) Summary of the performance for the top seven tools on medium and hard 643 

SBS-96 noiseless scenarios with suggested model selection. Y-axes reflect F1 score (left plot), 644 

sensitivity (middle plot), and false discovery rate (right plot), respectively. Results from 645 

SignatureAnalyzer are not displayed in panels (a), (b), and (c) for forced model selection as 646 

SignatureAnalyzer does not support predefined/forced solution with a specific total number of 647 

signatures. 648 

 649 

Figure 3. Additional evaluations of the top seven bioinformatics tools for de novo extraction 650 

of mutational signatures. (a) Average F1 scores for the top seven tools based on different 651 

thresholds for cosine similarity in suggested medium and hard scenarios; thresholds for cosine 652 

similarity are used for determining true positive signatures (Supplementary Figure 1). X-axes 653 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2020. ; https://doi.org/10.1101/2020.12.13.422570doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422570


 32 

reflect the cosine similarity thresholds, while the Y-axes correspond to the average F1 scores 654 

corresponding to cosine similarity thresholds. (b) Precision and sensitivity of the top seven tools 655 

for SBS-96 scenarios with different levels of noise. Noise levels reflect the average number of 656 

somatic mutations in a cancer genome affected by additive white Gaussian noise; for example, 657 

1% noise corresponds to approximately 1% of mutations in a sample being due to noise. (c) 658 

Summary of the performance of the top seven tools on SBS-96 scenarios with 5% noise. Y-axes 659 

reflect F1 score (left plot), sensitivity (middle plot), and false discovery rate (right plot), 660 

respectively. 661 

 662 

Figure 4. Novel signatures identified in the PCAWG cohort of 2,778 whole-genome 663 

sequenced cancers. Mutational signatures are displayed using 96-plots. Single base substitutions 664 

are shown using the six subtypes of substitutions: C>A, C>G, C>T, T>A, T>C, and T>G. 665 

Underneath each subtype are 16 bars reflecting the sequence contexts determined by the four 666 

possible bases 5’ and 3’ to each mutated base. Additional information whether mutations from a 667 

signature are in non-transcribed/intergenic DNA, on the transcribed strand of a gene, or on the 668 

untranscribed strand of the gene is provided adjacent to the 96 plots. (a) Mutational profile of 669 

signature SBS92 derived from the PCAWG cohort (top). Confirmation of the profile of signature 670 

SBS92 (bottom) by analysis of an independent whole-genome sequenced set of microbiopsies of 671 

histologically normal urothelium33. (b) Mutational profile of signature SBS93 derived from the 672 

PCAWG cohort (top). Confirmation of the profile of signature SBS93 (bottom) by analysis of an 673 

independent whole-genome sequenced set of esophageal squamous cell carcinomas34. (c) 674 

Mutational profile of signature SBS94 derived from the PCAWG cohort. Signature SBS94 was 675 

not identified in any additional independent cohort. (d) Bars are used to display average values 676 
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for numbers of somatic substitutions per megabase (Mb) attributed to signature SBS92 in bladder 677 

cancer and normal bladder urothelium. Green bars represent never smokers, whereas blue bars 678 

correspond to ever smokers. Error bars correspond to 95% confidence intervals. Each p-value is 679 

based on a Wilcoxon rank sum test.  680 

681 
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SUPPLEMENTARY INFORMATION 682 

Supplementary Figure 1. Standard set of performance metrics used for benchmarking all 683 

bioinformatics tools. An example demonstrating the derivation of true positive (TP), false 684 

positive (FP), or false negative (FN) signatures for a tool applied to a synthetic dataset generated 685 

using 6 ground truth signatures (termed, Ground Truth Signatures 1 through 6). The tool extracts 686 

4 signatures (termed, Extracted Signatures A through D). In this example, an extracted signature 687 

is considered a true positive if it matches one of the ground-truth signatures with a cosine 688 

similarity threshold of at least 0.90. 689 

 690 

Supplementary Table 1. Detailed performance metrics after applying each tool across all 691 

SBS-96 noiseless synthetic scenarios. Performance metrics are calculated as per Supplementary 692 

Figure 1. An extracted signature is considered a true positive if it matches one of the ground-693 

truth signatures with a cosine similarity threshold of at least 0.90. 694 

 695 

Supplementary Table 2. Detailed performance metrics after applying the seven best 696 

performing tools across SBS-96 synthetic scenarios with different levels of noise. 697 

Performance metrics are calculated as per Supplementary Figure 1. An extracted signature is 698 

considered a true positive if it matches one of the ground-truth signatures with a cosine similarity 699 

threshold of at least 0.90. 700 

 701 

Supplementary Table 3. Detailed performance metrics of applying SigProfilerExtractor 702 

and SignatureAnalyzer to extended synthetic scenarios. Performance metrics are calculated 703 
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as per Supplementary Figure 1. An extracted signature is considered a true positive if it matches 704 

one of the ground-truth signatures with a cosine similarity threshold of at least 0.90. 705 

 706 

Supplementary Table 4. Profiles of three novel mutational signatures identified in the 707 

PCAWG cohort of 2,778 whole-genome sequenced cancers. The profiles of the novel 708 

mutational signatures are reported using the SBS-288 classification which incorporates the 709 

trinucleotide context and strand information (intergenic region, untranscribed strand, or 710 

transcribed strand) for each type of single base substitution. The SBS-288 classification can be 711 

easily collapsed to the commonly used SBS-96 classification. 712 

 713 

Supplementary Note 1. Detailed description of the performed benchmarking. The 714 

supplementary note provides extensive details about each of the generated synthetic scenarios as 715 

well as about applying each of the tools to these scenarios. The results from applying all tools to 716 

all scenarios, including appropriate input and out files, can be found in Supplementary Data. 717 

 718 

Supplementary Data 719 

All results from the benchmarking with synthetic datasets, including the appropriate input used 720 

to run each of the tools as well as the output generated by each of the tools, can be found at: 721 

ftp://alexandrovlab-ftp.ucsd.edu/pub/publications/Islam_et_al_SigProfilerExtractor/Benchmark/. 722 

 723 

All results from the de novo extraction of mutational signatures from the PCAWG dataset can be 724 

found at: ftp://alexandrovlab-725 

ftp.ucsd.edu/pub/publications/Islam_et_al_SigProfilerExtractor/PCAWG_Reanalysis/. 726 
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  727 

All results from the de novo extraction of mutational signatures for confirming the patterns of the 728 

novel signatures for additional datasets can be found at: ftp://alexandrovlab-729 

ftp.ucsd.edu/pub/publications/Islam_et_al_SigProfilerExtractor/Confirmation_of_Novel_Signatu730 

res/. 731 

 732 

All results from the de novo extraction of mutational signatures from downsampling of whole-733 

genome sequenced samples to whole-exomes can be found at: ftp://alexandrovlab-734 

ftp.ucsd.edu/pub/publications/Islam_et_al_SigProfilerExtractor/Downsampling_of_whole_geno735 

mes/ 736 

737 
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De novo extraction from a 
normal bladder urothelium cohort
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De novo extraction from
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