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Abstract  45 

Improved understanding of local breast biology that favors the development of estrogen receptor 46 

negative (ER-) breast cancer (BC) would foster better prevention strategies.  We have previously 47 

shown that overexpression of specific lipid metabolism genes is associated with the development 48 

of ER- BC.  We now report results of exposure of MCF-10A cells and mammary organoids to 49 

representative medium- and long-chain polyunsaturated fatty acids. This exposure caused a 50 

dynamic and profound change in gene expression, accompanied by changes in chromatin packing 51 

density, chromatin accessibility and histone posttranslational modifications (PTMs).  We 52 

identified 38 metabolic reactions that showed significantly increased activity, including reactions 53 

related to one-carbon metabolism.  Among these reactions are those that produce S-adenosyl-L-54 

methionine for histone PTMs. Utilizing both an in-vitro model and samples from women at high 55 

risk for ER- BC, we show that lipid exposure engenders gene expression, signaling pathway 56 

activation, and histone marks associated with the development of ER- BC. 57 

 58 

  59 
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Introduction 60 

Breast cancer is a heterogeneous disease with different molecular subtypes that are characterized, 61 

at a minimum, by the expression of the estrogen receptor (ER), progesterone receptor (PR) and 62 

Human epidermal growth factor receptor 2 (HER2)/neu (1). Although multiple statistical tools 63 

have been developed to quantify breast cancer risk (2), they do not predict breast cancer subtypes. 64 

Current breast cancer prevention with selective estrogen receptor modulators (SERM) and 65 

aromatase inhibitors decreases the risk of estrogen-receptor (ER) positive breast cancer sub-types, 66 

but not those without ER expression (3-5). Thus, determining the etiologic/biologic factors that 67 

favor the development of ER-negative breast cancer will potentially enable the development of 68 

both strategies to identify women at risk for ER-negative disease as well as targeted preventive 69 

and therapeutic agents. 70 

Given the poor understanding of the genesis of sporadic ER-negative breast cancer, we set out to 71 

study this using the contralateral, unaffected breast of patients with unilateral breast cancer as a 72 

model.  Studies of metachronous contralateral breast cancer show a similarity in the ER status of 73 

the contralateral cancer to the index primary (6-8). Therefore, the contralateral unaffected breast 74 

(CUB) of women undergoing surgical therapy for newly diagnosed unilateral breast cancer can be 75 

employed as a model to discover potential markers of subtype-specific risk. In a previous study, 76 

we performed Illumina expression arrays on epithelial cells from the CUB of breast cancer 77 

patients, and identified a lipid metabolism (LiMe) gene signature which was enriched in the CUBs 78 

of women with ER- breast cancer (9). Among these are genes that control critical steps in lipid and 79 

energy metabolism.   We validated this signature in an independent set of 36 human samples and  80 

re-confirmed the above results in fresh frozen tissues obtained from a new set of ER+ and ER- 81 

breast cancer patients, each time using laser capture microdissection (LCM) to obtain epithelial 82 
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cells from tumor and CUB samples (10).  Again, we found significantly higher expression of LiMe 83 

genes in CUBs from women with ER- breast cancer, compared to both CUBS from women with 84 

ER+ breast cancer, and breast epithelium from a control group of women undergoing reduction 85 

mammoplasty. However, the specific genes comprising this overexpressed set had no specific 86 

function or group of functions in common and did not suggest specific mechanistic explanations 87 

as to why lipid metabolism pathways would aid ER- breast cancer development. In the present 88 

study, we address possible mechanistic explanations for our previous observations. 89 

Cellular metabolism is a complex sequence of reactions in response to a cell’s microenvironment 90 

that have profound effects on cellular function (11). Major reprogramming of cellular energetics 91 

is one of  two emerging hallmarks of cancer (11). Metabolic re-wiring is required to provide the 92 

energy required to enable continuous growth and proliferation of the cancer cells.  The past century 93 

has witnessed intensive investigation of metabolic pathways in cancer, in particular that of aerobic 94 

glycolysis commonly called as the Warburg effect (12).  However, this is not the singular anomaly 95 

in the metabolically altered cancer cell. In addition to glucose and glutamine, fatty acids are an 96 

extremely important energy source (13). Altered lipid metabolism is posited to be a driver of 97 

carcinogenesis in various cancers, including ovarian (14), prostate (15, 16), liver (17) and triple 98 

negative breast cancer (18, 19).  Increased lipid metabolism has also been shown to serve as a 99 

survival signal that enables tumor recurrence and has been suggested as an Achilles heel for 100 

combating breast cancer progression (20).  Despite this recognition of the importance of fatty acid 101 

metabolism, its role of in the transformation of a normal cell to the malignant state is largely 102 

unknown.  Metabolomic studies of the concentrations of several free fatty acids in primary breast 103 

tumors, including linoleate, palmitate, and oleate, as a function of breast cancer subtype have 104 

revealed significant differences across the subtypes, with the highest concentrations in basal-like 105 
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breast cancer (21).  Conjugation of long-chain fatty acids to carnitine for transport into the 106 

mitochondria and subsequent fatty acid oxidation (FAO) was observed to be highest in basal-like 107 

breast cancers, followed by luminal B ~HER2-enriched, with luminal A tumors displaying the 108 

lowest levels (21).  Another  study, which utilized Raman spectroscopy to interrogate tissue, 109 

revealed that histologically normal breast tissue centimeters removed from the breast malignancy 110 

have significantly higher polyunsaturated fatty acid levels compared with normal tissue from 111 

cancer-free subjects (22).   112 

Metabolites from intermediate metabolism are the substrates used to generate chromatin 113 

modifications, underlining a complex relationship between metabolism and epigenetics. Key to 114 

the crosstalk between metabolism and chromatin structure, is that the kinetic and thermodynamic 115 

properties of the chromatin modification reactions are commensurate with the dynamic range of 116 

the physiological concentrations of the corresponding intermediates in metabolism (23).  For 117 

example, the substrates for histone methylation and acetylation reactions often have cellular 118 

concentrations that are commensurate with enzyme Km values, and thus are sensitive and 119 

responsive to changes in metabolism. Historically, glucose-derived carbon has been considered 120 

the primary source of acetyl-coA for histone acetylation.  In the nucleus, acetate may be a minor 121 

source. Recently, however, data from McDonnell and colleagues has revealed that lipids 122 

reprogram metabolism to become a major carbon source for histone acetylation (24).  This 123 

reprogramming was shown to have significant effects on gene expression. Therefore, we sought 124 

to determine if the LiMe signature we observed in the CUBs of ER- patients is associated with 125 

chromatin modifications and histone PTMs secondary to changes in metabolism fostered by 126 

exposure to medium and long chain fatty acids. 127 
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Results 128 

Lipid facilitates transcriptional reprogramming in non-transformed mammary cells  129 

We established an in vitro model by exposing estrogen and progesterone receptor (PR) negative 130 

MCF10A cells to octanoate, a medium chain eight-carbon fatty acid. Due to its small size and 131 

lipophilic nature octanoate does not depend on fatty acid transport proteins to traverse cell 132 

membranes and is readily oxidized in the mitochondria to form acetyl-CoA (25, 26). We performed 133 

RNA-seq to determine the effects of octanoate treatment on gene expression in the MCF10A cells. 134 

RNA-seq analysis revealed that 24 hours of octanoate treatment produces a transcriptional profile 135 

that is completely distinct from vehicle-treated controls (Fig. 1A, Fig. S1A-B).   Genes with 136 

initially low expression (negative values of ln(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎)) are upregulated (corresponding to 137 

positive values of ln(𝐸𝐸𝑜𝑜𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)) while genes with initially high expression (positive values of 138 

ln(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎))  are downregulated upon octanoate treatment (corresponding to negative 139 

values of ln(𝐸𝐸𝑜𝑜𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ))(27).  More specifically, there is a clear trend for initially highly 140 

expressed genes in the control condition to be downregulated upon octanoate treatment while 141 

genes with initial low expression in the control condition were upregulated. Differential expression 142 

analysis revealed a total of 2132 upregulated and 632 downregulated genes (FDR=0.01) in the 143 

octanoate treated cells (Supplementary Fig. 1C). Pathway enrichment analysis of the 144 

differentially expressed genes induced by the 5mM octanoate treatment was performed and the top 145 

25 upregulated and downregulated pathways are shown in Fig. 1B. Specifically, this analysis 146 

revealed that among the top altered biological processes are second messenger mediated signaling, 147 

the Notch signaling pathway, adenylate cyclase-activating adrenergic receptor signaling, cell 148 

morphogenesis and differentiation. In contrast, downregulated genes are involved in cell cycle 149 

processes, transcriptional regulation of tumor suppressor genes such as p53, and cell cycle 150 
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checkpoints (Fig. 1B). Additional gene set enrichment analysis (GSEA) investigating top 151 

pathways with coordinated upregulation or downregulation of genes demonstrated that the top 152 

pathways associated with octanoate treatment included positive regulation of cell morphogenesis, 153 

a process involved in differentiation, as well as several oncogenic pathways associated with breast 154 

tumorigenesis, including ERBB, WNT, and NOTCH signaling pathways (Fig. 1C). Subsequent 155 

leading-edge analysis of these top upregulated signaling pathways- Lipid storage pathways (I), 156 

Wnt pathway (II), Notch signaling (III) and ERBB pathway (IV) shows clear association of core 157 

enrichment genes with octanoate treatment across replicates (Fig. 1D).  Network analysis of 158 

octanoate-associated pathways identified by GSEA analysis revealed linked clusters involved with 159 

the nervous system and a second, separate group of linked clusters involved with growth factor 160 

stimulation, regulation of the MAPK cascade, and ERBB signaling (Fig. 1E). Finally, using real-161 

time qPCR we validated the expression of a number of genes that GSEA analysis determined were 162 

significantly upregulated with octanoate treatment (Fig. 1F). Thus, treatment with medium chain 163 

fatty acids induces significant changes in transcription (28). 164 

Evaluating the lipid composition of the serum of ER- and ER+ BC patients Next, we 165 

investigated whether dietary lipids, which are mainly long chain fatty acids (LCFAs), have a 166 

similar effect on the gene transcriptional profile to that of MCF10A cells. In order to determine 167 

the specific lipid(s) to evaluate experimentally, we sought to determine the differences in the 168 

percent composition of lipid species as a function of ER expression in serum from patients who 169 

had donated CUB samples for our original studies (9, 10). A comprehensive lipid profile of these 170 

serum samples was performed by the Northwest Metabolic Research Center at University of 171 

Washington, with measurement of more than 700 lipids. For each of the measurements, the 172 

association between the measured value and ER status was evaluated using regression models, 173 
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adjusting for BMI, age, and menopausal status. ER was a categorical variable used to describe 174 

subjects having ER + or ER – cancers, or controls undergoing reduction mammoplasty. As the 175 

purpose of this experiment was to identify a lipid for ensuing experiments, lipid species were 176 

ranked for effect size comparing serum from patients subjects with ER- disease to those with ER+ 177 

disease.  Three of the top four lipid species with the largest effect size were noted to contain  178 

linoleic acid:  cholesterol ester (CE) 18:2, phosphatidyl choline (PC)16:0/18:2 and triacylglycerol 179 

(TAG) 54:6-FA18:2.  Linoleic acid as a free fatty acid ranked 11th in the analysis.  Linoleic acid is 180 

the most highly consumed polyunsaturated fatty acid in the human diet (29), its presence in serum 181 

CE has been strongly correlated with intake (30), and its concentration in adult adipose tissue has 182 

more than doubled in the past half century (31).  Therefore, all subsequent studies were carried out 183 

using linoleic acid (LA). 184 

Linoleic acid influences chromatin packing behavior 185 

The state of chromatin is intimately linked with the regulation of gene transcription, undergoing 186 

dynamic changes between transcriptionally active and inactive states. Thus, our next step was to 187 

explore the changes in chromatin structure of fatty acid treated MCF10A cells by employing partial 188 

wave spectroscopic (PWS) microscopy, which quantifies chromatin packing scaling (D) in live 189 

cells (32). D represents the power-law scaling relationship between the 1-D size of the chromatin 190 

polymer i.e. the number of nucleotides and the 3-D space the chromatin polymer occupies. Recent 191 

evidence indicates that higher chromatin packing scaling is associated with increased intercellular 192 

and intra-network transcriptional heterogeneity as well as increased malignancy and 193 

chemoresistance in cancer cells (27, 33, 34). PWS was used to evaluate the effect of LA on 194 

chromatin packing scaling in live MCF10A cells. Images were obtained every 6 hours over a 24-195 

hour period. Our results showed significant increases in chromatin packing scaling upon exposure 196 
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to LA, in a manner similar to that of octanoate, suggesting that there is an increase in the dynamic 197 

range of gene expression and transcriptional gene network heterogeneity following lipid treatment 198 

(Fig. 2A-B). Thus, LA treatment results in changes in chromatin packing structure which are 199 

associated with a more malignant phenotype. Such significant changes in chromatin packing 200 

behavior also indicate significant changes in chromatin accessibility, which is directly associated 201 

with chromatin structure (35). 202 

ATAC Sequencing reveals increased chromatin accessibility in regulatory regions of genes 203 

in the MAPK and cAMP signaling pathways in lipid treated mammary cells To acquire more 204 

detailed insight into the specific regions of open chromatin that were made accessible by LA 205 

treatment, we proceeded with ATAC sequencing on LA treated MCF-10A cells. We  examined 206 

the genomic locations of ATAC-seq peaks, representing open chromatin sites, and discovered 207 

1704 open chromatin sites. Open chromatin regions were overrepresented within 1 kb of 208 

transcription start sites (TSSs) by 40-fold relative to the whole genome (Fig. 2C). Further, KEGG 209 

pathway analysis revealed 326 open chromatin regions with a log fold change >= 1.5 and FDR < 210 

0.05 compared to vehicle treated cells. Among the top pathways that were upregulated 211 

significantly upon LA treatment are MAPK signaling pathway, PI3K-AKT signaling pathway, and 212 

the cAMP adenylate cyclase pathway.  Additionally, motif analysis conducted using 213 

‘HOMER’(36) showed that chromatin regions made accessible/inaccessible by LA treatment have 214 

binding motifs for a number of  transcription factors (Fig. 2E). These data reveal that linoleic acid 215 

affects chromatin heterogeneity and increases/decreases the accessibility of specific regions that 216 

include transcription factor binding sites. 217 

Notch pathway genes are overexpressed in patients at high risk of ER- disease 218 
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Next, we sought to determine whether the genes, or sets of genes/pathways that we identified in 219 

our in vitro study were also differentially expressed in vivo in tissue of patients  at risk for ER- and 220 

ER+ breast cancer. We took advantage of RNA from the contralateral unaffected breast (CUB) of 221 

breast cancer cases utilized in our previous studies, which revealed the association of LiMe genes 222 

in the CUBs of women with unilateral  ER- breast cancer (9, 10). We combined the data from the 223 

RNA and ATAC sequencing experiments and collated a list of 44 genes of interest and 3 224 

housekeeping genes. The list consists of the genes from the HEDGEHOG, NOTCH, WNT, EMT, 225 

PPARγ and adenylate cyclase pathways (supplementary file S1).  TaqMan low density arrays 226 

were utilized to measure expression of these genes in CUBs of ER- and ER+ cases compared with 227 

the reduction controls.  The study population included 84 women, with participants comprised of 228 

28 matched triplets of women with ER-positive breast cancer, ER-negative breast cancer, and 229 

reduction mammoplasty controls. The three groups were matched by age, race and menopausal 230 

status as shown in Fig. S2A. As noted in our original publication, ANOVA revealed a significant 231 

difference in BMI across the three groups with BMI in the reduction mammoplasty control group 232 

(30.0 ± 5.8) notably higher than in ER-negative cases (25.3 ± 6.3, p=0.015), but not significantly 233 

higher than in the ER-positive group (26.7 ± 5.5, p= 0.136) (10). There was no significant 234 

difference in HER2 status between ER-positive and ER-negative cases. The majority of the 235 

selected genes had higher expression in high risk CUB specimens than the controls, irrespective 236 

of the ER status of the index tumor (Fig. S2B). The comparison between the ER- and ER+ CUBs 237 

revealed that in the ER- CUBS there is increased expression of genes that function in the Notch 238 

pathway: NOTCH1 (1.7-fold, p=0.002, BH_adjP=0.07), NOTCH4 (1.7-fold, p=0.04, 239 

BH_adjP=0.3), DLL4 (2.5-fold, p=0.7, BH_adjP=0.8) and HEY 1 (1.5-fold, p=0.05, 240 

BH_adjP=0.3), in addition to the SMO gene (1.47-fold, p= 0.05, BH_adjP=0.3), which is a key 241 
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component of the hedgehog signaling pathway (Fig. 3). Altogether, these data reveal upregulation 242 

in NOTCH signaling in benign breast tissue samples from women at risk for ER- disease, 243 

suggesting that dysregulation of these pathways may play a role in the early stages of ER- cancer 244 

development. 245 

LA increases the expression of Notch pathway genes and specific genes involved in  fatty acid 246 

oxidation in vitro The increased expression of Notch pathway genes we discovered in the ER- 247 

CUBs, along with the similar findings in MCF10A cells exposed to octanoate (described above), 248 

led us to test the hypothesis that long chain fatty acids have similar effects on gene expression.  249 

We therefore investigated whether an increased LA environment influences the expression of 250 

Notch pathway genes and specific genes involved with fatty acid oxidation in vitro. We treated 251 

MCF-10A cells and mammary organoids from reduction mammoplasty patient samples with LA 252 

for 24 hours and then quantified changes in gene expression using RT-qPCR. To begin with, we 253 

assayed the genes involved in the activation of fatty acid oxidation. Upon entering cells, free fatty 254 

acids are converted into a fatty acyl-CoA molecules by the enzymes of the acyl-CoA synthetase 255 

(ACS) family (37). Notably, acyl-CoA synthetase long chain (ACSL3) is one of the LiME genes 256 

found to be upregulated in high risk ER- CUBs samples.  Generation of acetyl-CoA occurs through 257 

a cyclical series of reactions in which a fatty acid is shortened by two carbons per cycle, eventually 258 

generating  acetyl co-A. Acetyl co-A is a substrate for ketogenesis, which is initiated by the 259 

mitochondrial enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), another of the 260 

previously identified LiMe genes. The mechanism for LCFAs oxidation is slightly more complex 261 

than for MCFAs, as this is regulated primarily via the enzyme carnitine palmitoyltransferase 1 262 

(CPT1), the rate limiting enzyme of FAO which enables transport into the mitochondria.  As shown 263 

in Fig. 4A, the expression of HMGCS2, ACSL3, and CPT1B were increased by LA exposure in 264 
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MCF-10A cells and mammary organoids. Additionally, we observed a significant increase in 265 

DLL4 expression followed by HEY1, HEY2 and NOTCH1 in the lipid treated mammary cells (Fig. 266 

4A). We revisited the ATAC sequencing data to examine the effect of LA on chromatin 267 

architecture near key genes in the DLL4/NOTCH signaling pathway, and observed increased 268 

accessibility around the transcription start sites of DLL4, NOTCH1 and HEY1 showing significant 269 

lowered chromatin density with p-values of 1.62e-17, 0.017 and 0.03 respectively (Fig. 4B & Fig. 270 

C). 271 

 272 

Fatty acids drive flux through metabolic reactions resulting in increased histone methylation 273 

While most of the experiments reported by McDonnell et al. were performed in AML 12 liver 274 

cells, these investigators also demonstrated increased H3K9 acetylation in octanoate-exposed 275 

MCF7 and MDAMB-231 breast cancer cells (24). Therefore, we sought to determine if these same 276 

experimental conditions would lead to H3K9 acetylation in a non-malignant MCF-10A cells. We 277 

exposed MCF-10A non-transformed ER - breast epithelial cell line to 5mM octanoate (C8) for 24 278 

hours in medium containing both glucose (1.441 g/L) and glutamine (0.292 g/L). Western blot 279 

analysis demonstrated that octanoate exposure of MCF-10As resulted in increased acetylation at 280 

both H3K9 and H3K14 (Fig. 5A). To demonstrate that this was a fatty acid-specific effect, we 281 

treated the cells with 1,4-Cyclohexanedimethanol (1,4-CHDM), an alcohol with the same formula 282 

as octanoate; no acetylation was observed consequent to the alcohol exposure (Fig. S3A). To 283 

validate the specificity of the antibody against the acetylated histone lysines, we treated MCF-10A 284 

cells with sodium butyrate, a histone deacetylase (HDAC) inhibitor. Sodium butyrate treatment 285 

increased the acetylation of H3K9 and H3K14 as shown in Fig. S3B.   286 

To exhaustively explore the impact of octanoate treatment on metabolic pathways, we used flux 287 

balance analysis (FBA) (38). FBA makes use of genome-scale metabolic network models that 288 
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contain all known metabolic reactions in a cell or tissue based on evidence from the published 289 

literature (39). Genome-scale metabolic models have been widely used to predict the metabolic 290 

behavior of various mammalian cell types (40-44). Here we used the Recon1 human network 291 

model that maps the relationship between 3744 reactions, 2766 metabolites, 1496 metabolic genes, 292 

and 2004 metabolic enzymes (45). This model was augmented with biochemical reactions 293 

corresponding to histone acetylation and methylation (40, 46), allowing us to predict the 294 

consequences of octanoate-induced metabolic changes on histone modifications by tracking the 295 

flux through the substrates for the histone modifications. These models were previously used to 296 

predict bulk histone acetylation levels in various cell lines based on the nuclear flux of acetyl-coA 297 

directed towards histone acetylation (46). Similarly, bulk histone methylation levels can be 298 

predicted based on the nuclear flux of S-adenosyl-L-methionine (SAM) (40).The model predicted 299 

octanoate treatment would result in increased histone methylation levels, with a more modest 300 

increase in histone acetylation levels (Fig. 5C). As a comparison, we repeated this analysis with 301 

immortalized hepatocyte cells used by McDonnel et al; they found a significant increase in histone 302 

acetylation after octanoate treatment (24). We calculated metabolic flux in these hepatocytes using 303 

the transcriptomics data from McDonnel et al and found a much larger increase in histone 304 

acetylation after octanoate treatment (Fig. S3C). These results suggest that the impact of metabolic 305 

alterations on histone acetylation is cell-type specific, as observed in prior studies (47, 48). Overall, 306 

out of the 3759 reactions in the model, we identified 38 that showed significant increased activity 307 

after octanoate treatment (p-value < 0.01; Fig. S3C). As expected, reactions involved in lipid and 308 

fatty acid metabolism, specifically triacyl glycerol synthesis and glycerophospholipid metabolism 309 

were upregulated. Interestingly, among the up-regulated reactions were several reactions related 310 

to the one-carbon metabolic pathway, which links folate, SAM, methionine, glycine and serine 311 
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metabolism (Fig. 5D). The reactions methionine adenosyltransferase, methionine synthase, 312 

adenosyl homocysteinase, 5,10-methylene-tetrahydrofolatereductase, glycine N-313 

methyltransferase, and formyltetrahydrofolate dehydrogenase were all predicted to have increased 314 

activity after treatment (p-value < 0.01). Increased activity of the one-carbon pathway is associated 315 

with increased H3K4 trimethylation in stem cells and cancer cell lines (40, 49).  These reactions 316 

likely support increased histone methylation by providing one carbon units.  317 

Lipid exposure eventuates in histone methylation. In order to profile the specific histone marks 318 

significantly changed by the octanoate treatment we performed liquid chromatography/mass 319 

spectrometry on tryptic peptides isolated from the nuclei of treated and control MCF10A cells. 320 

Increased methylation was observed in various histone proteins including H3K9me1/2/3, 321 

H3.1K27me2/3, H3.3K36me2/3, H3K79me1/2 and H3K4 (Fig. 5F) together with increased 322 

acetylation of H3K14 and H4K16 (Fig. 5E). Notably, the GSEA analysis showed a significant 323 

correlation of H3K27 methylation (NES = 2.47, FDR q-value =0.05) and H3K4 methylation 324 

(NES= 1.24, FDR q-value = 0.1) with octanoate treatment (Fig. S3 D-E) suggesting this lipid rich 325 

environment eventuates in  histone methylation in mammary epithelial cells. 326 

Discussion  327 

The known determinants of risk for ER-negative breast cancer are genetic (either specific racial 328 

inheritance, germline mutations in genes such as BRCA1) or systemic/behavioral factors 329 

(premenopausal obesity (50), absence of a breastfeeding (51)). In contrast, few if any local factors 330 

in the breast environment serve to identify women at risk for ER negative tumors. Local in-breast 331 

factors are of great interest however, since they may be more specifically targetable for breast 332 

cancer prevention than systemic factors. Of note, the two strongest risk factors for breast cancer 333 

overall (other than high penetrance germline mutations) are local: atypical proliferative lesions , 334 
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and (52) extremely dense breast tissue (53) . This reasoning motivated us to investigate the local 335 

breast biology that may promote the development of ER negative rather than ER positive breast 336 

cancer,  using the contralateral unaffected breast (CUB) of women undergoing surgery for a 337 

unilateral primary breast cancer as a model for ER-specific breast cancer risk (7, 54). In our initial 338 

study, we identified a highly correlated lipid metabolism (LiMe) gene signature, which was 339 

enriched in the CUBs of women with ER- breast cancer.   340 

To explain the biologic basis for this association, we developed an in vitro model wherein we 341 

exposed either MCF10A, an ER negative, non-tumorigenic epithelial cell line, or breast organoids 342 

derived from reduction mammoplasty samples to an extracellular milieu rich in medium or long 343 

chain fatty acids.   This model system has now enabled us to demonstrate that the exposure of 344 

breast epithelial cells to these fatty acids results in a dynamic and profound change in gene 345 

expression, accompanied by changes in chromatin packing density, chromatin accessibility and 346 

histone PTMs.  The histone modifications, in turn, are the result of both the lipid-engendered 347 

increased expression of the requisite enzymes and the increased production of their substrates.  Our 348 

metabolic flux analysis revealed the upregulation of several reactions related to the one-carbon 349 

metabolic pathway, which links folate, SAM, methionine, glycine and serine metabolism. This 350 

insight was not evident upon analysis of differential gene expression, which is not surprising as 351 

gene expression changes often do not reflect the flux of metabolic reactions (40). 352 

Our proteomics data reveal increased methylation at H3K27me2/3, H3K36me3 and H3K9me2/3 353 

in cells treated with octanoate; GSEA analysis showed that genes with ontologies related to histone 354 

methylation at H3K27 and H3K4 exhibit changes in expression in the lipid-treated cells.  355 

Methylation of H3K27 is carried out by EZH2, which showed a 1.65-fold increase in expression 356 
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(p=0.001) following exposure to octanoate. EZH2 expression is sensitive to the level of oxidative 357 

phosphorylation. Our metabolic flux data demonstrated increased oxidative phosphorylation 358 

following exposure to octanoate; specifically flux through the electron transport chain (ETC).  359 

Inhibition of oxidative phosphorylation via complex I of the ETC by the biguanide phenformin 360 

markedly reduces EZH2 and SUZ12 protein expression (55). This suggests that increased H3K27 361 

methylation may be a consequence of increased flux through the ETC increasing EZH2 expression 362 

in concert with increased production of its substrate SAM.  Several studies have revealed a 363 

significant association of EZH2 overexpression with ER negative breast cancer (56) or ER negative 364 

luminal progenitor cell expansion (57).  EZH2 is the enzymatic subunit of Polycomb Repressive 365 

Complex 2, which catalyzes the trimethylation of H3K27.  However, EZH2’s actions are not be 366 

limited to its methyltransferase activity.  EZH2 has been shown to bind to the NOTCH 1 promoter 367 

resulting in increased NOTCH1 transcription, stem cell expansion and accelerated tumor initiation 368 

(58). The effect of NOTCH1 expression on mammary cell-lineage fate determination was 369 

recognized shortly after the identification of the mammary stem cell (59). Mammary stem cell 370 

differentiation is a hierarchical organization, and lineage tracing experiments have determined that 371 

NOTCH1 expression exclusively generates ER- luminal cells (60). A subsequent study by these 372 

investigators revealed that during mammary embryogenesis Notch signaling prevents the 373 

generation of basal precursors, and cells expressing active NOTCH1 exclusively give rise to the 374 

ER- (Sca1-/CD133-) lineage at any developmental stage from mouse embryonic day 13.5 to 375 

postpartum day 3 (61).  Even more interesting given our focus on the origins of ER negative breast 376 

cancer was their observation that pubertal cells retain plasticity.  Ectopic activation of Notch1 in 377 

basal cells at puberty was able to completely switch their identity to ER negative luminal cells. 378 
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Additional clues regarding the association of our experimental findings with ER negative breast 379 

cancer comes from GWAS data.  A study that included 21,468 ER-negative cases and 100,594 380 

controls identified independent associations of ten single nucleotide polymorphisms (SNPs) with 381 

the development of ER- breast cancer (62). Pathway analysis was performed by mapping each 382 

SNP to the nearest gene.  This identified several pathways implicated in susceptibility to ER-383 

negative, but not ER+ breast cancer. Included among these was the adenylate cyclase (AC) 384 

activating pathway.  One of the significantly altered biologic processes that we identified by RNA 385 

sequencing of the octanoic acid treated cells is adenylate cyclase-activating adrenergic receptor 386 

signaling.  Adenylate cyclase signals via cyclic AMP.  Regions of chromatin with increased 387 

accessibility are associated with increased gene expression; our ATAC-Seq results show that 388 

linoleic acid exposure significantly increased accessibility to genes in the cAMP signaling 389 

pathway. In their discussion of ER- GWAS results, Milne et al. suggest that stimulation of the beta 390 

2 adrenergic-adenylate cyclase-cAMP-β-arrestin–Src–ERK pathway may play a role in the genesis 391 

of ER- breast cancer.   MetaCore analysis of our RNA-sequencing data reveals similar pathway 392 

activation, however, it is the beta1 adrenergic receptor that demonstrates increased expression in 393 

the octanoate treated cells.  In addition, our ATAC-seq data showed increased RAP1 signaling 394 

pathway accessibility.  Adenylate cyclase signaling also functions via Epac-Rap1-B-raf-MEK-395 

ERK, with this signaling shown to be responsible for sustained ERK activation that occurs at a 396 

later time points (10-30 minutes) after cAMP activation (63). The MAPK (ERK) pathway can be 397 

stimulated by means other than adrenergic receptor ligand binding.  Activation of this pathway by 398 

overexpression of EGFR+EGF, c-erbB-2, RAF1 or MEK in MCF7 cells leads to estrogen-399 

independent growth and down-regulation of ERα expression (64).  These results suggest that 400 

hyperactivation of the MAPK(ERK) pathway plays a role in the generation of the ER- phenotype 401 
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in breast cancer.  We observed MAPK activation in our analysis of differentially expressed genes, 402 

i.e., “positive regulation of the MAPK cascade,” and in the analysis of regions of chromatin with 403 

significantly increased chromatin.   404 

Using stratified LD score regression, a statistical method for identifying functional enrichment 405 

from GWAS summary statistics, SNPs associated with the H3K4me3 histone mark were 406 

determined to be contributing to the heritability of ER-negative breast cancer, (2.4-fold, P = 407 

0.0005) (62).  Increased activity of the one-carbon pathway is associated with increased H3K4 408 

trimethylation in stem cells and cancer cell lines (40, 49). Restriction of methionine with 409 

consequent modulation of SAM and S-Adenosyl-L-homocysteine (SAH) levels affects 410 

methylation at H3K4me3, H3K27me3 and H3K9me3, with H3K4me3 exhibiting the largest 411 

changes (45).  Interestingly, this restriction leads to loss of H3K4me3 at the promoters of colorectal 412 

cancer (CRC)-associated genes, with resulting decreased expression (p = 0.02, Fisher’s exact test).   413 

A computational model developed to identify the direct influences on methionine concentrations 414 

in humans suggests that dietary intake explains about 30% of the variation in methionine 415 

concentration, and fats (arachidic acid in this model) are among the foods contributing to higher 416 

methionine levels (49). 417 

One-carbon metabolism has multiple other functions in addition to producing SAM; one of which 418 

is to maintain redox homeostasis by producing NADPH. One of the earliest steps in breast 419 

tumorigenesis is the filling of the duct/acinar lumen with malignant cells. The viability of ECM-420 

detached cells is dependent on combating the generation of reactive oxygen species (ROS) (65).  421 

For example, shuttling flux through the pentose phosphate pathway (PPP) promotes NADPH 422 

production and consequent reduction of ECM detachment-induced reactive oxygen species.  It 423 

appears, however, that the process that produces the reducing equivalent is immaterial as cells can 424 
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also utilize NADPH-regenerating enzymes in the folate pathway as in metastasizing melanoma 425 

(66).  Therefore, the one-carbon metabolism initiated by FAs may facilitate early tumorigenesis 426 

and the survival of matrix detached cells by the production of NADPH. 427 

In conclusion, we have demonstrated in the present study that exposure of breast epithelial cells in 428 

vitro to fatty acids results in epigenetic effects that produce dynamic and profound changes in the 429 

expression of genes that have been associated with the development of ER- breast cancer.  Next 430 

steps include demonstrating that these same changes are observed in vivo.  As mentioned in the 431 

introduction, polyunsaturated fatty acids are present in normal breast tissue.  Although we 432 

measured lipid species in the serum of the donors of the CUB specimens, fatty acids can also be 433 

mobilized from adjacent adipose tissue; adipocytes have been shown to be a reservoir of lipids for 434 

breast cancer stem cells (67).  We hypothesize that the expression of genes associated with the 435 

development of ER- breast cancer is consequent to lipid stimulation of one-carbon metabolism 436 

with resultant changes in histone methylation.  Important roles for glycolysis, glutaminolysis, 437 

lipogenesis and mitochondrial activity have been demonstrated in oncogenesis; the one-carbon 438 

pathway has comparatively received less attention and the insights we provide here generate new 439 

questions regarding lipid metabolism and ER negative breast cancer, to be pursued in future 440 

investigations. 441 

Materials and Methods 442 

Cell culture 443 

MCF10A cell line was obtained from American Type Culture Collection (ATCC) and cultured in 444 

mammary epithelial cell growth basal medium with single quots supplements and growth factors 445 

(#Lonza CC-4136). Cells were treated with the medium-chain fatty acids (Sigma) sodium 446 
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octanoate (C8) dissolved in PBS, and long-chain fatty acids (Sigma) Linoleic acid (C18) 447 

complexed with fatty acid free BSA (Roche 10775835001). PBS and BSA were used as the vehicle 448 

control in experiments containing C8 and C18 respectively. Cells were counted using an Invitrogen 449 

Countess automated cell counter using Trypan blue exclusion method and seeded at the indicated 450 

densities. All experiments were done in complete MEBM media with fatty acids or vehicle. 451 

CUB Samples 452 

Patients diagnosed with unilateral breast cancer and undergoing contralateral prophylactic 453 

mastectomy at Prentice Women’s Hospital of Northwestern Medicine were recruited under an 454 

approved protocol (NU11B04), with exclusions for neoadjuvant treatment, prior endocrine therapy 455 

or pregnancy/lactation during the prior 2 years. A group of reduction mammoplasty (RM) patients 456 

were also recruited as standard risk controls. The fresh tissues were frozen and stored in liquid 457 

nitrogen. Tissue samples from 56 bilateral mastectomy cases (28 ER+ and 28 ER–) and 28 healthy 458 

RM controls were used in this study. The ER+ cases, ER– cases and controls were matched by 459 

age, race, and menopausal status.  460 

Mammary Organoids Preparation 461 

Tissues were collected from the non-obese, premenopausal women coming for the reduction 462 

mammoplasty. Transfer the breast tissue to be processed into a sterile petri dish. Chop big breast 463 

tissue mass into small pieces. Transfer the minced tissue to a sterile 50ml tube and add 30ml of 464 

Kaighn’s Modification media (Gibco #21127022) containing collagenase from Clostridium 465 

histolyticum (Sigma Aldrich, catalog no. C0130), final collagenase concentration is 1 mg/mL. 466 

Media containing collagenase is filtered using 0.22 µm filter.  The falcon is sealed with parafilm 467 

and tissue is gently dissociated on a shaker at 100 rpm and 37°C, overnight (16 hours). Following 468 
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day, organoids are collected by the centrifugation of the suspension at 800 rpm for 5 min.  Discard 469 

the supernatant and wash the organoid pellet two-three times with PBS. Organoids with a size 470 

between 40-100uM are collected and resuspended in the fresh media (3mL) and added to a 6 well 471 

plate (Ultra-Low Attachment Surface plate, Corning # CLS3471). Organoids are allowed to 472 

stabilize for 24 hours before using it for the experiments. 473 

Fatty acid preparation 474 

Sodium octanoate (C8) was dissolved in PBS. To bind linoleic acid (Sigma # L8134) to BSA, they 475 

were initially dissolved in water to yield a 50 mM final concentration. Dissolve 0.12g of BSA in 476 

1.2 ml of water resulting a 10% BSA solution. Combine 0.2 ml aliquot of the Na linoleate solution 477 

to the 10% BSA solution. After 15 min of slow stirring at 37°C, 0.6 ml of water was added to bring 478 

the final concentration of Na linoleate to 5 mMol/L (Pappas et al, 2001). 479 

Lipid analysis 480 

LC-MS grade methanol, dichloromethane, and ammonium acetate were purchased from Fisher 481 

Scientific (Pittsburgh, PA) and HPLC grade 1-propanol was purchased from Sigma-Aldrich (Saint 482 

Louis, MO). Milli-Q water was obtained from an in-house Ultrapure Water System by EMD 483 

Millipore (Billerica, MA). The Lipidyzer isotope labeled internal standards mixture consisting of 484 

54 isotopes from 13 lipid classes was purchased from Sciex (Framingham, MA). 485 

 Sample Preparation 486 

Frozen plasma samples were thawed at room temperature (25 °C) for 30 min, vortexed; 25 uL of 487 

plasma was transferred to a borosilicate glass culture tube (16 x 100 mm). Next, 0.475 mL of 488 

water, 1.45 mL of 1:0.45 methanol:dichloromethane, and 25 uL of the isotope labeled internal 489 

standards mixture were added to the tube. The mixture was vortexed for 5 sec and incubated at 490 
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room temperature for 30 min. Next, another 0.5 mL of water and 0.45 mL of dichloromethane 491 

were added to the tube, followed by gentle vortexing for 5 sec, and centrifugation at 2500 g at 15 492 

°C for 10 min. The bottom organic layer was transferred to a new tube and 0.9 mL of 493 

dichloromethane was added to the original tube for a second extraction. The combined extracts 494 

were concentrated under nitrogen and reconstituted in 0.25 mL of the mobile phase (10 mM 495 

ammonium acetate in 50:50 methanol:dichloromethane). 496 

 Mass Spectrometry 497 

Quantitative lipidomics was performed with the Sciex Lipidyzer platform consisting of Shimadzu 498 

Nexera X2 LC-30AD pumps, a Shimadzu Nexera X2 SIL-30AC autosampler, and a Sciex 499 

QTRAP® 5500 mass spectrometer equipped with SelexION® for differential mobility 500 

spectrometry (DMS). 1-propanol was used as the chemical modifier for the DMS. Samples were 501 

introduced to the mass spectrometer by flow injection analysis at 8 uL/min. Each sample was 502 

injected twice, once with the DMS on (PC/PE/LPC/LPE/SM), and once with the DMS off 503 

(CE/CER/DAG/DCER/FFA/HCER/LCER/TAG). The lipid molecular species were measured 504 

using multiple reaction monitoring (MRM) and positive/negative polarity switching. Positive ion 505 

mode detected lipid classes SM/DAG/CE/CER/DCER/HCER/DCER/TAG and negative ion mode 506 

detected lipid classes LPE/LPC/PC/PE/FFA. A total of 1070 lipids and fatty acids were targeted 507 

in the analysis. 508 

Data Processing: 509 

Data was acquired and processed using Analyst 1.6.3 and Lipidomics Workflow Manager 1.0.5.0. 510 

For statistical analysis,  we evaluated the lipid species enrichments in the ER+, ER-, and control 511 

groups. The different groups were compared in pair-wise and the log-fold changes of lipid 512 
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enrichment were derived, along with the effect sizes and p-values inferred from the regression 513 

models using the lipid measurement as an input variable and group information as the output 514 

variable.  515 

Library preparation and RNA Sequencing: 516 

RNA was isolated with Qiagen RNeasy Plus Mini Kit (# 74134) as per the manufacturer’s protocol.  517 

The concentration and quality of total RNA in samples were assessed using Agilent 2100 518 

Bioanalyzer.  RNA Integrity Number (RIN) of the vehicle and octanoate sample was 9.9 and 9.8 519 

respectively. Sequencing libraries were prepared from a total of 100ng of RNA using KAPA RNA 520 

HyperPrep Kit.  Single-Indexed adapters were obtained from KAPA (Catalog# KK8701). Library 521 

quality was assessed using the KAPA Library Assay kit. Each indexed library was quantified and 522 

its quality accessed by Qubit and Agilent Bioanalyzer, and 6 libraries were pooled in equal 523 

molarity. 5µL of 4nM pooled libraries were denatured, neutralized and a final concentration of 1.5 524 

pM of pooled libraries was loaded to Illumina NextSeq 500 for 75b single-read sequencing. 525 

Approximately 80M filtered reads per library was generated. A Phred quality score (Q score) was 526 

used to measure the quality of the sequencing. More than 88% of the sequencing reads reached 527 

Q30 (99.9% base call accuracy). Single-end FASTQ reads from RNA-seq measurements were 528 

aligned and mapped to hg38 ENSEMBL genome using STAR alignment (68). 529 

Gene Ontology Analysis of Differentially Expressed Genes 530 
 531 
Transcriptions per million (TPM) from mapped reads were estimated using RSEM from the STAR 532 

aligned reads (69). The DESeq2 R package (70) was employed to determine differentially 533 

expressed genes for the octanoate treatment group compared to the vehicle-treated controls with 534 

FDR cutoff = 0.01 and |log2 𝐹𝐹𝐹𝐹| ≥ 2 to identify a reasonable number of differentially expressed 535 
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genes, on the order of several thousands of genes total, for subsequent analysis. Gene ontology 536 

pathway analysis for biological processes was performed on each set of differentially expressed 537 

genes using Metascape (71). 538 

GSEA Analysis 539 

Raw counts were first estimated using HTSeq from STAR aligned reads (72). Next, replicates for 540 

control cells and treated cells were merged and normalized using modules from the GenePattern 541 

software package (73). Gene set enrichment analysis (GSEA) (74, 75) was performed on these 542 

DESeq-normalized reads using annotations from online databases, including KEGG, Hallmark, 543 

Reactome, BioCarta, and Canonical Pathways. The normalized enrichment score (NES) of these 544 

top 20 pathways associated with the control and the octanoate-treated condition are shown with 545 

nominal p-value = 0.0. Metascape was employed to perform network analysis on these top 20 546 

pathways associated with each treatment condition. 547 

ATAC Seq Library preparation and sequencing 548 

1×106 cells were pelleted and lysed in ATAC-resuspension buffer as described (76). Extracted 549 

nuclei was processed for TN-5 mediated tagmentation using the Illumina Tagment DNA Enzyme 550 

and buffer kit (Nextera Illumina # 20034210) : Transposon reaction mix  as 2X TD Buffer-25 µl, 551 

Tn5 Transposase – 2.5µl, 1X PBS containing nuclei- 16.5µl, 10% Tween-20- 0.5µl (Sigma # 552 

P9416), 1% Digitonin-0.5µl (Promega # G9441) and water at 37°C, 1000rpm for 30mins. 553 

Tagmented DNA was isolated by Nucleospin PCR clean-up (Takara Bio USA, Inc # 740609.250). 554 

Libraries were amplified for 8 cycles and purified using AMPure XP (Agencourt # A63880). 555 

Fragment sizes were determined using 106 LabChip GXII Touch HT (PerkinElmer), and 2×50 556 

paired-end sequencing performed on NovaSeq S1 6000 flow cell (Illumina) flow to yield 100M 557 

reads per sample. 558 
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ATAC-seq data sequencing and peak calling 559 

Illumina adapter sequences and low-quality base calls were trimmed off the paired end reads with 560 

Trim Galore v0.4.3. Sequence reads were aligned to human reference genome hg38 using bowtie2 561 

with default settings. Duplicate reads were discarded with Picard. Reads mapped to mitochondrial 562 

DNA together with low mapping quality reads were excluded from further analysis. MACS2 was 563 

used to identify the peak regions with options -f BAMPE -g hs –keep-dup all -B -q 0.01. Peaks for 564 

samples in the same condition were merged using the function ‘merge’ of bedtools and peaks for 565 

samples in different conditions were intersected using the function of ‘intersect’ of bedtools.  566 

Differential chromatin accessibility analysis 567 

The number of cutting sites of each samples were counted using the script dnase_cut_counter.py 568 

of pyDNase. The raw count matrix was normalized by CPM. R package edgeR was used to conduct 569 

the differential accessibility analysis for all 66,853 common peaks. Significant different accessible 570 

chromatin regions under different conditions were defined as the threshold 0.05 for FDR. With the 571 

cutoff 1 for the absolute value of fold change, comparing treatment group with vehicle control 572 

group, we got 1,704 significant increased peaks and 3,340 significant decreased peaks. 573 

Motif analysis 574 

Motif analysis were conducted for significant changed chromatin regions using 575 

‘findMotifsGenome.pl’ script of HOMER with default settings. The principal component analysis 576 

was conducted to detect the important motifs using the relative enrichment of motifs. Biplot was 577 

used to visualize the principal component analysis results.  578 

Genomic distribution of open chromatin regions 579 
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We calculated the overall genomic distribution of open chromatin regions, comparing the 580 

treatment to the vehicle, based on the methods as described (77). We used the hg38 refseq genes 581 

annotation from UCSC genome browser to define the genomic features. All TSSs were considered 582 

in the analysis if a gene had multiple TSSs. The formula for reported enrichment is (a/b)/(c/d). a 583 

is the number of peaks overlapping a given genomic feature, b is the number of total peaks, c is 584 

the number of regions corresponding to the feature, and d is the estimated number of discrete 585 

regions in the genome where the peaks and feature could overlap. Specifically, d is equal to 586 

(genome size)/ (mean peak size + mean feature size), following the implementation in the bedtools 587 

fisher. 588 

Pathway analysis for open chromatin regions 589 

For the 326 open chromatin regions with logFC > 1.5 and FDR < 0.05 comparing the treatment 590 

with the vehicle, we used R package ‘clusterProfile’ to conduct KEGG pathway analysis. 591 

Validation of candidate genes qRT-PCR: 592 

Treated cells and organoids were washed with PBS and RNA was isolated with Qiagen RNeasy 593 

plus mini Kit (# 74134) as per the manufacturer’s protocol. cDNA was synthesized using the 594 

SuperScript VILO cDNA synthesis kit (#11755250). Real-time qPCR was performed using 595 

Applied biosystem Quant studio 5 real time PCR System (Thermo Scientific). Expression data of 596 

the studied genes was normalized to RPLP1 to control the variability in expression levels and were 597 

analyzed using the 2-ΔΔCT method described by Livak and Schmittgen (78). TaqMan gene 598 

expression assays were purchased from ThermoFisher Scientific and the list of the assays is 599 

provided in supplemental file S1.  600 

qRT-PCR based TaqMan low density array assays 601 
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Based on histological diagnosis atypical hyperplasia benign breast epithelium was identified and 602 

captured by laser capture microdissection (LCM). RNA was isolated with Qiagen RNeasy plus 603 

mini Kit (# 74134) as per the manufacturer’s protocol. RNA quality was checked for integrity 604 

using Bioanalyzer 2100 by Agilent. 100ng RNA was reverse transcribed using High Capacity 605 

RNA-to-cDNA Master Mix (#4388950) and preamplified for 14 cycles using TaqMan PreAmp 606 

Master Mix 2X((#4488593) and pooled assay mix for the genes in which we were interested. Pre-607 

amplified cDNA were diluted to 1:20 with 1X TE buffer and mixed with Fast advanced master 608 

mix (# 4444965)     Each sample was loaded in duplicate in 384- well microfluidic cards 609 

customized with 47 genes of interest including three housekeeping genes (GAPDH, RPLP0 and 610 

RPLP1). TaqMan assays with best coverage attribution were used for the TLDA study as 611 

recommended by the manufacturer. A list of the genes and the Assay ID for the primers obtained 612 

from ThermoFisher is provided in supplemental file S2.  Real Time PCR reactions were carried 613 

out in Quant studio 7 Flex system for 40 cycles using comparative Ct (∆∆Ct) method. Results were 614 

analyzed using Expression suite software. 615 

Live cell PWS Imaging:  616 

Before treatment and imaging, MCF-10A cells were seeded in 6 wells black culture plate at least 617 

35% confluency and allowed to adhere overnight before the treatment with 500µM LA (C18:2) 618 

and 5mM Octanoate. We based the concentration of LA used in the experiment on the range in 619 

human plasma: 0.2 to 5.0 mmol/L (79). For chromatin study experiments, live-cell PWS images 620 

were acquired at room temperature (22 °C) and in trace CO2 (open air) conditions. Imaging was 621 

performed using the  commercial inverted microscope (Leica DMIRB) Hamamatsu Image-EM 622 

CCD camera C9100-13 coupled to a liquid crystal tunable filter (LCTF; CRi Woburn, MA) to 623 

acquire mono-chromatic spectrally resolved images that range from 500–700 nm at 1 nm intervals 624 
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produced by a broad band illumination provided by an Xcite-120 LED Lamp (Excelitas, Waltham, 625 

MA) as previously described (33, 34). Briefly, PWS measures the spectral interference resulting 626 

from internal light scattering structures within the cell, which captures the mass density 627 

distribution. To obtain the interference signal directly related to refractive index fluctuations in the 628 

cell, we normalized measurements by the reflectance of the glass medium interface, i.e., to an 629 

independent reference measurement acquired in an area without cells. PWS measures a data cube 630 

(spatial coordinates of a location within a cell and the light interference spectrum recorded from 631 

this location). The data cube then allow to measure spectral SD (Σ), which is related to the spatial 632 

variations of refractive index within a given coherence volume. The coherence volume was defined 633 

by the spatial coherence in the transverse directions (~200 nm) and the depth of field in the axial 634 

direction (~1 mm). In turn, the spatial variations of refractive index depended on the local 635 

autocorrelation function (ACF) of the chromatin refractive index. Finite-difference time-domain 636 

simulations have shown that PWS is sensitive to ACF within the 20- to 200-nm range. According 637 

to the Gladstone-Dale equation, refractive index is a linear function of local molecular crowding. 638 

Therefore, S depends on the ACF of the medium’s macromolecular mass density. Small molecules 639 

and other mobile crowders within the nucleus are below the limit of sensitivity of PWS, and PWS 640 

is primarily sensitive to chromatin conformation above the level of the nucleosome. To convert S 641 

for a given location within a nucleus to mass fractal dimension D, we modeled ACF as a power 642 

law B¥(r)= ðrÞ ¼ s2ϕrrmi_ _D_3, where ϕ is the variance of CVC (60). In general, S is a sigmoidal 643 

function of D. However, for fractal structures such as a chromatin packing domain where within 644 

physiological range 2 < D < 3, S can be approximated as a linear function of D by the relationship 645 

D ≈ D0 + aS, where D0 = 1.473 and is comparable to the minimal fractal dimension that an 646 

unconstrained polymer can attain and constant a ~ 7.6. The measured change in chromatin packing 647 
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scaling between treatment conditions was quantified by first averaging D within each cell’s 648 

nucleus and then averaging nuclei from over 100 cells per condition. 649 

Flux based analysis (FBA) 650 

We calculated the relative activity of reactions in MCF-10A cells by interpreting gene expression 651 

data using the Recon1 human metabolic model augmented with histone modifications (46, 80). 652 

We then identified a metabolic flux state that is most consistent with gene expression data in 653 

control and octanoate treatment. This was achieved by maximizing the activity of reactions that 654 

are associated with up-regulated genes and minimizing flux through reactions that are down-655 

regulated in a condition, while simultaneously satisfying the stoichiometric and thermodynamic 656 

constraints embedded in the model using linear optimization (46, 80). The glucose, fatty acid, and 657 

glutamine levels in the simulations were adjusted based on the growth media used for culturing 658 

the cells. All p-values were corrected for multiple comparisons. 659 

 660 

Statistical analysis 661 

Prior to performing the analyses, the log2-transformed relative (log2RE) amounts of mRNA 662 

expression normalized to GAPDH and expressed as log22-(CtX- CtGAPDH) = -(CtX- CtGAPDH) where 663 

Ct is threshold cycle. Mann-Whitney test was performed to identify genes with pairwise 664 

differences between ER+ and ER- samples. The analyses were adjusted for multiple testing, 34 665 

genes, using the Benjamini-Hochberg (BH) adjustment in order to control the false discovery rate 666 

at the two-sided 0.05 level. Boxplots were used to visualize differences in log2RE by group. The 667 

log2RE analyses were conducted using the R statistical environment [R] version 3.5.1. 668 

Supplementary Materials 669 
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S1 List of primers used for qRT-PCR validation of candidate genes.  List of Assay ID 670 

(ThermoFisher) of primers utilized in qRT-PCR of candidate genes (Fig. 4A). 671 

S2 List of genes assayed by TaqMan low density array (TLDA) and their corresponding 672 

primers.  List of genes and the corresponding Assay ID (ThermoFisher) of primers used for TLDA 673 

assays. 674 
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Fig. 1. Lipid-rich environment enables transcriptional reprogramming in mammary 872 

epithelial cells. (A) 24-hour treatment of MCF10A cells with 5mM octanoate results in a 873 

completely distinct transcriptional profile compared to untreated controls. 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the expression 874 

of genes in the control condition across all 3 control replicates, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 is the average expression 875 

for the control condition across all genes and replicates, 𝐸𝐸𝑜𝑜𝑐𝑐𝑐𝑐 is the expression of genes across all 876 

3 octanoate replicates. 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 represents the ratio of expression of a particular gene to the 877 

average expression across all control cells. Thus, a positive value of ln( 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎

) corresponds to 878 

genes that are highly expressed in the control conditions while a negative value of ln( 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎

) 879 

corresponds to genes that have an initial lower expression in the control condition. 𝐸𝐸𝑜𝑜𝑐𝑐𝑐𝑐/𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 880 

represents the ratio of expression of a particular gene for octanoate-treated versus vehicle control-881 

treated cells. Genes with initially low expression are upregulated while genes with initially high 882 

expression are downregulated upon octanoate treatment. (B) Gene ontology analysis of 883 

differentially expressed genes induced by octanoate treatment. Upregulated and downregulated 884 

genes were first identified using DESeq2 (FDR < 0.01, |logFC| = 2) for 5mM octanoate treated 885 

cells compared to vehicle-treated control cells. Pathway enrichment analysis was performed on 886 

identified differentially expressed genes with annotations from online pathway databases (KEGG, 887 

Hallmark, Canonical Pathways, Reactome, BioCarta) and Gene Ontology Biological Processes. 888 

Pathway enrichment was ranked by p-value on a -Log10 scale and a selection from the top 25 889 

pathways associated with upregulated genes (in red) and downregulated genes (in blue) are shown. 890 

(C) GSEA analysis of Gene Ontology Biological Processes showing top pathways associated with 891 

octanoate treatment with FDR < 0.1 related to differentiation, cell signaling, and metabolic 892 

processes. (D) List of core enrichment genes differentially expressed  in treated replicates -T4, T5, 893 

T6 versus control replicates- C1, C2, C3 (I) Lipid storage pathways (II) Wnt pathway (III) Notch 894 
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pathway (IV) ERBB pathway each pathway as identified by GSEA leading edge analysis. (E) 895 

Network analysis of pathways associated with the octanoate phenotype in GSEA analysis of Gene 896 

Ontology Biological Processes. (F) qPCR analysis of genes associated with the NOTCH pathway. 897 

Two genes, NOTCH3 and DLL4 show significant upregulation upon 5mM octanoate treatment 898 

compared to other identified genes such as NOTCH1. Statistical significance was determined by 899 

the unpaired t-test with Welch’s correction.  900 
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Fig. 2. Linoleic acid alters large-scale chromatin packing behavior in MCF-10A cells. 902 

(A)  Representative PWS microscopy images of MCF-10A cell nuclei at 24 hours after 903 

treatment with vehicle controls and lipids – octanoate and linoleic acid. Scale bars, 10μm. 904 

Chromatin packing scaling (D) map of nuclei shows an increase in chromatin packing 905 

scaling upon lipid treatment as demonstrated by an increase in red regions. 906 

(B)  Changes in average chromatin packing scaling among MCF-10A cells upon treatment with 907 

vehicle controls and lipids compared to untreated cells. Significance was determined using 908 

unpaired Kolmogorov-Smirnov t-test (****P < 0.0001, *P < 0.05). Bar graphs show the 909 

mean change in intranuclear D across cell populations for N = 88 cells PBS (vehicle for 910 

octanoate), N = 110 cells Octanoate (C8), N = 103 cells BSA (vehicle for linoleic acid), 911 

and N = 94 Linoleic acid (C18:2). (C) Enrichment of genomic locations for 1704 open 912 

chromatin regions (FDR < 0.05, logFC > 1) in LA treated MCF-10A cells. The enrichment 913 

of peaks in each type of genomic region relative to the whole genome is shown on the y-914 

axis. Two ATAC-seq libraries were used for the analysis. (D) Pathway analysis for the 915 

regions with increased chromatin accessibility in linoleic acid treated cells identified using 916 

the KEGG database. (E) Biplot showing changes in chromatin accessibility for specific 917 

regions identified by HOMER analysis. Motifs with a significant increase in the chromatin 918 

accessibility are shown in blue and those with a significant decrease in accessibility are 919 

shown in yellow (FDR<0.05 and |logFC| > 1). 920 

  921 

 922 
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Fig. 3. Notch pathway is overexpressed in CUB samples of patients at high risk of ER- disease 925 

Expression of genes from various pathways in matching CUBs from ER negative, ER positive 926 

patients and controls. The log2-transformed relative (log2RE) amounts of mRNA expression 927 

normalized to the housekeeping gene and expressed as log22−(CtX−CtGAPDH) = −(CtX − Ct GAPDH) 928 

where Ct is threshold cycle and X is gene of interest. IGF2 and GPR161 were significantly higher 929 

in ER negative versus normal whereas ER positive showed significant increase in PRKD1 versus 930 

normal. Genes from the Notch pathway were significantly higher in ER negative CUBs in 931 

comparison to ER positive patients. Mann-Whitney test was used to test the pairwise differences 932 

between the samples (ER+, ER-, Control) * p < 0.05; **p < 0.01.  933 

 934 
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 936 

 937 
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Fig. 4. Increased DLL4/Notch signaling is associated with the stimulated fatty acid oxidation 944 

(A) qPCR data showing increase in lipid metabolism genes (green) and Notch pathway genes (red) 945 

after 24-hour linoleate treatment in MCF-10A and mammary organoids. Statistical significance 946 

was determined by the unpaired t-test with Welch’s correction. (B) Chromatin accessibility in the 947 

lipid treated cells around the transcription start site (TSS) of NOTCH1, HEY1 and DLL4 948 

(FDR<0.001). (C) Gene tracks and increase in peaks for the Notch genes in LA treated cells with 949 

the exact location on the chromosome. (D) Leading edge scores for genes of interest associated 950 

with the NOTCH signaling pathway as determined by GSEA leading edge analysis. DLL4, HEY1, 951 

HEY2, NOTCH3, and NOTCH4 were identified as core enrichment genes in the NOTCH 952 

pathway. 953 
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Fig. 5. Fatty acids drive histone modifications and metabolic flux  Western blot of histone 955 

acetylation at H3 lysine K9 and K14 in MCF-10A cells and organoids treated with (A) octanoate 956 

and (B) linoleic acid. (C)  The effect of octanoate treatment on histone acetylation and methylation 957 

flux in MCF-10A cells predicted using genome-scale metabolic modeling. (D) Heatmap of 958 

reaction flux differences predicted by metabolic modeling to be differentially active (p-value < 959 

0.01) between control and treatment. The corresponding pathways (subsystem) that each reaction 960 

belongs to is listed in the legend. Proteomic acetylation (E) and methylation (F) profiling measured 961 

by mass spectrometry of MCF-10A cells treated in triplicate with 5mM octanoate for 24 hours in 962 

a complete media compared to vehicle. Two-way ANOVA was performed to determine the 963 

statistical significance and corrected for multiple comparisons using Sidak test. 964 

 965 
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 966 

Fig. 6. Proposed model illustrating the orchestration of lipid induced molecular changes 967 

Sensors: Senses the fatty acid rich environment and perturb cellular metabolism providing the 968 

essential substrate for histone modifications and thereby turning on the Mediators- histone PTMs, 969 

which consequently activates the Effectors- Notch, adenylate cyclase and MAPK-ERK the key 970 

protein signaling associated with ER- breast cancer. 971 
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 972 

Fig. S1 (A)Poisson distance clustering to overview the distribution of counts and clustering in the 973 

treated versus untreated group. Scalebar represents Poisson distance between samples. (B) 974 

Principal component analysis (PCA) of the DESeq2 analysis showing two distinct populations of 975 

control and treated group. PCA dimensionality reduction was performed on all samples. Almost 976 

100% of the variance is associated with the first principle component, which separates replicates 977 

in the vehicle and octanoate treatment conditions. (C) DESeq2 analysis showing 2131 upregulated 978 

genes and 632 downregulated genes for octanoate group compared with the vehicle with FDR 979 

cutoff = 0.01 and |log2 FC| ≥ 2.  980 
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Fig. S2 (A) The difference in age and BMI among three groups was analyzed by ANOVA with 982 

Sidak adjustment on pairwise comparison. The difference in menopausal status and race among 983 

three groups were analyzed using X2 test. The difference in HER2 status between ER1 and ER– 984 

group was analyzed using X2 test. (B) Histogram showing fold change or relative quantitation 985 

(RQ) for all genes of interest in the ER + (red) and ER- (green) in reference to the controls (black). 986 
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Figure S3: (A) To verify that the acetylation was specific to exposure to a fatty acid, MCF10A 988 

cells were exposed to 1,4-Cyclohexanedimethanol (1,4-CHDM), an alcohol with the same number 989 

of carbons, hydrogens and oxygens as octanoic acid.  (B) Western blot of MCF-10A cells treated 990 

with HDAC inhibitor- sodium butyrate (NaB) 10mM for 24 hours to validate the specificity of the 991 

histone antibodies against the acetylated H3K9 and HK14. 992 

(C) The histogram and scatter plot show the distribution of flux differences of all 3759 metabolic 993 

reactions in the model between octanoate treatment and control. The horizontal x-axis shows the 994 

difference in flux of each reaction, while the y-axis of the histogram shows the total number of 995 

reactions in each bin. Metabolic pathways and representative reactions that showed the greatest 996 

differences in flux (p-value < 0.01) between the treatment and control are highlighted in the scatter 997 

plot and listed in the table.  (D) GSEA analysis showing H3K27 and H3K4 enrichment in octanoate 998 

treated cells with corresponding leading-edge genes. (E) Predicted acetylation flux in octanoate 999 

treated AML-12 cells using FBA model. 1000 
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