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Abstract:  

Increasing evidence implicates white matter (WM) dynamics supporting learning in the 

mature brain. Recent MRI studies, mostly using diffusion tensor MRI (DT-MRI), have 

demonstrated learning-induced WM changes at the microstructural level.  However, while 

DT-MRI-derived measures have sensitivity to general WM microstructural changes, they lack 

compartmental specificity, making them difficult to relate to underlying cellular mechanisms, 

stymying deeper understanding of mechanisms supporting training-induced gains in 

performance. Gaining a deeper understanding demands a more detailed characterization of 

changes in specific WM sub-components. To this end, four microstructural MRI techniques 

were employed to study alterations in rat brains after 5-days of water maze training: DT-MRI; 

Composite Hindered and Restricted Model of Diffusion (CHARMED); magnetization transfer 

(MT) imaging; quantitative susceptibility mapping and R2*. 

The hypothesis tested here was that microstructural changes would be: (i) observed in tracts 

supporting spatial navigation, i.e., fornix and corpus callosum (CC); and (ii) more pronounced 

in the myelin-specific measures.  

Medians and distributions of microstructural parameters were derived along the fornix, CC 

and cingulum (as a comparison tract) using the ‘tractometry’ approach. Summary measures 

were derived from different metrics using unsupervised data reduction. Significant pre-vs-

post training differences were found in the medians of two principal components loading on: 

(i) anisotropy indices; and (ii) MT ratio.  The most striking effect, however, was seen in the 

distributions of pre-vs-post training MT ratio in the fornix, consistent with the primary 

hypothesis, and highlighting the value of this alternative to the standard approach (i.e., 

comparing means/medians of DT-MRI parameters) for studying neuroplasticity in vivo. 
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Significance statement:  

Recent MRI-studies have demonstrated that white matter (WM) dynamics support learning, 

even in the mature brain. However, most studies are based on diffusion tensor MRI (DT-MRI) 

measures, which although providing sensitivity to WM microstructural changes, do not 

provide a direct translation to the underlying cellular mechanisms making interpretation 

difficult. Using alternative quantitative MRI approaches, this study provided more specific 

subcomponent microstructural insights into the brain’s WM response to water-maze training. 

We show that myelin-specific MR measures show more marked changes than axonal-

specific and DT-MRI measures, in WM tracts responsible for spatial navigation. The results 

promote adoption of these alternative approaches to DT-MRI for studying neuroplasticity in 

vivo.   
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Introduction:  

It has been recently demonstrated, using MRI, that white matter (WM) in the mature brain is 

dynamic, and that these dynamics contribute to learning (Johansen-Berg et al., 2007; 

Blumenfeld-Katzir et al., 2011; Hofstetter et al., 2013; Caeyenberghs et al., 2016; Hofstetter 

and Assaf, 2017; Metzler-Baddeley et al., 2017). Numerous mechanisms supporting learning 

have been demonstrated at the cellular level. Sampaio-Baptista et al. (2013) showed 

increased myelin-basic protein (MBP) immunolabeling in rats after training, suggesting that 

learning triggers the formation of new myelin, while McKenzie et al. (2014) demonstrated that 

generation of new oligodendrocytes (OLs) is crucial for learning motor skills. 

Most neuroplasticity MRI studies use diffusion tensor MRI (DT-MRI), reporting increased 

fractional anisotropy (FA) and reduced mean diffusivity (MD) in WM after long-term training. 

For example, Blumenfeld-Katzir et al. (2011) found increased FA in the rat corpus callosum 

after spatial learning in a water maze. Others, however, found the opposite effect , with lower 

FA / higher  MD  after training (Hänggi et al., 2010; Taubert et al., 2010). While differences 

in training tasks might explain these differences in imaging findings, it is also well-known that 

DT-MRI-derived measures are degenerate and therefore difficult to interpret. In addition to 

myelin, (Beaulieu, 2002), FA is modulated by fiber architecture (Basser and Pierpaoli, 1996; 

Douaud et al., 2011), orientation dispersion (Budde and Annese, 2013), axon density and 

axon diameter distribution (Takahashi et al., 2002; Shemesh, 2018). Thus, FA changes are 

not specific to myelin (or any other sub-component). Moreover, Tyszka et al.’s (2006) study 

on Shiverer mice, a model characterized by almost complete absence of compact myelin in 

the central nervous system (Readhead and Hood, 1990), showed that FA was only 15% 

lower compared to wild-type mice, indicating FA’s low sensitivity  to subtle differences in 

myelin.  

Given emergent evidence that myelin changes are critical for learning, and hypothesized as 

the driving factor underpinning previously reported learning-induced FA changes, an 

individual characterization of myelin changes in vivo should be considered alongside other 

WM sub-components. Such a characterization requires alternative MRI acquisition and 

modelling approaches. For example, quantitative magnetization transfer (qMT) is associated 

with the relative amount of myelin in WM (Turati et al., 2015) susceptibility weighted imaging 

(SWI) provides complementary information on components with differential magnetic 

susceptibility including myelin and iron (Haacke et al., 2015), while the Composite Hindered 
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and Restricted Model of Diffusion (CHARMED) (Assaf et al., 2004; Assaf and Basser, 2005) 

provides more compartment-specific diffusion (e.g., intra-axonal, extra-axonal) parameters. 

Here we combine four complementary MRI techniques, i.e., DT-MRI, CHARMED, 

magnetization transfer (MT) and SWI via R2*- & quantitative susceptibility mapping (QSM) to 

characterize specific WM alterations in the rat brain after spatial working-memory training. 

Histological assessment of myelin was also performed on a sample of pre- and post-training 

rat brains.   

 

Our hypotheses were that microstructural WM changes would be: 

(i) found in the fornix, the major output tract from the hippocampus, which is critical for 

spatial navigation (Hodgetts et al., 2019). We also investigated the corpus callosum, 

given evidence of post-training changes (Blumenfeld-Katzir et al., 2011) and the 

cingulum, which was not expected to change and therefore serves as an internal 

comparison tract;  

and  

 

(ii) more marked in the myelin-specific measures (e.g., MT) than the axon-specific 

measures (e.g., CHARMED), based on previous evidence that myelin is crucial in 

training-induced WM changes. 

Note: although our hypotheses are focused on myelin, we have included measures that are 

more sensitive to differences in axonal characteristics. This is because most in vivo 

microstructural plasticity studies to date have used DT-MRI, which cannot distinguish 

between axon or myelin changes and is sensitive, to a lesser or greater extent, to both.  Our 

aim here was to break down the plasticity response to microstructural subcomponents and 

demonstrate specificity of changes to one compartment.  Demonstrating specificity requires 

isolation of the compartment that we do expect to change, and the compartment that we do 

not expect to change. 

 

Materials and Methods: 

Ethics statement. This study was approved by the Tel Aviv University Committee on Animal 

Care and Use and conducted according to the guidelines for research involving animals 

(permit number: L-04-16-009).  
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Experimental design. 18 male Wistar rats, 2.5 months of age were studied. All rats were 

maintained on a 12-h light/12-h dark cycle with access to food and water ad libitum. 12 rats 

underwent two MRI scans, before and after 5 days of learning and memory training in a Morris 

water maze (Duval et al., 2018). Prior to scanning, the rats were anesthetized with 1-2% 

isoflurane in oxygen. 3 rats underwent the first scan and were then perfused for histology 

staining. Morris water maze training was performed in a 120 cm diameter pool in which a 

platform was hidden in one of four quadrants. Each rat underwent two rounds of training per 

day, with a 30 minutes rest period between the two rounds. Each training round comprised 

four swims, in which the rats were placed at different quadrants of the pool and given 1 minute 

to find the platform. Rats that did not succeed in finding the platform within this time limit were 

led to it. All rats were given 10 seconds to stand on top of the platform and then taken out of 

the pool to rest. 

Imaging.  

MRI was performed with a 7T/30 Bruker MRI scanner (Bruker, Karlsruhe, Germany) equipped 

with 400 mT/m gradients. A body coil (outer/inner diameter of 112/72 mm) was used for 

excitation and a quadrature coil (15 mm diameter) was used as a receiver.  

The scanning protocol comprised three different types of acquisition:  

(i) 2D diffusion-weighted pulsed-gradient spin-echo (DW-PGSE) – for 

diffusion MRI: isotropic image resolution of 370 μm (32 axial slices), TR/TE= 

(8s/28ms), NEX = 1,  b-values = 1000, 2000 and 4000 s/mm2, ∆/δ = (14 ms/7.5 

ms), 30 noncollinear directions;  

(ii) 3D multi-gradient echo (MGE) – for susceptibility-sensitive imaging: 

image resolution of 185x185x370 μm, 8 TEs (first TE=3.4 ms, echo-

spacing=5.6 ms);  

(iii) 3D fast low angle shot (FLASH) – for magnetization transfer imaging: 

FLASH with magnetization transfer saturating Gaussian pulses, 2 flip angles of 

1000o and 2800o with 12 offsets (ranging between 1000 and 30000 Hz), 3 

images with no saturating pulses using isotropic resolution of 370 μm. Note that 

full quantitative MT measures were not calculated due to a corruption of the 

quantitative T1 maps (needed for the full quantitative MT model), therefore, the 

magnetization transfer ratio (MTR) was calculated using one of the frequency-

offsets collected with the qMT protocol. 

The duration of the complete acquisition protocol was 1.5 hours. 
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MRI image analysis.  

Each MR contrast required a dedicated processing pipeline using custom MATLAB (The 

Mathworks) scripts: 

(i) DW-PGSE data 

The diffusion-weighted data were analysed in multiple ways. 

(a) DT-MRI Analysis: Using the data collected with the first shell (b=1000 s/mm2), the 

diffusion tensor was estimated robustly in each voxel using the RESTORE algorithm 

(Chang et al., 2005) in the ExploreDTI  software package (Leemans et al., 2009). From 

the tensor, four scalar measures were derived, namely: fractional anisotropy (FA), 

mean diffusivity (MD), radial diffusivity (RD) and longitudinal diffusivity λ1. 

(b) CHARMED analysis: The CHARMED model (Assaf et al., 2004; Assaf and Basser, 

2005) was fit to all shells of the diffusion-weighted data. This model assumes that two 

water populations are present; intra-axonal water that exhibits ‘restricted’ diffusion and 

extra-axonal water that exhibits ‘hindered’ diffusion. The parameter of interest here 

was the ‘restricted diffusion signal fraction’ (Fr), i.e. the fraction of the signal that arises 

from the restricted diffusion population. (Note: Fr is often referred to as ‘axon density’). 

(c) Tractography analysis: The RESDORE algorithm (Parker et al., 2013) was applied on 

the b=2000 s/mm2 shell data to obtain robust estimates of the fibre orientation density 

function (fODF) using the damped Richardson-Lucy (dRL) algorithm (Dell’Acqua et al., 

2010). These fODFs served as input to deterministic tractography to reconstruct the 

fornix, CC and cingulum tracts (bilaterally), followed by manual delineation of ‘way-

points’ in each data set by an operator blinded to ‘pre- vs. post- training status’ to avoid 

bias (see Figure S1 in Supplementary Information).  The fornix and CC were 

hypothesized a priori to change markedly due to training, whereas the cingulum was 

not, and is therefore referred to here as a comparison tract. (N.B. We do not refer to 

the cingulum as a ‘control’ tract because all parts of the brain were subjected to the 

same learning procedure). 

(ii) MGE Data 

Susceptibility and R2* maps were derived from the MGE data. R2* maps were 

generated from the gradient echo magnitude data assuming mono-exponential 

signal evolution. For QSM, frequency maps were first estimated from the gradient 

echo phase by fitting to the complex signal across all echoes (Liu et al., 2013), 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2020. ; https://doi.org/10.1101/2020.12.13.422557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

followed by background field removal using v-SHARP (Wu et al., 2012). 

Quantitative susceptibility maps were subsequently generated following a similar 

approach to (Rochefort et al., 2010), using a magnitude-weighted least squares 

minimisation (regularised using both the brain mask and susceptibility gradients 

estimated via fastQSM (Li et al., 2015). The susceptibility in each animal, at each 

time point, was referenced to the average of a CSF chosen region. 

(iii) FLASH Data 

The magnetization transfer ratio (MTR) was computed according to the formula: 

MTR = (SMT – S0)/S0, where S0 is the signal intensity without any off-resonance 

pulse applied, and SMT is the signal intensity obtained with an off-resonance pulse 

with offset of 1860 Hz and 1000o flip angle. 

Tractometry. Maps of each of the derived parameters: fractional anisotropy (FA), mean 

diffusivity (MD), radial diffusivity (RD), longitudinal diffusivity λ1, restricted diffusion signal 

fraction (Fr), MTR, R2* and susceptibility were co-registered within each rat (using SPM8, 

version 6313 (Penny et al., 2007)) and then projected on to the reconstructed tract-bundles, 

following the ‘Tractometry’ approach (Bells et al. 2011). For each parameter, the median 

value of all vertex-wise estimates was computed and the distribution stored for later analyses. 

De Santis et al., 2014, previously deployed tractometry in healthy human subjects, and 

uncovered covariances between the different parameters. This motivated a principal 

component analysis (PCA) in the present study, to capture the principal sources of variance. 

This approach was recently shown to improve the disentangling of neurobiological 

underpinnings of WM organization (Chamberland et al., 2019). PCA was performed as 

follows: to bring pre- and post-training measures on equal footing, they were first normalized 

by their mean and standard deviation (averaged across the three different anatomical 

bundles). Covariance matrices were then calculated for each white matter pathway, 

normalized by the trace of the covariance matrix, and pooled prior to principal component 

decomposition. Principal components (PCs) were calculated using MATLAB's pcacov 

function. The subset of PCs explaining at least 95% of the total variance was selected. 

Varimax rotation was then performed to improve the interpretability of the result.   

Power Analysis. The sample size needed to obtain a statistical power of 0.8 with an effect 

size of 5% was calculated to be 11 rats per group, based on a 1-way analysis of variance 

(ANOVA) pairwise, 2-sided equality statistical model (Shein-Chung et al., 2008).  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2020. ; https://doi.org/10.1101/2020.12.13.422557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

Statistical Analysis. Following the strict recommendation of Thomas and Baker (Thomas and 

Baker, 2013) for making robust statistical inferences in MRI-based training studies, a 

significant interaction should be demonstrated, while any other specific effect of training 

provides only weak evidence of training-induced changes. Consequently, all PCs were 

subjected to a 2-way repeated measures analysis of variance (ANOVA) for main effects of 

‘Tract’ and ‘Time’ and their interaction (SPSS statistics software), to provide evidence of 

anatomical specificity of results. Only in the event of a significant Tract × Time interaction 

were post-hoc paired t-tests performed to look for significant effects of training on 

microstructural parameters. As a final step in the analysis, the pre-training vs post-training 

distributions of the derived measures (i.e., taking all the vertex-wise measures of streamlines 

for the whole reconstructed tract), rather than the median values, were compared using a 

two-sample Kolmogorov-Smirnov test and significance testing performed using permutation 

testing (1000 permutations of pre-vs-post group membership), both using in-house MATLAB  

scripts.  

Histology and histological analysis. For the histology analysis, a total of 6 rats (3 pre-training 

and 3 post-training) were perfused with PBS (1M) and 2.5% Glutaraldehyde and then placed 

in a vial of 2.5% Glutaraldehyde diluted in PBS. After fixation and embedding in paraffin, 

blocks were cut with a microtome and 3-4 µm thick sections were mounted on glass slides. 

For two rat brains (one pre-training, one post-training), 5 steps with 50-micron gaps through 

the investigated anatomical structures were derived. One section per step was stained for 

these animals. For the other 4 rat brains, 5 steps with 50-micron gaps and 3 directly 

consecutive sections per step were made. All sections were stained for Luxol-fast blue-

periodic acid Schiff (LFB-PAS). The identical staining protocol has been previously applied 

for the comparison with quantitative susceptibility mapping (Hametner et al., 2018)  and 

myelin water imaging (Birkl et al., 2019). Sections were digitized with a Hamamatsu 

Nanozoomer slide scanner at 200x magnification. Images were colour-deconvolved using 

the colour deconvolution plugin for ImageJ (Ruifrok and Johnston, 2001), applying the vector 

“H-PAS”. The resulting blue-channel and red channel images were converted to an 8-bit grey 

scale image and inverted. The blue-channel image represents the Luxol fast blue dye for 

myelin, while the red-channel image depicts the PAS counterstain, which yields a pink 

staining of the neocortical neuropil. Blue-channel image intensities were taken for the myelin 

density estimates. Red-channel image intensities were used as surrogate for the slice 

thickness for normalization of myelin estimates, based on the observation and assumption 
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that neocortical PAS staining in the studied animals is mainly a variable of slice thickness. 

Red channel intensities for normalization were invariably taken from small regions of the 

temporal neocortex. Myelin intensities were taken from the corpus callosum, the white matter 

directly subjacent to the cingular cortex, and the fimbria hippocampi (shown in Figure 1). All 

intensities were normalized for each section with the respective red channel intensities of the 

same slice. Normalized intensities were averaged for all slices such that one data point was 

retrieved per region per rat. We then performed a 2-tailed t-test for significance. 

 

 

 

 

Figure 1: Three WM regions that were considered for histology analysis; subjacent to the fimbria 

hippocampi (‘fornix’) (red), corpus callosum (orange) and subjacent to the cingular cortex (‘cingulum’) 

(blue). 

 

Results: 

Figure 2 shows the ‘time to platform’ in each swim. The average time to reach the platform 

in the first day (2 rounds) was ~33 sec with marked reductions throughout the following days 

reaching ~7 sec on the fifth day, demonstrating that learning was occurring. 

 

 

 

 

 

 

 

 

Figure 2: Mean ‘time to platform’ in rounds 1 and 2 (dotted lines) and their average (solid line) for 
each of the 5 training days. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2020. ; https://doi.org/10.1101/2020.12.13.422557doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

Eight microstructural measures were derived from the scanning protocol; FA, MD, RD, λ1, Fr, 

MTR, R2* and quantitative susceptibility, . Figure 3 shows cross-correlation matrices in the 

three tracts along with specific correlations of three pairs of measures in the fornix, CC and 

cingulum.  Several pairs of measures showed significant covariance, motivating a principal 

component analysis (PCA). 

 

Figure 3: (A) Cross correlation matrices of the eight measures in fornix, CC and cingulum. Significant 

pairs of measures are marked by *p<0.05, **p<0.005, ***p<0.0005 (B) Correlations of FA vs. Fr; fornix 

- R=0.84, p=0.0006 and cingulum - R=0.77, p=0.0032 (left plot), MTR vs. Susceptibility; no 

significance (middle plot) and FA vs. MTR; no significance (right plot) in fornix, CC and cingulum. 

 

The PCA yielded 5 principal components (Figure 4) that explained over 95% of the variance; 

The first and second components were dominated by diffusion measures (explaining 

variance of ~34% and 22%, respectively). The third, fourth and fifth PCs are each dominated 

by a single measure: susceptibility (explained variance ~16%); MTR (explained variance 

~14%); and R2* (explained variance ~12%), respectively.   
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Figure 4: (A) Absolute loading values of the eight microstructural indices; rows represent the absolute 

loading values of the different measures and columns represent the principal components. (B) Scree 

plot representing the percent of explained variances. 

 

 

Figure 5: Average PC scores at the two time points of each tract along with the loading values for 

each PC. Bonferroni-Holm corrected p-values derived from paired t-tests between the two time points 

within each tract in every PC. 

 

 

Figure 5 shows the average PC scores for each tract at the two time points, along with the 

loading values for each PC. Results from the 2-way ANOVA statistical tests showed that the 

main effect of 'Tract' was significant for all PCs. Taking each PC in order of percentage 

variance explained: 

PC1, which is dominated mainly by diffusivity measures (MD, RD and λ1), showed a non-

significant reduction between the pre- and post-training time points in fornix and corpus 

callosum (this PC was relatively stable between the two time points in the cingulum). No 

statistical significance was found other than the main effect of 'tract'.  
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PC2, which is dominated mainly by anisotropy measures (FA and Fr), showed an increase 

between pre- and post-training median values in the CC, while values in the fornix and 

cingulum were relatively constant. There was a significant ‘Tract × Time’ interaction 

(F(2,22)=3.54, p=0.047, p
2=0.243), and main effect of 'Time' (F(1,11)=9.74, p=0.01, 

p
2=0.47).  Post-hoc paired t-tests showed a significant effect of training only in the CC 

(p=0.007). These results effectively replicate the result of Blumenfeld-Katzir et al. 2011 who 

also showed a significant increase in FA (derived from DT-MRI) in the CC of rats in a similar 

water maze study. 

PC3, which loaded almost exclusively on susceptibility, shows increasing trends between the 

pre- and post-training values for all three tracts. However, no statistical significance was 

found other than for main effect of 'Tract'. The same was true for PC4, dominated by R2*.  

PC5, which is dominated by MTR, showed a significant ‘Tract × Time’ interaction 

(F(2,22)=5.53, p=0.01, p
2=0.335), a main effect of 'tract' (F(2,22)=79.8, p=0.0001, 

p
2=0.879),  and a main effect of  'Time' (F(1,11)=5.4, p=0.04, p

2=0.33). The post-hoc paired 

t-tests in each of the three tracts showed a significant effect of training (after Bonferonni-Holm 

multiple correction) in all three tracts: fornix (p=0.019), CC (p=0.009) and cingulum (p=0.049). 

Note, however, that the significance of change in the cingulum is borderline.  

Figure 6 shows Kolmogorov-Smirnov test (K-S) statistic values (maximum distance between 

the two cumulative density functions) comparing pre- and post-training distributions in 5 

microstructural measures for every rat. Its values for the MTR in the fornix are markedly 

higher than for all other measures in all tracts, indicating quantitatively that this myelin-

sensitive marker shows the greatest shift in distribution between pre- and post-training state 

in the fornix.  
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Figure 6: Kolmogorov-Smirnov test-statistic values of pre- vs. post-training distributions of 5 

measures; FA, Fr, MD, MTR and Susceptibility, for every rat, in the fornix, CC and cingulum.  

 

Moreover, there are clearly large inter-individual differences in the way that a rat’s 

microstructure responds to training. Permutation testing revealed that the K-S statistic was 

significant for all measures in all tracts at p=0.05 (uncorrected). This high significance most 

likely arises due to the large number of data points being compared in the distribution. 

To complement the K-S statistics shown in Figure 6, Supplementary Figure S2 shows 

individual changes (pre- vs post training) in median MTR values in each rat.  

Figure 7 shows the average normalized intensities of the myelin-stained image, in the three 

WM regions of interest in the pre and post-training groups (see Table S1 in Supplementary 

Material for individual values). It is important to note that each group comprises three different 

rats, and the histological analysis is, for obvious reasons, not longitudinal. Moreover, 

individual differences in myelin-stained image intensity at baseline (pre-trained rats) were 

present (coefficient of variation = 5%), further challenging any pre- vs post-training 

inferences. Finally, the number of animals was low (3 in each group). Despite these 

limitations, and although not significant using a 2-tailed t-test, we found higher values on 

average of the myelin stain in the post training group compared with the pre-training group, 

in all three WM regions. 
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Figure 7: Normalized average values of histology myelin stain in pre- (solid filled) and post-training 

(texture filled) groups.  
 

 

Discussion:  

The brain’s microstructural response to learning or enriched environments has been reported 

previously. Changes in synapse and astrocyte number and morphology have been 

demonstrated (Markham and Greenough, 2004; Stuchlik, 2014). Oligodendrocytes (OLs) and 

myelination changes have also been reported in several studies, with Szeligo and Leblond, 

(Szeligo and Leblond, 1977), being the first to report increased OL count in the visual cortex 

of rats raised in an enriched environment.  This observation was repeated by Sirevaag and 

Greenough (Sirevaag and Greenough, 1987), and was  followed by two studies reporting: (i) 

an increase in the number of myelinated axons in the rat splenial CC (Juraska and Kopcik, 

1988); and (ii) an increase in the size of monkey CC (Sánchez et al., 1998), in response to 

an enriched environment. Further, an important study in mice by McKenzie et al. showed that 

learning a new motor skill induced production of newly formed OLs. Critically, blocking 

production of these new OLs during adulthood, while maintaining pre-existing OLs and 

myelin, prevented the mice from mastering the task. Of high relevance to the current study, 

this was taken as direct evidence that new OLs, and therefore new myelin, are essential to 

learning new motor skills (McKenzie et al., 2014).  

In this study we use advanced MRI methods to complement DT-MRI with the aim of providing 

more specific information regarding changes in WM microstructural subcomponents that may 

occur in rat brains after water maze training. Our main hypothesis was that myelin-specific 

MR measures would show more marked changes than other measures (DT-MRI and   

‘axonal-specific’ measures),  and that this would be most evident in tracts supporting spatial 
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navigation, predominantly in the fornix (Hofstetter et al., 2013; Hofstetter and Assaf, 2017) 

and, following (Blumenfeld-Katzir et al., 2011) the CC.  

Indeed, in addition to changes in the fornix, we did see changes in the CC as demonstrated 

by both MTR and anisotropy indices (mainly FA and Fr). As noted above, increased FA has 

also been reported in the CC of rats  after water maze training  (Blumenfeld-Katzir et al., 

2011). CC changes after working memory training have also been reported. For example, 

Takeuchi et al. (2010) showed a significant change in WM regions adjacent to the dorsolateral 

prefrontal cortex (DLPFC), the anterior part of the body of the CC and the genu of the CC, 

after a working memory training. The bilateral DLPFCs are the key nodes of working memory 

such that enhanced WM microstructure in those CC regions may suggest increased 

interhemispheric information transfer between them.  

In the fornix itself, we observed significant training-induced changes solely in the MTR. This 

was apparent when comparing just the median of the values along a given tract.  However, 

Figure 6 shows that collapsing the data in this way neglects a wealth of information about the 

distribution of values along the tract. Indeed, when comparing the distributions between pre- 

and post-training, we see striking differences in the pre- vs post-training distributions in the 

MTR in the fornix, entirely consistent with our hypothesis.  This highlights the importance of 

not simply relying on summary statistics (mean/median) as is done in most MRI studies of 

white matter plasticity, for analyzing training-induced changes, and the value of examining 

the (usually overlooked) distribution of point-wise parameter estimates.  

As seen in Figure 6 and as noted above, despite all rats coming from the same breeding 

batch, the way in which the microstructural parameters changed in response to the training 

intervention was highly individualized (see Supplementary Figures 2 and 3 for pre- and post-

training MTR medians and distributions for each rat). While 9 of the 12 rats showed increased 

MTR post-training (albeit to different extents), in 3 rats there is an apparent reduction in MTR. 

We hypothesize that such individual differences in changes in myelination measures might 

reflect individual differences in the adaption of myelin needed to optimize neural synchronies 

(through fine tuning of conduction velocity) (Pajevic et al., 2014; Chorghay et al., 2018). While 

axon diameter clearly plays a role in determining conduction velocity (Hursh 1939; 

Drakesmith et al. 2019), as noted by Pajevic et al. 2014, regulating axon diameter is much 

less metabolically efficient (and less anatomically plausible over the time-scales considered 

here) than modulating myelin.    
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Validating a longitudinal change in myelination is challenging in post-mortem histological 

data. Only a limited number of rat brains were analyzed by histology (n = 3 pre-training and 

n = 3 post training). As Table S1 shows (Supplementary Material), there were large inter-

individual differences in myelination of white matter tracts at baseline (Coefficient of Variation 

= 5%), and similar variability in myelination values post- training (Coefficient of variation = 

3%); Unlike in vivo imaging when multiple longitudinal samples from the same rodent are 

possible, it is clearly impossible to perform histological assessment of myelin in the same 

animal pre- and post-training. This, together with the inter-individual variance in both baseline 

and follow-up myelin measurements reported here, makes it impossible to draw a firm 

conclusion on the sign and magnitude of any myelin change with such limited histological 

data. Taking different pairs of pre- and post-training measurements can result in an inference 

of training-induced increase, reduction or negligible change in myelin.  Despite these 

limitations, we did identify higher average myelin intensities in the post-trained rats in 

comparison with the pre-trained rats (though not significant when applying a 2 tailed t-test). 

Future work employing the approach of McKenzie et al. (2014) to block formation of new 

myelin, in combination with the tractometry approach and myelin-sensitive MRI markers 

employed here, would seem a more promising way to validate the findings.   

In summary, our results demonstrate substantially differential sensitivity of distinct white 

matter microstructural imaging measures to a spatial working memory training intervention.  

Taking the median of a given metric along a specific tract neglects a wealth of information, 

and the distribution of parameters may provide a more informative window into white matter 

plasticity. Moreover, changes in imaging metrics were highly individualized, which may mean 

that grouping individuals into the same analysis may obscure important changes in 

microstructure.  The most striking differences were seen in the pre-vs-post training 

distribution of magnetization transfer ratio, specifically in the fornix, which was entirely 

consistent with our hypothesis concerning the role of the fornix in spatial navigation learning. 

Overall these results suggest that, while doubtless the most convenient, widely available and 

most commonly adopted, comparing averaged DT-MRI metrics from within a region of 

interest is a sub-optimal way to study WM plasticity in vivo with the risk of missing important 

physiological changes.   
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