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Abstract 34 

The contribution of genome structural variation (SV) to quantitative traits associated with 35 

cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining 36 

genetic association between SVs and cardiometabolic traits in the Finnish population. We used 37 

sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole genome 38 

sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low frequency SVs for 39 

association with 116 quantitative traits, and tested candidate associations using exome sequencing and 40 

array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant 41 

associations at 15 loci, including two novel loci at which SVs have strong phenotypic effects: (1) a 42 

deletion of the ALB gene promoter that is greatly enriched in the Finnish population and causes 43 

decreased serum albumin level in carriers (p=1.47x10-54), and is also associated with increased levels 44 

of total cholesterol (p=1.22x10-28) and 14 additional cholesterol-related traits, and (2) a multiallelic copy 45 

number variant (CNV) at PDPR that is strongly associated with pyruvate (p=4.81x10-21) and alanine 46 

(p=6.14x10-12) levels and resides within a structurally complex genomic region that has accumulated 47 

many rearrangements over evolutionary time. We also confirmed six previously reported associations, 48 

including five led by stronger signals in single nucleotide variants (SNVs), and one linking recurrent HP 49 

gene deletion and cholesterol levels (p=6.24x10-10), which was also found to be strongly associated 50 
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with increased glycoprotein level (p=3.53x10-35). Our study confirms that integrating SVs in trait-51 

mapping studies will expand our knowledge of genetic factors underlying disease risk. 52 

 53 

Introduction 54 

Common human diseases affecting the cardiovascular and endocrine systems are known to be 55 

associated with a variety of quantitative risk factors including various measures of cholesterol, 56 

metabolites, insulin, glucose, blood pressure, and obesity. Understanding the genetic basis of these 57 

and other quantitative traits can shed light on the etiology, prevention, diagnosis, and treatment of 58 

disease. Family and population-based studies have shown significant heritability for many 59 

cardiometabolic traits, and prior genome-wide association studies (GWAS) have identified hundreds of 60 

associated loci. However, most prior trait-mapping studies have focused on common variants 61 

ascertained by genotyping arrays, or rare coding variants measured by exome sequencing, leaving out 62 

the contribution of larger and more complex forms of genome variation.  63 

 Of particular interest is the contribution of genome structural variation (SV), which encompasses 64 

diverse variant types larger than 50 base pairs (bp) in size, including copy number variants (CNVs), 65 

mobile element insertions (MEIs), inversions, and complex rearrangements. Although rare and de novo 66 

SVs have long been recognized to cause various rare and sporadic human disorders, and somatic SVs 67 

play a central role in cancer biology, the extent to which SVs contribute more generally to common 68 

diseases and other complex traits in humans is less clear. Early genome-wide studies1–3 failed to 69 

identify SVs associated with common diseases, but these were limited by the use of low-resolution 70 

array platforms, which only capture extremely large CNVs (>100kb, or similar), and by modest sample 71 

size. Several later studies performed targeted analysis of known SVs combined with larger-scale 72 

GWAS data4–6, leading to the association of structural alleles at HP and LPA with cholesterol levels. 73 

More recent array-based CNV association studies with large sample sizes (>50,000 individuals) have 74 

revealed several genome-wide significant CNV loci for anthropometric traits and coronary disease, but 75 

these studies focused on extremely large CNVs representing <1% of the overall SV burden, leaving 76 
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most SVs untested7–9. Fine mapping of expression quantitative trait loci (eQTLs) using deep whole 77 

genome sequencing (WGS) data has indicated that SVs are the causal variant at 3.5-6.8% of eQTLs, 78 

and that causal SVs have larger effect sizes than causal single nucleotide variants (SNVs) and indels 79 

and are often not well-tagged by flanking SNVs10,11. This suggests that direct assessment of SVs in 80 

WGS-based complex trait association studies has the potential to reveal novel causative variants not 81 

found through other approaches. 82 

 Here, we have performed a SV association study using deep (>20x) WGS data from 4,030 83 

individuals from Finland with extensive cardiometabolic trait measurements, and extended these results 84 

to a larger set of 15,205 individuals with whole exome sequencing (WES) and single nucleotide 85 

polymorphism (SNP) genotype data. Compared to prior work, our study benefits from (1) 86 

comprehensive SV ascertainment due to the use of deep WGS data and complementary SV detection 87 

methods, (2) deeply phenotyped individuals with existing SNP array and exome sequence data, and (3) 88 

the unique history of the Finnish population, which was shaped by multiple population bottlenecks and 89 

rapid population expansions, leading to an enrichment of some otherwise rare and low-frequency 90 

variants that can be detected by trait association at relatively modest sample sizes12–14. By testing for 91 

associations between structural variants and cardiometabolic traits, we identified 15 genome-wide 92 

significant loci, nine of which remained significant after multiple testing correction for the number of 93 

phenotypes, including a Finnish-enriched promoter deletion of the ALB gene associated with multiple 94 

traits, and a multiallelic CNV affecting the PDPR gene associated with pyruvate levels.  95 

 96 

Material and Methods 97 

Samples and phenotype collection 98 

The genomic data in this study come from 10,197 METSIM participants collected from Kuopio in 99 

Eastern Finland, and 10,192 FINRISK participants collected from northeastern Finland. Both studies 100 

were approved by the Ethics Committees in Finland and all individuals contributing samples provided 101 

written informed consent. Besides collecting genotype data by SNP array and exome sequencing, both 102 
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studies measured up to 254 quantitative cardiometabolic traits, among which we selected 116 traits 103 

with adequate sample sizes to maintain trait-mapping power (see below). All phenotype data were 104 

residualized for trait-specific covariates and transformed to a standard normal distribution by inverse 105 

normalization. Complete details of sample collection, genotype acquisition, and trait adjustments were 106 

described previously14.  107 

 108 

Power estimation and phenotype selection 109 

Phenotypes with limited sample size are likely to be underpowered in trait-mapping analysis and 110 

increase the test burden if included. Thus, we selected 116 traits with large enough sample size that 111 

guaranteed 80% power to detect a hypothesized rare SV (Minor allele count (MAC) =10) with strong 112 

effect (explained 8.4% of the additive quantitative trait locus (QTL) variance, a contribution comparable 113 

to the effect of SV expression QTLs10). We estimated the minimum required sample size as 375 114 

through an analytical approach implemented in Genetic Power Calculator15. Several other assumptions 115 

for the calculation are: 1. All samples are independent (sibship size=1); 2. The top signal is in perfect 116 

linkage disequilibrium (LD) with the causal variant; and 3. type I error rate=1x10-6.  117 

 118 

Generation of SV callsets from WGS data 119 

For SV discovery, we used WGS data from 3,082 METSIM participants and 1,114 FINRISK participants 120 

sequenced at the McDonnell Genome Institute under the NHGRI Centers for Common Disease 121 

Genomics (CCDG) program. To increase variant detection sensitivity, we also included 779 additional 122 

Finnish participants from other cohorts and 112 multi-ethnic samples from 1000 Genomes (1KG) 123 

Project. All genomes were sequenced at >20x coverage on the Illumina HiSeq X and NovaSeq 124 

platforms with paired-end 150bp reads.  125 

 WGS data were aligned to the GRCh38 reference genome using BWA-MEM and processed 126 

using the functional equivalence pipeline16. An SV callset based on breakpoint mapping was generated 127 

using our recently published workflow17 using the same methods as in our recent study of 17,795 128 
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human genomes18. Briefly, we ran LUMPY (v0.2.13)19, CNVnator (v0.3.3)20, and svtyper (v0.1.4)21 to 129 

perform per-sample variant calling. After removing 22 samples that failed quality control, we merged 130 

sites discovered in all the samples and re-genotyped all sites in all samples to create a joint callset 131 

using svtools (v0.3.2)17. Each variant was characterized as either deletion (DEL), duplication (DUP), 132 

inversion (INV), mobile element insertion (MEI), or generic rearrangement of unknown architecture 133 

(BND), based on comprehensive review of its breakpoint genotype, breakpoint coordinates, genome 134 

annotation, and read-depth evidence, as described previously17,18. According to our definition of SV, we 135 

filtered variants smaller than 50bp. Moreover, we tuned the callset based on Mendelian error rate and 136 

flagged BNDs with mean sample quality (MSQ) score <250 and INVs with MSQ <100 as low-137 

confidence variants. Details about this QC strategy are described elsewhere18. For convenience, we 138 

refer to this as the “LUMPY callset”.  139 

 We applied two read-depth based CNV detection methods to WGS data to detect variants that 140 

might be missed by breakpoint mapping. GenomeSTRiP22 is an established tool for cohort-level CNV 141 

discovery that has proven effective in many prior studies; however, when using the recommended 142 

parameters (as we did here), detection is limited to larger CNVs (>1kb) within relatively unique genomic 143 

regions. Thus, in parallel we used a custom cohort-level CNV detection pipeline based on CNVnator20 144 

to detect smaller and more repetitive CNVs (see below).  145 

 We adapted the original GenomeSTRiP pipeline (v2.00.1774) for the large cohort of 5,087 146 

Finnish samples: after the SVPreprocess step, samples were grouped by study cohorts and sorted by 147 

sequencing dates, then split into 54 batches with maximum size of 100. CNVs were detected within 148 

each batch by CNVDiscoveryPipeline and classified as either deletion (DEL), duplication (DUP), or 149 

mixed CNV (mCNV), with both copy number gain and loss existing in the population (referred to as 150 

“multiallelic CNV” in the text). Next, we concatenated variants from the 54 batch VCFs and re-151 

genotyped all variants in all samples using SVGenotyper to produce a joint callset. Then we ran several 152 

GenomeSTRiP annotators (CopyNumberClassAnnotator, RedundancyAnnotator) to reclassify variants 153 

and remove redundant variant calls. During callset generation, 72 samples with abnormal read-depth 154 

profiles were excluded.  155 
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 The read-depth based “CNVnator” callset was constructed using a custom pipeline that took as 156 

inputs the individual-level CNV callsets generated by CNVnator during the svtools pipeline. After 157 

removing samples with abnormal read-depth profiles, CNV calls from 4,979 samples were sorted and 158 

merged using the svtools pipeline. All merged CNV calls were re-genotyped in all samples using 159 

CNVnator. Within each connected component of overlapping CNV calls, individual variant calls were 160 

clustered based on correlation of copy-number profiles and by pairwise overlap. For each cluster, a 161 

single candidate was chosen to represent the underlying CNV. For sites with carrier frequency >0.1%, 162 

we fit the copy number distribution to a series of constrained Gaussian Mixture Models (GMMs) with 163 

varying numbers of components, and selected the site with the “best” variant representation based on a 164 

set of model metrics, including the Bayesian Information Criterion (BIC) and the distance between 165 

cluster means (“mean_sep”). For the remaining sites we selected those with the most significant copy 166 

number difference between carriers and non-carriers. With the same criteria used in GenomeSTRiP, 167 

we assigned integer copy number genotypes and CNV categories to the variants.    168 

 We used array intensity data for 2,685 METSIM samples to estimate the false discovery rate 169 

(FDR) under different filtering criteria, and to tune both CNV callsets. FDR was estimated from the 170 

Intensity Rank Sum (IRS) test statistics based on CNVs intersecting at least two SNP probes. Based on 171 

the FDR curves (Figure S1) we excluded GenomeSTRiP variants with GSCNQUAL score<2 and 172 

CNVnator DELs and DUPs with mean_sep < 0.47 or low carrier counts (DUPs<1, DELs<5, mCNVs<7).  173 

 To eliminate likely false positive calls introduced by sequencing artefacts, we excluded 612 174 

LUMPY SVs, 740 GenomeSTRiP SVs, and 1098 CNVnator SVs that were highly enriched in any of the 175 

three sequencing year batches (P<10-200 from Fisher’s exact test). We further excluded 3 samples in 176 

the LUMPY callset, 72 samples in the GenomeSTRiP callset, and 12 samples in the CNVnator callset 177 

that carried abnormal numbers of variants (outlier samples defined by the difference of per-sample SV 178 

count from median divided by mad larger than 10 for LUMPY/GenomeSTRiP or larger than 5 for 179 

CNVnator). Together with the samples that failed QC during variant calling, the combined list of outliers 180 

consists of 84 METSIM samples, 56 FINRISK samples, and 99 samples from other cohorts. More 181 

information about sample- and variant-level exclusions can be found in Table S1.  182 
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 For each high-confidence callset, we evaluated the final FDR by using the IRS, and ran the 183 

TagVariants annotator in GenomeSTRiP to estimate the proportion of SVs in LD with nearby SNPs 184 

(Rmax
2>=0.5, flanking window size=1Mb). We calculated the overlap fraction between SV callsets by 185 

bedtools23 intersect (v2.23.0) requiring >50% reciprocal overlap between variants. To evaluate the 186 

genotype redundancy within and between callsets, we compared the original variant counts and the 187 

equivalent number of independent genetic variables estimated by a matrix decomposition method 188 

implemented in matSpDlite24, using the genotype correlation matrix as input. The space clustering was 189 

evaluated by running bedtools cluster with -d (max distance) specified as 10bp.  190 

 191 

Association test with WGS data 192 

For CNV callsets, we defined minor allele count (MAC) as the number of samples with different 193 

genotypes from the mode copy number. We kept the conventional MAC definition for the LUMPY 194 

callset since it primarily contains biallelic SVs. We set the minimum MAC threshold as 10 for variants to 195 

be included in the trait association test. We renormalized the phenotype data of the WGS samples by 196 

rank-based inverse normal transformation. We performed single-variant association tests across all 197 

renormalized metabolic traits using the EMMAX model25 implemented in EPACTS (v3.2.9) software26. 198 

In the model, we specified the input genotype variables as the integer copy number genotype for 199 

GenomeSTRiP variants, allele balance for LUMPY variants, and raw decimal copy number for 200 

CNVnator variants. We also incorporated in the model a kinship matrix derived from SNP data by 201 

EPACTS to account for sample relatedness and population stratification. 202 

 We applied matSpDlite24 to estimate the equivalent number of independent tests. The genome-203 

wide significance threshold was set at 1.89x10-6 after Bonferroni correction at level 𝛼 = 0.05 over 204 

26,495 independent genetic variables, and the experiment-wide significance threshold was set as 205 

3.32x10-8 to further correct for the 57 independent phenotypic variables also estimated using 206 

matSpDlite24. 207 

 208 
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Replication using exome and array data 209 

We attempted to replicate the association signals with a nominal p<0.001 in WGS analysis using 210 

genotype data for an additional ~15,000 FinMetSeq participants. To achieve this, we employed two 211 

approaches to infer the genotypes of candidate SVs from WES and array data: WES read depth 212 

analysis for CNVs and genotype imputation for biallelic SVs. 213 

 We separated the WES alignment data into two batches: the first composed of 10,379 samples 214 

sequenced with 100bp paired-end reads and the second composed of 9,937 samples sequenced with 215 

125bp paired-end reads. For samples in each batch, we calculated the per-sample per-exon coverage 216 

by GATK27 DepthOfCoverage (v3.3-0) and adopted the data processing steps from the XHMM (v1.0) 217 

pipeline28 to convert the raw coverage data into PCA-normalized read-depth z-scores. Duplicated and 218 

outlier samples were filtered simultaneously, with 9,537 samples left in batch1 and 9,864 samples left in 219 

batch2. We calculated the correlation between SV genotypes from WGS data and the normalized read-220 

depth z-scores of exons intersected or nearby (<5kb) using samples with both WES and WGS data. 221 

Exons with R2<0.1 were filtered out and the rest were passed on to validation, restricted to samples 222 

absent from the WGS analysis (n=15,205). The genetic relationship matrix used for WES replication 223 

was generated in a previous study14. We later did a meta-analysis under a fixed effect model using 224 

METASOFT (v2.0.1)29 to combine the results from the two WES batches, considering the two 225 

sequencing batches were actually sampled from the same population.  226 

 We converted the copy number genotypes (CN=2,3,4…) of 2,291 biallelic candidate SVs to 227 

allelic genotype format (GT=0/0, 0/1, 1/1) and extracted the SNPs and indels in the 1 Mb flanking 228 

regions of those SVs from the GATK callset generated from the same WGS data. We then phased the 229 

joint VCF with Beagle (version 5.1)30 to build a reference panel composed of 3,908 high-quality 230 

samples shared by the SV callset and the SNP callset. Then, we imputed the SV genotype in the 231 

additional 15,125 FinMetSeq samples with array genotype data by running Beagle on the genotyped 232 

SNPs. We filtered out low-imputation-quality SVs with DR2<0.3 reported by Beagle (the estimated 233 

correlation between imputed genotype and real genotype of each variant); then ran the EMMAX model 234 

on the 1,705 well-imputed SVs with the corresponding traits.  235 
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 58 of the 2,053 candidate SVs had both imputed genotype and WES read-depth genotype, so 236 

we compared the imputation DR2 with exon-SV genotype R2, then chose the measurement better 237 

correlated with the WGS data. We then used Fisher’s method to combine the p-values from discovery 238 

stage (WGS data only) and replication stage. As a sanity check for the imputation quality, we 239 

conducted leave-one-out validation for the eight genome-wide significant SVs using the reference panel 240 

only. Specifically, we took one sample out each time as a test genome and imputed the SV genotype 241 

using the other 3,907 samples as reference and repeated the process 3,908 times to calculate the 242 

validation rate. 243 

 The array data and WES data were aligned to reference genome GRCh37 while the WGS data 244 

were aligned to reference genome GRCh38. For analysis, the coordinates were lifted over using the 245 

LiftOver utility from the UCSC GenomeBrowser (https://genome.ucsc.edu/cgi-bin/hgLiftOver). 246 

 247 

Candidate analysis 248 

For genome-wide significant trait-SV associations, we collected previous GWAS signals on the same 249 

chromosome with P<10-7 from the EBI GWAS catalogue (https://www.ebi.ac.uk/gwas/docs/file-250 

downloads, 2019-11-21 version) with the same set of keywords used in a previous study14 (one 251 

publication based on METSIM samples was excluded to only include findings from independent 252 

studies). We then performed conditional analysis on the original trait-SV pairs adding the GWAS hits as 253 

covariates. Conditional analyses were restricted to samples with WGS data to minimize the difference 254 

in genotype accuracy of the SV callset vs. the SNP callset.  255 

 For loci containing multiple genotype-correlated SVs associated with a trait, we lumped the 256 

variants together using bedtools merge23 and reported the coordinates of the entire region with the 257 

summary statistics of the strongest signal. To better understand these loci, we manually curated the 258 

candidates in IGV31 and extended the regions of interest to include surrounding genes, functional 259 

elements, previous GWAS signals and other genome annotations. We then equally split each region 260 

into ~1000 windows and used CNVnator to calculate the copy number values of those windows for 100 261 
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individuals selected to represent all genotype groups. We then plotted the window-sample copy number 262 

matrix as a heatmap with scales best presenting the locus structure (e.g. Figure 4). In addition, for 263 

SNPs in the same region, we calculated the SNP-SV genotype correlation R2 by a linear regression 264 

model and SNP-trait p values by EMMAX, then plotted them together in a local Manhattan plot (e.g. 265 

Figure 3) using custom R scripts.  266 

 For the fine-mapping experiment of albumin, we selected the top 100 most significant SNPs on 267 

chr4:67443182-79382541 plus the ALB promoter deletion to calculate the pairwise genotype correlation 268 

matrix and ran CAVIAR (v0.2)32 on those 101 variants, with the “rho” probability set at 0.95 and varying 269 

the maximum number of causal variants one to five. The same experiment was done for total 270 

cholesterol. We used the model with maximum causal variants set at two to plot the posterior 271 

probability in Figure 3.  272 

 273 

Results 274 

Structural variation detection and genotyping 275 

We identified 120,793 SVs by LUMPY19, 111,141 CNVs by GenomeSTRiP22 (GS), and 92,862 CNVs 276 

by our customized pipeline based on CNVnator20. Considering the different genotype metrics and 277 

detection resolutions, to retain sensitivity we chose to concatenate those three callsets together and 278 

adjust for redundancy later instead of merging the variants. 129,166 high-confidence autosomal SVs 279 

passed quality control, and 64,572 passed the frequency filter for association tests. Figures 1 and 2 280 

provide an overview of the high-confidence callset, including the composition, frequency, and size 281 

distribution broken down by SV types, biallelic vs. multi-allelic SVs, and detection pipelines. The SV 282 

size and frequency distributions are consistent with those in previous studies10,18,33,34: most called SVs 283 

are relatively small ( <10kb), biallelic and rare; called MEIs exhibit the expected size distribution 284 

corresponding to Alu and L1 insertions; and allele frequency decreases with increased mean SV size, 285 

consistent with negative selection against large SVs (Figure 2).   286 
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 Based on comparison with a set of SNP array intensity data (see Methods), we estimate an 287 

overall false discovery rate (FDR) of 4.7% for the high-confidence callset. As an indicator of true 288 

positive rate, the proportion of SV calls tagged by nearby SNPs (R2>=0.5, see Methods) was 56.8%, 289 

consistent with our prior GTEx study that used similar methods10 and was evaluated extensively in the 290 

context of eQTL mapping. We also compared our callset to the high-quality SV callsets from 1000 291 

Genomes (1KG) and gnomAD projects and found an overlap of 35.2%, which is reasonable considering 292 

that these studies used distinct methods and sample sets. Table 1 shows the above metrics stratified 293 

by pipelines. We estimated the genotype redundancy in total and stratified by pipelines (Table S2). 294 

Overall, the “effective sample size” of independent genetic variables was 55.5% of the original variant 295 

count. Additionally, since read-depth detection methods commonly result in “fragmented” CNV calls, we 296 

estimated the fragmentation level of calls by clustering variants within 10bp and measured the size of 297 

the clusters (Table S3). 298 

 Our CNVnator pipeline was the major source of redundancy and fragmentation since it detects 299 

CNVs with higher resolution – as small as 100bp – and covers repetitive and low-complexity regions, 300 

where the coverage profile is in general much noisier than the rest of the genome. The benefit is that 301 

CNVnator detected many true CNVs missed by the two other methods. As a benchmark of the 302 

sensitivity gain, we calculated the external validation rates for SVs uniquely detected in each of our 303 

pipelines (Figure S2). 7,210 variants identified only in CNVnator overlapped with variants in 1KG and 304 

gnomAD, contributing to the 43.1% of the overall CNVnator SVs that were validated through 305 

comparison to external datasets. 306 

 307 

Association of SVs with cardiometabolic traits 308 

We first performed single variant association tests for 64,572 high-confidence SVs (MAC≥10) and 116 309 

quantitative traits using the EMMAX model 25 in the 4,030 individuals with WGS data. We defined the 310 

genome-wide significance threshold as 1.89x10-6 and the experiment-wide significance threshold as 311 

3.32x10-8 (see Methods). Nine associations of six loci passed genome-wide significance threshold 312 
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(Table S5); six were still significant after adjusting for the equivalent number of independent 313 

phenotypes (Table 2, WGS P). 314 

 We next sought to replicate these findings and to follow up on 4,855 loci with sub-threshold 315 

associations (p<0.001) via meta-analysis with larger WES (n=20,316) and array genotype datasets 316 

(n=19,033) from these same cohorts, using independent samples (nWES=15,205, narray=15,125 ) not 317 

included in the original WGS experiment (see Methods)14. We developed a strategy to genotype 318 

coding CNVs from WES data using read-depth information from XHMM28, and measured copy number 319 

at the 20,058 exons intersecting with 819 candidate CNVs from WGS. We found that 281 exons from 320 

392 CNV calls were able to recapture the copy number variability detected by WGS (at R2>0.1). To 321 

genotype SVs using array data, we used standard imputation methods to impute 2,127 bi-allelic SVs 322 

based on the background of array-genotyped SNPs (see Methods). The estimated imputation accuracy 323 

of SVs corresponding well to their LD with nearby SNPs, as expected (Figure S3). To assess 324 

performance more rigorously for the eight significant SVs described below, we also performed a leave-325 

one-out experiment, and the validation rate ranged from 93.3%-99.8% (Table S4). Overall, we were 326 

able to accurately genotype 2,053 of 4,864 candidate SVs using exome (n=392) and/or array genotype 327 

data (n=1,705). We then ran single-variant tests on those genotyped SVs with the corresponding 328 

candidate traits in the independent samples, and performed a meta-analysis to calculate a combined p-329 

value (Table 2). 330 

 After merging fragmented SVs, we ended up with 15 independent loci associated with 31 traits 331 

at genome-wide significance, 9 of which remained significant after correction for the multiple 332 

phenotypes. Table 2 shows the summary statistics of the lead SVs for their top traits (see also Table 333 

S5 for pre-merged summary statistics).  334 

 335 

Deletion of the ALB gene promoter is associated with multiple traits 336 

The strongest signal in the combined study was a 4kb deletion immediately upstream of the ALB gene, 337 

affecting the promoter region (Figure 3). This variant was 16-fold enriched in the Finnish population 338 
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compared to non-Finnish Europeans from 1KG (MAF: 1.6% vs. 0.1%) and was associated with 16 traits 339 

at genome-wide significance (Table S5, Figure S4). The top two associations were with serum albumin 340 

(p=1.47x10-54) and total cholesterol (p=1.22x10-28), and these are independent signals based on 341 

conditional analyses. The cholesterol signal appears to explain the remaining 14 trait associations, all 342 

of which are highly correlated (Figure S4). This SV was well-tagged by nearby SNPs (R2=0.73), and 343 

the tagging SNPs showed similar trait association patterns. To tease apart potentially indirect 344 

associations caused by LD, we performed fine-mapping analysis for serum albumin and total 345 

cholesterol with CAVIAR32 including the deletion variant and the 100 most significant SNPs on chr4:67-346 

79Mb (see Methods). The top candidate for the association with total cholesterol was a SNP 347 

(rs182695896) in moderate LD (R2=0.49) with the deletion. Accounting for this SNP via conditional 348 

analysis attenuated the association between the deletion and total cholesterol (p=0.023, n=4014). The 349 

deletion was identified as the most probable causal variant for the association with albumin, and the 350 

association between the deletion and albumin remained significant after adjusting for rs182695896 351 

(p=6.52x10-13, n=3,117). We also observed different causality patterns for the two traits by aligning the 352 

posterior probabilities with the LD structure of the causal candidates in 95% confidence sets (Figure 3). 353 

Thus, we hypothesize that the promoter deletion directly affects serum albumin by altering ALB gene 354 

expression, and is associated with total cholesterol through its genetic correlation with other underlying 355 

causal variant(s) in the same LD block.  356 

 Prior studies35–38 have reported five albumin associated SNPs and two cholesterol associated 357 

SNPs in this region. In our conditional analyses including all intrachromosomal GWAS hits39, the SV-358 

albumin association remained genome-wide significant (Table 2) while the SV-cholesterol association 359 

was diminished (conditioned p=0.004). To investigate the relationship between our signal and each of 360 

the seven previous GWAS SNPs, we tested the SV for association while conditioning on the reported 361 

SNPs one at a time (Table S6) and ran the association tests on those SNPs with the SV as covariate 362 

(Table S7). These results suggest that the ALB deletion is the causal variant for three prior albumin 363 

associations (rs16850360, rs2168889, and rs1851024), is linked to one previously reported cholesterol 364 
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association (rs182616603), and is independent of two prior albumin associations (rs115136538, 365 

rs184650103) and one cholesterol association (rs117087731).  366 

 We next explored the potential downstream effects of this promoter deletion in the FinnGen 367 

dataset40, which reports GWAS results for 1,801 disease endpoints in 135,638 individuals. We queried 368 

the top SV-tagging SNP (rs187918276, R2=0.73) in the PheWeb browser40 (Figure S5); the top 369 

association was with statin medication use (p=6.5x10-69). The second set of signals appeared in the 370 

“Endocrine, nutritional and metabolic diseases” category, led by disorders of lipoprotein metabolism 371 

and other lipidemias (p=1.4x10-11), pure hypercholesterolemia (p=3.0x10-11), and metabolic disorders 372 

(p=1.8x10-7). These results support the medical relevance of genetic variation at this locus suggested 373 

by this and prior work; however, it is unclear whether these results are due to the ALB promoter 374 

deletion or the linked variants (e.g., rs182695896) associated with cholesterol. 375 

 376 

A multi-allelic CNV at PDPR is associated with pyruvate and alanine levels 377 

We identified a cluster of 13 highly correlated CNV calls at chr16q22.1 that were strongly associated 378 

with pyruvate (p=4.81x10-21) and alanine (p=6.14x10-12) levels in the serum. We reconstructed the copy 379 

number profile of this locus from short-read WGS data (see Methods) and confirmed that the 13 380 

correlated variant calls correspond to a single ~250kb multiallelic CNV (CNV1 in Figure 4) spanning 381 

the coding sequence and 5’ region of PDPR, a gene involved in the pyruvate metabolism pathway. 382 

PDPR encodes the regulatory subunit of pyruvate dehydrogenase phosphatase (PDP) which catalyzes 383 

the dephosphorylation and reactivation of pyruvate dehydrogenase complex, the catalyst of pyruvate 384 

decarboxylation. According to this mechanism, fewer copies of PDPR should slow down the 385 

decarboxylation reaction and lead to increased pyruvate levels, and increased copies should decrease 386 

pyruvate levels, consistent with our data (Figure 4). This CNV was also negatively associated with 387 

alanine levels, the product of pyruvate transamination, and conditional analysis suggested this 388 

association was mediated through pyruvate (Table S8).  389 
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 An intriguing aspect of the PDPR locus is that it contains numerous segmental duplications 390 

(SDs), including highly similar local SDs scattered throughout the PDPR locus, additional SDs at a 391 

PDPR pseudogene (LOC283922) located 4 Mb distal to PDPR, as well as more divergent copies 392 

located ~55Mb away on chr16p13.11. These include LCR16a, a core element shared by many SDs on 393 

Chr16 and a well-known driver of the formation of complex segmental duplication blocks in the 394 

genomes of humans and primates41–43. There are both duplication and deletion alleles of the PDPR 395 

gene, and these have indistinguishable breakpoints that correspond to LCR16a duplicons, suggesting 396 

these CNVs were caused by recurrent non-allelic homologous recombination. Similar to the ALB 397 

deletion described above (and many prior coding associations14), this CNV appears to be enriched in 398 

the Finnish population: the duplication allele was identified in 1KG with a frequency of 0.005 in non-399 

Finnish Europeans, 50x less than the 0.025 frequency observed in our Finnish sample , and the 400 

deletion allele was not detected in 1KG. The CNV is poorly tagged by flanking SNPs (max R2<0.088), 401 

making it virtually undetectable using standard GWAS methods. 402 

 In addition, a second highly polymorphic and multiallelic CNV (CNV2 in Figure 4) intersects with 403 

CNV1 and covers >90% of the gene body of PDPR, missing the first three exons. Notably, CNV2 did 404 

not show association with pyruvate levels in our data (p=0.6), despite being previously reported as a 405 

cis-eQTL for PDPR in multiple tissues10. To resolve the structure of this locus, we aligned chromosome 406 

16 of the GRCh38 reference against itself and also against the recent high-quality CHM13 assembly44 407 

created from long-read sequencing data (Figure S6). Interestingly, we found that the sequence of 408 

CNV2 contains three inverted paralogs of the LOC283922 locus (a PDPR pseudogene) in the CHM13 409 

assembly, while there is only one copy of LOC283922 in GRCh38 (Figure 4). These data suggest that 410 

CNV2 reflects highly variable structural alleles of LOC283922 located 4Mb away from PDPR, and thus 411 

it is not surprising that this CNV does not affect pyruvate levels. 412 

 413 

Additional trait-association signals 414 
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We confirmed a previously reported association between the recurrent HP deletion and decreased total 415 

serum cholesterol levels4. In our data, this same deletion was strongly associated with serum 416 

glycoprotein acetyls quantified by NMR (p=3.53x10-35), and conditional analysis showed that the two 417 

associations were independent (Table S8). Since Boettger et al.4 proposed a plausible mechanism for 418 

the association of HP copy number and cholesterol, here we focus on the glycoprotein association. As 419 

a serum glycoprotein, haptoglobin forms dimers in individuals with the HP1/HP1 genotype 420 

(homozygous deletion) but forms multimers in individuals carrying HP2 allele(s). The multimers can be 421 

as large as 900kDa – more than twice the size of the dimers (86kDa)45 – which could result in fewer 422 

haptoglobin molecules in HP2 carriers, and consequently fewer glycoprotein molecules overall.   423 

 We identified five trait associations involving common SVs that were within 1Mb of previously 424 

published GWAS loci for the same traits. All SVs were well-tagged by SNPs (R2>0.9) and were either 425 

intronic or upstream of genes that are functionally related to the associated phenotypes. In all five 426 

cases there were stronger SNP signals nearby, and the SV associations dropped to not more than 427 

nominal significance when conditioned on the known GWAS SNPs (Table 2). This suggests that 428 

instead of having independent effects on the phenotypes, those SVs were more likely to be in LD with 429 

the causal variants.  430 

 Additionally, we identified a low-frequency (MAF=0.01) SV associated with serum tyrosine 431 

levels (combined p=4.17x10-10). This variant was a 4kb deletion of IL34, affecting the first exon of one 432 

transcript isoform and the intronic region of the two longer isoforms. There is a stronger signal from a 433 

SNP (rs190782607, p=1.44x10-11) within 100kb of and partially tagging the SV (R2=0.61), indicating that 434 

the SV is unlikely to be the causal variant. However, the p-value of this association remained at a 435 

similar level when conditioned on known GWAS SNPs39 (Table 2), suggesting a novel signal. IL34 436 

mediates the differentiation of monocytes and macrophages and to our knowledge has not previously 437 

been reported to be associated with amino acid traits46. IL34 is a crucial gene in the immune pathway 438 

and one study47 reported altered phenylalanine to tyrosine ratios associated with the immune activation 439 

and inflammation in CVD patients, which could explain the initial association as immune response 440 
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related amino acid change. In addition, several studies48,49 have reported increased serum IL34 levels 441 

in some cardiometabolic diseases that could potentially serve as a biomarker50,51. 442 

 The re-discovery of known loci described above demonstrates the effectiveness of our study 443 

design. Our CNV detection pipeline also detected two associations with metabolic traits that appear to 444 

be related to blood cell-type composition rather than inherited genetic variation. We identified three 445 

clusters of CNVs on chr7q34, chr7p14 and chr14q11.2 associated with C-reactive Protein (CRP) levels 446 

in the plasma, a biomarker for inflammation and a risk factor for heart disease (Table 2, Table S5). 447 

These CNVs are large, involve subtle alterations in copy number, and correspond to T cell receptor loci, 448 

suggesting that they are likely to reflect somatic deletions due to V(D)J recombination events during T 449 

cell maturation. This hypothesis was supported by the read-depth coverage pattern (see Figure S7), 450 

where the measured copy number is lowest at the recombination signal sequence (RSS) used 451 

constitutively for rearrangement, and gradually increases with increasing distance to the RSS. The 452 

cause of this association is unclear but may reflect increased T-cell abundance and CRP levels due to 453 

active immune response in a subset of individuals. Interestingly, the CNVs were also associated with 454 

serum NMR tyrosine and serum NMR histidine (Table S5), which potentially supports the findings of 455 

previous publications about the involvement of amino acid metabolism in immune response52,53. 456 

 Interestingly, we also indirectly measured mitochondrial (MT) genome copy number variation 457 

due to the mis-mapping of reads from mitochondrial DNA to ancient nuclear MT genome insertions 458 

(NUMT)54 on chromosomes 1 and 17, that show strong homology to segments of the MT genome. 459 

These apparent “CNVs”, which reflect MT abundance in leukocytes, were strongly associated with 460 

fasting insulin levels (p=1.00x10-10) and related traits, and are the topic of a separate study55. 461 

  We also discovered three association signals corresponding to dense clusters of fragmented 462 

CNV calls within highly repetitive and low-complexity regions including simple repeats and segmental 463 

duplications (Table 2). Interpreting patterns of variation and trait association at these loci remains 464 

challenging due to their complex and repetitive genomic architecture, and known alignment artifacts 465 

within such regions. Although we were not able to identify any technical artifacts that might explain 466 
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these specific associations, they should be interpreted with caution. Further investigation of these 467 

highly repetitive loci will require improved sequencing and variant detection methods.  468 

 469 

Discussion 470 

We have conducted what is to our knowledge the first complex trait association study based on direct 471 

ascertainment of SV from deep WGS data. Our study leverages sensitive SV detection methods, 472 

extensive cardiometabolic quantitative trait measurements, and the unique population history of 473 

Finland. Despite the relatively modest sample size and limited power of this study, we identified 9 novel 474 

and 6 known trait associated loci. Most notably, we identified two novel loci where SVs are the likely 475 

causal variants and have strong effects on disease-relevant traits. Both SVs are ultra-rare in non-476 

Finnish Europeans but present at elevated allele frequency in Finns – presumably due to historical 477 

population bottlenecks and expansions – which mirrors the findings from our recent study of coding 478 

variation, where many cardiometabolic trait-associated variants were enriched in Finns14. The first, a 479 

deletion of the ALB promoter, strongly decreased serum albumin levels in carriers (~1 standard 480 

deviation per copy), and also resides on a haplotype associated with cholesterol levels. This example 481 

shows that non-coding SVs can have extremely large effects, consistent with our prior results based on 482 

eQTLs10 and selective constraint18, and points to the importance of including diverse variant classes in 483 

trait association efforts . Although more work is required to understand the disease relevance of this 484 

deletion variant, we note that low levels of albumin can cause analbuminemia, which is associated with 485 

mild edema, hypotension, fatigue, lower body lipodystrophy, and hyperlipidemia. 486 

 The second, a multi-allelic CNV with both duplication and deletion alleles that affect PDPR gene 487 

dosage, has strong effects on pyruvate and alanine levels. Notably, this CNV is the product of recurrent 488 

NAHR between flanking repeats at a complex locus that has accumulated numerous segmental 489 

duplications over evolutionary time, and is not well-tagged by SNVs. This phenomenon – recurrent 490 

CNVs at segmentally duplicated loci – has been studied extensively in the context of human genomic 491 

disorders and primate genome evolution, but there are few examples for complex traits. This result 492 
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underscores the importance of comprehensive variant ascertainment in WGS-based studies of 493 

common disease and other complex traits. We further note that it is unusual to observe multiallelic 494 

CNVs at a conserved metabolic gene such as PDPR; it is tempting to speculate about the role of such 495 

variation in human evolution.  496 

 Interestingly, our study also identified two novel and highly atypical trait associations that appear 497 

to be caused by variable cell type composition in the peripheral blood. Identifying these results was only 498 

possible due to our use of WGS on blood-derived DNA, combined with sensitive SV analysis methods 499 

capable of detecting sub-clonal DNA copy number differences. Our quantitative detection of subclonal 500 

T-cell receptor locus deletions formed by V(D)J recombination served as a proxy for measuring T cell 501 

abundance, and led to the novel result that CRP levels are associated with T cell abundance. We 502 

hypothesize that this association is caused by active immune response in a subset of individuals. 503 

Similarly, our quantitative detection of mitochondrial genome copy number via apparent “CNVs” at 504 

NUMT sites in the nuclear genome led to the novel and important finding that variable abundance of 505 

neutrophils vs. platelets in peripheral blood is strongly associated with insulin, fat mass, and related 506 

metabolic traits (as described in detail elsewhere55).  507 

 Taken together, these results highlight the potential role of rare, large-effect SVs in the genetics 508 

of cardiometabolic traits, and suggest that future comprehensive and well-powered WGS-based studies 509 

have the potential to contribute greatly to our understanding of common disease genetics.  510 

 511 

Data Availability 512 

METSIM WGS, METSIM WES, and FINRISK WES sequence data are available through dbGaP 513 

(accessions phs001579, phs000752, and phs000756). METSIM variant and phenotype data will soon 514 

be available through AnVIL (accessions TBD). Genomic and phenotypic data for the FINRISK cohort 515 

are or will soon be obtainable through THL Biobank, the Finnish Institute for Health and Welfare, 516 

Finland (https://thl.fi/en/web/thl-biobank). Structural variant site frequency information is available in 517 

dbVAR (accession TBD). Summary statistics are available on GitHub (see Web Resources). 518 
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 519 

Description of Supplemental Data 520 

Supplemental Data include seven figures and eight tables. 521 
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Figures 718 

 719 

Figure 1. Overview of the high-confidence SV callset  720 

(A) Count of high-confidence autosomal SVs stratified by variant type and detection method including 721 

deletions (DEL), duplications (DUP), multiallelic copy number variants (mCNV), inversions (INV), 722 

mobile element insertions (MEI) and generic rearrangements of unknown architecture (BND). (B) SV 723 

size distribution (log10 scale, bp) by variant type and detection method. mCNVs were only detected by 724 

read-depth based pipelines, INV and MEI variants were only detected in the LUMPY pipeline, and 725 

BNDs are not included due to the ambiguous definition of variant boundaries. (C) Proportion of bi-allelic 726 

SVs and multi-allelic CNVs, where N is defined by the number of copy number groups (e.g. 727 

CN=0,1,2,3,4, etc.)  728 

 729 

SV counts by types and detection methods

Type GenomeSTRiP LUMPY CNVnator Total

DEL 16,793 22,856 15,424 55,073

DUP 14,076 5,002 13,312 32,390

BND - 4,337 - 4,337

INV - 187 - 187

MEI - 3,331 - 3,331

mCNV 8,791 - 25,057 33,848

ALL 39,660 35,713 53,793 129,166
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 730 

Figure 2. Frequency distribution of the high-confidence SVs 731 

(A) The minor allele frequency distribution of all the high-confidence bi-allelic SVs and (B) the MAF 732 

distribution stratified by variant sizes. (C) and (D) are similar plots for multi-allelic CNVs, showing the 733 

frequency of carriers (non-diploid samples), stratified by detection methods. Note that the concentration 734 

of CNVnator variants between 0.5-0.75 were primarily caused by large segmental duplication regions 735 

near centromeres and telomeres, where the variant boundaries were challenging to define and the 736 

CNVs were detected in highly fragmented form. Such regions are often excluded from genetic analysis 737 

but were included here to maximize sensitivity.  738 
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 739 

Figure 3. The ALB promotor deletion associated with serum albumin level and cholesterol traits 740 

(A) The genomic location of the chr4 deletion, with coordinates detected from LUMPY, GenomeSTRiP 741 

and 1KG. The H3K27Ac track is from the ENCODE 56 data obtained from the UCSC genome browser. 742 

(B) Boxplot showing serum albumin levels stratified by genotype, with the sample size of each 743 

genotype group annotated at the center of each box. The trait value on the y-axis is the inverse 744 

normalized residual of raw measurement (residualized for age, age2, and sex). (C) Local Manhattan 745 

plot of albumin association signals on chr4:71-75Mb, including the ALB deletion (red diamond) and 746 

SNPs with minimum allele count of 9 (filled circles). The sizes of the circles are proportional to -log10(p) 747 

and colors indicated LD (Pearson R2) with the deletion (NA shown in grey). Six of the seven previously 748 

published GWAS signals are indicated with ‘x’ (the seventh was too rare in our data to be included in 749 

the test). (D) Fine-mapping results at the ALB locus for albumin and total cholesterol trait associations, 750 
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using CAVIAR. The top panel shows the 95% confidence causality sets for albumin (top) and 751 

cholesterol (bottom) and posterior probability of each variant to be causal (assuming a maximum of two 752 

causal variants). The bottom panel shows the LD structure for the candidate variants, using the 753 

genotype correlation (Pearson R2) calculated from WGS data.  754 

 755 

Figure 4. The multi-allelic CNV at the PDPR locus affecting pyruvate and alanine.  756 

(A) The PDPR locus showing (from top to bottom) genes, duplicated genomic segments based on 757 

dotplot analysis (see Figure S6), segmental duplication annotations from the UCSC table browser57, 758 

and copy number profiles for 100 samples comprising 51 carriers and 49 non-carriers for CNV1. Copy 759 

number is shown in 500bp windows, as determined by CNVnator, and the color saturates at four 760 

copies. The two horizontal lines indicate locations of the two CNVs (solid-CNV1, dashed-CNV2). (B) 761 

Pyruvate levels for 3,121 WGS samples stratified by copy number genotypes of CNV1 (p=9.41x10-11) 762 
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and CNV2 (p=0.6). (C) Structure of GRCh38 reference and CHM13 assembly at the PDPR locus (top) 763 

and its pseudogene locus (bottom two), using the same annotations as in part (A). Blocks with the 764 

same color and letter notation are highly similar DNA sequences and arrows show the direction of 765 

alignments. Diagrams were drawn based on the dot plots in Figure S6. The segment B corresponds to 766 

LCR16a, the core element shared by many duplicons sparsely distributed on chromosome 1641. 767 

768 
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Tables 769 

Table 1. Callsets QC metrics 770 

QC Metrics Variants Subset LUMPY GS CNVNATOR 

CNV FDR* 

  

all - 27% 25% 

high confidence 0.80% 3% 9% 

Counts 
 
  

all 120,793 111,141 92,862 

high confidence 35,713 39,660 53,793 

common 11,633 11,062 41,877 

Overlap w. 1kg* 
 
  

all 10% 10% 11% 

high confidence 34% 21% 15% 

common 49% 34% 13% 

Overlap w. gnomad* 
 
  

all 18% 14% 25% 

high confidence 47% 27% 27% 

common 60% 40% 27% 

Tagged by SNPs 

  

high confidence 63% 62% 46% 

common 77% 65% 49% 
*CNVs only 771 

 Table 1. Quality control metrics of the SV callsets including all variants, high-confidence variants, and 772 

high-confidence common variants (defined by >=10 carriers). CNV FDR was estimated by intensity 773 

rank sum test (IRS) using the SNP array data from METSIM samples. Note that LUMPY CNVs are by 774 

definition high confidence due to confirmation of independent read-depth support during variant 775 

classification steps (see Methods). Variant overlaps with 1KG and gnomAD were defined based 776 

on >50% reciprocal overlap. “Tagged by SNPs” was defined as SVs that are in LD (max r2>=0.5) with 777 

any SNP in the 1Mb flanking regions. 778 

  779 
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Table 2. Summary statistics for all the genome-wide significant signals 780 

SV type Gene or 
annotation Top trait Chr P WGS P GWAS 

conditioned 
BETA 
WGS 

P 
combined 

REP Novel 
Carrier 

frequency 

deletion ALB Albumin 4 3.49E-21 1.05E-10 0.9107 1.47E-54* IMP Y 0.03 

deletion HP 
Glyco- 

-protein 
16 1.38E-10 3.63E-04 

-
0.1628 

3.53E-35* IMP N 0.55 

mCNV PDPR Pyruvate 16 9.41E-11 1.07E-10 
-

0.7175 
4.81E-21* WES Y 0.02 

TCR TRAV CRP 14 1.30E-15 1.89E-15 1.207 1.51E-16* WES Y 0.36 

deletion HNF1A-AS CRP 12 7.23E-04 3.60E-01 0.1912 4E-13* IMP N 0.55 

TCR TRBV CRP 7 3.36E-09 6.29E-09 0.8429 2.47E-16* WES Y 0.38 

mCNV NUMTS 
Fast 

insulin 
1 1.00E-10 NA 

-
0.1179 

1E-10* NA Y 0 

MEI LEPR CRP 1 3.94E-04 2.20E-01 0.164 4.5E-13* IMP N 0.51 

deletion IL34 Tyrosine 16 2.10E-04 5.45E-04 1.954 4.17E-10* IMP Y 0.02 

MEI CDH13 
Adiponect

in 
16 1.24E-04 1.91E-02 

-
0.3282 

3.68E-08 IMP N 0.24 

mCNV AMDHD1 Histidine 12 4.74E-04 2.72E-01 0.1485 5.33E-07 IMP N 0.52 

mCNV 
SegDup 
cluster 

Fatty acid 16 1.10E-06 NA 
-

0.1615 
1.10E-06 NA Y 0.57 

mCNV 
SegDup 
cluster 

Glutamine 9 1.25E-06 NA 
-

0.7937 
1.25E-06 NA Y 0.43 

deletion PLTP 
Small HDL 

Particle 
20 2.40E-04 3.81E-02 0.1122 1.24E-06 IMP N 0.53 

mCNV 
Simple 
repeats 

Creatinine 4 1.41E-06 NA 
-

0.3949 
1.41E-06 NA Y 0.01 

* experiment-wide significant 781 

Table 2. Summary statistics for 15 genome-wide significant loci with the top associated traits. Highly 782 

correlated SVs showing the same signal were manually inspected and clumped together. The genome-783 

wide significance threshold was 1.89x10-6 and the experiment-wide significance threshold was 3.32x10-784 

8 (see Table S2 and Methods for details). The p value from WGS analysis and the p value from the 785 

replication experiment (IMP-imputation, WES-WES read-depth analysis, if applicable) were combined 786 

by Fisher’s method and used to determine the significance level. The carrier frequency was calculated 787 

in the WGS dataset. The column of “P GWAS conditioned” shows the SV p value conditioned on all 788 

intrachromosomal GWAS SNPs from GWAS Catalog39, using WGS data only (see Methods) 789 
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