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19 Abstract

20 Fishing gear is constantly being improved to select certain sizes and species while

21 excluding others. Experiments are conducted to quantify the selectivity and the resulting data
22 needs to be analyzed using specialized statistical methods in many cases. Here, we present a
23 new estimation tool for analyzing this type of data: an R package named selfisher. It can be
24 used for both active and passive gears, and can handle different trial designs. It allows fitting
25 models containing multiple fixed effects (e.g. length, total catch weight, mesh size, water

26 turbidity) and random effects (e.g. haul). A bootstrapping procedure is provided to account for
27 between and within haul variability and overdispersion. We demonstrate its use via four case
28 studies including (1) covered codend analyses of four gears, (2) a paired gear study with

29 numerous potential covariates, (3) a catch comparison study of unpaired hauls of gillnets and
30 (4) a catch comparison study of paired hauls using polynomials and splines. This free and open
31 source software will make it easier to model fishing gear selectivity, teach the statistical

32 methods, and make analyses more repeatable.
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s7 Introduction

58 Fisheries aim to select for certain species and sizes of individuals while allowing others
59 to avoid capture. Experiments are conducted to measure the selectivity of fishing gear and

60 statistical models are used to characterize the selectivity patterns. The selectivity of fishing gear
61 is commonly described by a retention curve, i.e. the probability of being retained in the net,

62 which is usually a function of individual length or size and may vary between hauls (Wileman et
63 al., 1996). Between-haul variation may be random, or it may depend on observed covariates

64 such as total catch weight (Fryer, 1991; Suuronen & Millar, 1992; Erickson et al., 1996; O’'Neill &
65 Kynoch, 1996), environmental variables (He, 1993; Walsh & Hickey, 1993; Ryer & Barnett,

66 2006, Somerton et al., 2013), or the condition of individuals (Ozbilgin et al., 2007; Ferro et al.,
67 2008).

68 In some cases, catch data collected in selectivity studies could be analyzed with logistic
69 regression methods, i.e. binomial generalized linear models, for which there are plenty of

70 software options available. Binomial models are appropriate because, in many gear selectivity
71 experiments, individuals end up in one of two compartments (e.g. codend vs cover; gear 1 vs

72 gear 2; or test gear vs control gear; Wileman et al., 1996), i.e. there are two possible outcomes
73 as in coin flips. However, a substantial amount of the analyses in this field are specialized and
74 require specialized software. For example, obtaining confidence intervals on predictions

75 typically requires accounting for extra-binomial variability (overdispersion) between and within
76 hauls (Millar, 1993; Millar et al., 2004). Paired gear studies (where the test gear is tested against
77 a control one with retention probability equal to one for the given species and lengths of interest)
78 is another example that does not conform to a typical logistic regression model because the

79 probability model is more complex as we will show below. This paper presents newly developed
80 open source software that is specifically designed for modelling fishing gear selectivity,

81 something that was previously limited. The package, selfisher, is implemented in the R
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statistical computing environment which is commonly used for many modern fisheries analyses
(R core team 2020). The package is written with an interface that will be familiar to many users
of regression methods in R. By making the software free and openly available, we aim to
improve repeatability of analyses and enable teaching these analytical methods in classrooms
for the next generation of fisheries scientists.

In this paper, first, we briefly describe the implementation of the sel1fisher R package.

We describe how to install the latest version of the package and where to report bugs and
where to reach out to other users with questions. Then, we provide a general description of how
models are estimated by the package, including dealing with subsampled catches, a common
occurrence in gear selectivity studies (e.g. Larsen et al., 2018; Melli et al., 2019; Veiga-Malta et
al., 2020). We also address the common issue of overdispersion related to between-haul
variability (Millar et al., 2004). We describe three general categories of statistical models,
divided based on the mathematical probabilities underlying the estimation, while omitting details
about experimental designs and code to run the models. Then, we describe the bootstrapping
procedure used to account for variation within and between hauls in selectivity (Millar, 1993),
potentially resampling from distinct pools of hauls based on gear type or tactic as in unpaired
hauls (Herrmann et al., 2017; Savina et al., 2017). Then, we briefly describe four case studies
used to illustrate the package’s capabilities, while providing more thorough descriptions with R
code in online appendices. The case studies are (1) a covered codend study of haddock
(Melanogrammus aeglefinus) with four different codends (O'Neill et al., 2016), (2) a paired gear
study in a brown shrimp (Crangon crangon) trawl fishery where one trawl is nonselective
(Santos et al., 2018), (3) a catch comparison study of unpaired hauls of gillnets avoiding an
unwanted crab (Cancer pagurus) (Savina et al., 2017), and (4) a catch comparison study of
paired hauls in a Norway lobster (Nephrops norvegicus) trawl fishery (Melli et al., 2018). Finally,

we discuss current limitations of the se1fisher package and potential future advancements.
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07 Implementation of selfisher

108 The selfisher package was designed to be flexible and robust for fitting and

109 assessing a variety of gear selectivity models that can be represented with a binomial

110 distribution. The code for selfisher was developed by modifying the R package g1lmmTMB

111 (Brooks et al., 2017) because glmmTMB already had the capabilities needed for fitting and

112 analyzing binomial mixed effect models. Previously, g1mmTMB was developed by adapting the
113 popular user interface from 1me4 (Bates et al., 2015) and increasing the model flexibility and
114 fitting robustness by doing estimation with TMB (i.e. Template Model Builder). Prior to the

115 development of g1mmTMB, TMB was developed based on the algorithm of AD Model Builder

116 (ADMB), which performs maximum likelihood estimation (MLE) in a fast and robust way (Fournier
117 etal., 2012; Miller, 2013; Kristensen et al., 2016). The algorithm is fast and robust because it

118 has information on the gradients of the likelihood surface via automatic differentiation.

119 Additionally, TMBR improves robustness by providing binomial and beta-binomial likelihood

120 functions that are numerically stable even when probabilities are near zero or one. Thus,

121 through inheritance, selfisher has a flexible user interface with 1me4-style syntax and robust
122 TMB code underlying the model estimation which is done using the same MLE algorithm as

123 ADMB.

124 Installing selfisher and where to ask questions

125 The package is continuously being improved and the most recent version can be found
126 online in a GitHub repository. The current version of the package is 1.0.0. News about changes
127 in each version can be found by typing news(package="selfisher")in an R console after installing

128 the package. The package is mature enough that we do not expect to have changes that will
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affect existing models; most changes will be additions of new features (see Discussion below).

The address of the GitHub repository is https:/github.com/mebrooks/selfisher. There, you can

find installation instructions and a forum for reporting bugs (i.e. issue tracker). Users are
discouraged from posting questions on the issue tracker, which is reserved for bugs. For
questions about selfisher, an email group is provided where users are encouraged to openly ask

and answer each other's questions (https://groups.google.com/d/forum/selfisher-users).

Background of selectivity

All models in selfisher involve comparing the catches from two compartments (e.g.
test vs control gear, gear 1 vs gear 2, or codend vs cover), which gives rise to data that can be
analysed as a binomial response, subject to the use of appropriate methods to allow for
overdispersion as described below. Due to technicalities of the underlying code, in selfisher
syntax, the binomial response must be specified as a proportion (i.e. proportion of individuals of
a given length in one compartment of one haul with respect to the total) and a total (i.e. total
number of individuals of a given length in either compartment in one haul), as we will
demonstrate in case studies.

There are three main categories of experimental designs in which each individual has
two possible outcomes, i.e. studies that produce binomial data. The categories are (1) a
selective net inside an outer nonselective small-mesh cover net (covered codend), (2) a
selective net compared to a nonselective net (paired gear), and (3) a comparison between two
selective gears (catch comparison). These can all be modeled using selfisher as we

describe in sections below, but first we describe some generalities.
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150 Retention models

151 All three categories of analyses involve estimating a retention model; covered codend
152 and paired gears experiments allow one to estimate the absolute retention, i.e. retention out of
153 the population encountered by the gear, while in a catch comparison experiment the estimated
154 retention is relative to that of a baseline gear. Regardless, the mathematical formulation is

155 general. We use r(l) to refer to the retention model throughout this text, but as we describe in
156 case studies below, it may depend on covariates other than length, /. See Table 1 for a

157 description of all notations. As in binomial generalized linear models (GLMs), retention models
158 use a link function to keep the retention probability in the range from zero to one. The most
159 common link is the "1ogit" (i.e. logistic), but other options include, "probit" (i.e. normal

160 probability ogiv), "cloglog" (i.e. negative extreme value), "1oglog" (i.e. extreme

161 value/Gompertz), or "Richards". The software default is the logit link. To fit retention model
162 shapes that are more diverse than the built-in link functions, it is possible to use a logit link with
163 more complex models such as polynomials (Holst & Revill, 2009) or smooth functions (Skalski &
164 Perez-Comas,1993; Munro & Somerton, 2001; Fryer et al., 2003; Somerton et al., 2013) as

165 demonstrated in case studies 3 and 4 below.

166 Selectivity statistics |, and SR

167 Two estimated summary statistics of interest are the length with 50% probability of

168 retention (I ,) and the selection range (SR, i.e. the width of the range of length classes with 25%
169 to 75% retention probabilities). Note that they only apply to models where retention probability
170 monotonically increases with length, such as in covered codend and paired gear studies. In

171 simple models with only length or size as a predictor of retention, then I, and SR can be

172 extracted from a model using the function L50SR () . In more complex models, such as the
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covered codend and paired gear case studies below, which involve additional covariates
besides length, there are multiple ways to extract |, and SR estimates. The covered codend
case study demonstrates how to extract them algorithmically by finding the lengths that
correspond to retention probabilities 0.25, 0.5, and 0.75 for each given value of covariates in the
model. The paired gear example solves for |, and SR mathematically using a model’s estimated
coefficients. For either method, confidence intervals can be obtained by bootstrapping. In the

future, a function will be added to selfisher which will be similar to the method demonstrated

in the covered codend study.

Subsampled catches

Often, in cases of abundant catches, it may not be feasible to measure the length of
every individual that is caught and in those cases, only a fraction of the catch may be measured.
This leads to additional statistical complexity in the analyses, but we have made selfisher
capable of handling subsampling in any model. Here we denote the approximate fraction of
individuals in compartment i, of haul h, and length class / that were sampled as “i.2.1. Although
subsampling doesn't always depend on /, we have written the package to be flexible enough to
handle cases where each observed count (e.g. "i.%.!) has a different subsampling fraction. It is
sufficient to include the ratio of subsampling fractions (i.e. the subsampling ratio) in a model,

!
'S

rather than each compartment’s fraction individually, 4.0 = %i.h,1/ 3j.h1  assuming here that i is
the compartment being considered as “success” in the binomial context and j is the alternative
compartment. If raising factors were recorded in the data instead of subsampling fractions, then

care should be taken when calculating the subsampling ratio to account for the fact that a

raising factor is the inverse (l:": “1.h.1) of a subsampling fraction. Subsampling fractions are

between zero and one, while raising factors are greater than or equal to one.
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The most general way to account for subsampling in a selfisher model is to specify the
subsampling ratio 9%.! using the argument gratio in a call to the selfisher function. In
covered codend models with logit links (Millar, 1994) or catch comparison models with logit links
(Holst & Revill, 2009) an of fset could be used instead, but using gratio will be more broadly
applicable because it can be used with any type of link and in paired gear models in addition to

the other types.

Three categories of experimental designs

Covered codend

One way of characterizing the selectivity of towed gear is to capture the individuals that
escape the net using a small-mesh cover, commonly known as the covered codend method.
Then, the statistical model has strong information on retention because the total number of
individuals encountered in each length class is directly observed. In this category, we compare

the number of individuals sampled in the cover in haul h with length / ( "*1.%.1) and codend (

1 hi
"12.h.1) by modeling the proportion "1.h.1 7™ 241 a5 the probability of being retained and
sampled in the codend divided by the probability of being retained and sampled in the codend or

escaping to the cover and being sampled (Millar, 1994):

. ril)syn

(0]

covered hl e ¢ WZ5ii
ril)sine + (L =7(1))s2h1 or more simply in terms of the subsampling ratio:

i r | [ I hi

()

covered hl —

ril)gny + (1 —r(l))

See Table 1 for definitions of all symbols.
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215 Paired gear (where one gear is nonselective)

216 Another way to characterize the selectivity of a fishing gear is to acquire knowledge on
217 the population available to be caught in each haul. Paired gear studies accomplish this by

218 deploying a control gear or codend (besides the one whose selectivity is being measured) that
219 has full retention for the species and lengths of interest, i.e. all individuals of the given species
220 entering that gear are retained. We assume that there is a probability, i, of entering the test

221 gearin haul h, given that the individual goes into either the test (f) or control (c) gear. The

222 proportion of individuals observed in the test gear in haul h with length class / compared to the

e hi

!

223

total number of individuals observed ''t.hl T T

c.h.l is modeled as the probability of entering
224 the test net, being retained, and being counted, divided by the probability of entering either net,
225 being retained and being counted:

PrsSt piT |i |

226 @paired,hl =

}".‘J"‘rﬂ.’.l,u‘mil:' +1-— PhsSe hl

227 It's convenient to write the model more simply in terms of the subsampling ratio:

. Prgpar(l)
Opaired hil = —
228 7 f ])';..q,;...l'l‘l“l}l + 1 — Ph
229 In paired gear studies, the ideal relative fishing power is 50% (i.e. p=0.5). If this is known

230 a priori then it is possible to fix p at 0.5 by specifying pformula=~0 inthe selfisher model.
231 If another value of p is known a priori due to differences in effort, such as swept areas, then that

232 can be specified using the gratio argument. For example, if the study has (haul-specific)

233 subsampling fractions st and sc as well as (haul-specific) swept areas of at and ac for the test

234 and control gear respectively, then one could use argument gratio = at / ac * st /

235 sc together with pformula=~0 (e.g. Somerton et al., 2013).
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Catch comparison (where both gears are selective)

Catch comparison studies compare the catches in two gears, both of which are
selective. Consequently, there is no direct information about the length distribution of the
population being fished and it is only possible to model the relative retention probability given
the population encountered during testing (Revill & Holst, 2004). In general, the relative
retention probability model can be of arbitrary shape and, for example, may not be monotone.

The response variable is the proportion of fish retained by one gear versus the other

1 gt

My hil — N2 hp

In a catch comparison study, the expected proportion of the total catch retained and sampled in
gear 1 versus gear 2 is the probability of entering gear 1, being retained in gear 1, and being
sampled over the probability of entering, being retained, and being sampled in either gear. It is

always modeled with a logit link:

Pas1par ()
Peompare bl — Py ; \ I
PrsS1 hiT l“!_‘l - | 1 — PrlS2piT2 Il_(r_‘l

where r,(I) and r,(l) are the absolute retention probabilities of the two gears, but it isn’t possible
to estimate them separately. Holst & Revill (2009) showed that the expected proportion can be
approximated with a polynomial with a logit link and an offset to account for any subsampling.
They showed that the relative fishing pressure p, can be absorbed by the intercept and that it
may vary randomly between hauls. The selfisher package allows fitting a random intercept
of haul as in a mixed effects model. In general, the relative retention model in a catch
comparison analysis can be formulated as either a polynomial (Holst & Revill, 2009) or a spline
(Miller, 2013); see the catch comparison case studies in Appendices 3 and 4 for a

demonstration of how this can be done with selfisher.
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Handling extra variability

Overdispersion

Overdispersion is the presence of variability in the proportions that is in excess of the
variability specified under the binomial model. Overdispersion can arise due to between-haul
variability whereby the retention model varies from haul to haul. To a lesser extent it can also
arise due to within-haul variability due to schooling behavior that violates the assumption that all
fish behave independently. The accepted approaches for including this variability are the use of
bootstrapping (Millar, 1993) and the use of mixed effects models (Millar et al., 2004). Both of
these methods are available in selfisher. See the covered codend and paired gear case
studies (Appendices 1 and 2) for examples of using mixed effects in selfisher. In this text,
we do not get into the details of random effects because it is a large topic; however, note that in
selfisher, they are implemented in the same way as g1lmmTMB (Brooks et al., 2017) using the
Laplace approximation, which is a standard method commonly used in modern mixed

modelling. All of the case studies demonstrate how to bootstrap as described below.

Quantify uncertainty by bootstrapping

For any statistical model, it is important to compare predictions from the model - and the
uncertainty around those predictions - with observed data to ensure that the model reasonably
represents the data. A bootstrapping procedure was developed by Millar (1993) to account for
variation between and within hauls and calculate appropriately wide confidence intervals. The
bootstrapping method can account for overdispersion in data due to variability among hauls (as
described above in the Overdispersion section); because of this, it is not necessary to include a

random effect of haul in models to be bootstrapped. The bootstrapping method is also
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280 sometimes referred to as a “double bootstrap” in fishing gear selectivity literature, but this term
281 has another meaning in statistics (e.g. Kuk, 1989). This method first resamples the same

282 number of hauls from the observed set, with replacement. Then for each resampled haul, the
283 method resamples observed fish within the haul. Then it refits the model to the resampled data
284 set and the refit model is used to produce values such as predictions or parameter estimates. It
285 is typically repeated one thousand times or more. This bootstrapping method is implemented in
286 selfisher in a way that maintains all variables associated with each observed data point, not
287 just length class, e.g. sampling fractions or total catch. This is facilitated by specifying the haul

288 argument in the se1fisher model fitting function; followed by a call to the bootSel function.

289 It is also possible to do resampling from pools of hauls, so that every bootstrapped

290 dataset has the same number of hauls in each pool as in the original data (Herrmann et al.,

291 2017). That is, if the original dataset has H, hauls of type A and H hauls of type B, then it is
292 possible to bootstrap in a way such that simulated data sets have H, hauls of type A and Hy
293 hauls of type B. This is done using the pool argument to the selfisher function. The inner
294 part of the bootstrapping method (resampling fish within hauls) is the same as in the regular
295 bootstrapping method. This is useful when hauls of the two gears or tactics being compared are

296 unpaired. See the gillnet case study in Appendix 3 for an example of specifying pools of hauls.

297 Bootstrapping and mixed modeling

298 Mixed modelling is a formal method that takes into account possible sources of

299 variability in the data such as variation between hauls, enabling sound hypothesis testing and
300 model selection. However, fitting mixed models can be computationally intensive. Moreover, the
3071 researcher is typically interested in obtaining overall selectivity predictions, rather than at the
302 haul level, because these are relevant to the selectivity applied to the fishery. In that case it is

303 necessary to refit the best candidate model, leaving out any random effects. Bootstrapping can
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304 then be used to obtain confidence intervals for estimated quantities such as predicted retention

305 curves or I, and SR. See case studies 1 and 2 for examples.

20 Case studies

307 1. Covered codend analyses of four codends catching haddock

308 This case study uses the haddock data from an experiment that employed the covered
309 codend method to investigate the selective performance of four codends (O'Neill et al., 2016).
310 The codends were made from netting materials with different twine bending stiffnesses and

311 mesh sizes.

312 We begin the case study by looking at just one gear type to demonstrate different link
313 functions that can be used and to show how to account for subsampling, which in this example
314 varies with length. The default link is the logistic, but we also consider the probit and Richards
315 curves and a spline. Having chosen a model, we bootstrap to estimate 95% confidence intervals
316 for the proportion retained by the codend.

317 We then analyse all four gear types together and investigate the influence of length,

318 mesh size, bending stiffness and catch size. We assume the principle of geometric similarity (as
319 used by Tokai et al. (1996) to investigate grid selection) and explore a number of models and
320 choose the best fit using Bayesian information criterion (BIC). When choosing the best model,
321 we include a random effect of haul to account for between-haul variation. As in the original

322 publication, we show that selection is dependent on all three parameters. Before bootstrapping,
323 we drop the random effect of haul from the best model because the bootstrapping method

324 accounts for between-haul variability and the random effect would slow it down considerably.
325 We bootstrap to estimate confidence intervals for the proportion retained by each gear and

326 numerically solve for |, and SR dependent on covariates. See Appendix 1 for details and code.
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2. Paired gear analyses of codend selectivity dependent on

mesh size

This case study draws on a subset of data from the German research project CRANNET
(Santos et al., 2018). The experimental method consisted of fishing with two identical beam
trawls, simultaneously and in parallel on the same shrimp population. One of the trawls mounted
a small-mesh (11 mm) control codend with very limited selectivity, assumed to be nonselective
on the range of shrimp lengths available for the trawl. The second trawl mounted a test codend.
The subset of data analyzed here consists of catch data from 87 hauls, during which 13
diamond-mesh codends varying in mesh size ranging from 19.1 mm to 36.3 mm were tested.
The goal was to model I, and SR as a function of mesh size, and to quantify any effect of two
additional haul covariates, sea state and catch weight.

The statistical modeling of selectivity begins with a mixed model to formally assess the
effect of mesh size, sea state and catch weight, while controlling for random variation among
hauls. A priori, the assumption of geometric similarity (that is, |, and SR being proportional to
mesh size) was assumed to be the default model, and it is shown that this corresponds to using
a I(length/meshsize) terminthe selfisher formula interface for the retention model
(Baranov, 1948). The default model was compared to several others and found to be preferred
(using BIC), and neither sea state nor catch weight had a significant effect.

Having chosen geometric similarity (with respect to mesh size) as the preferred model,
this model was refitted without random effects so as to estimate size selectivity at the population
level. Bootstrapping was used to obtain appropriate confidence intervals on I, and SR for any
given mesh size.

In addition, this case study demonstrates the use of psplit=TRUE (unequal fishing

power of the paired codends), the use of sampling ratios, use of the inits () function to
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351 specify good starting values (because without it some models converged to local minima that
352 didn’t make any sense), and shows how |, and SR can be obtained directly from the model

353 fitted by selfisher. See Appendix 2 for details and code.

354 3. Catch comparison analyses of unpaired hauls of gillnets

355 avoiding an unwanted crab

356 This example deals with data from an experiment originally published by Savina et al.
357 (2017). Two soak tactics (12h at day and 12h at night) were compared in the Danish gillnet

358 plaice fishery to estimate the role that the choice of a soak tactic plays in the catch efficiency of
359 both target and unwanted species. This is a subset of the original dataset (one species, two
360 soak tactics) where we are looking at the unwanted invertebrate edible crab (Cancer pagurus).
361 We use the method developed by Herrmann et al. (2017) which was developed for

362 assessing the effect of changing the gear design on the relative length-dependent catch

363 efficiency. This example is representative of experimental fishing where the catch data obtained
364 for two gears or tactics were not collected in pairs, and can allow for a different number of

365 deployments.

366 This case study is a typical model for catch comparison of multiple haul data without
367 subsampling using a spline. To get confidence intervals on predictions, we bootstrapped from

368 two pools according to tactic (Night vs Day) using the argument pool=tactic tothe bootSel

369 function. See Appendix 3 for details and code.
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4. Catch comparison analyses of paired hauls of Nephrops

twin-rigged trawls

The example is based on the data from Melli et al. (2018). An anterior gear modification,
namely the counter-herding device FLEXSELECT, was tested in a twin-rig configuration, where
two identical trawls were towed in parallel. One trawl was equipped with FLEXSELECT, referred
to as the test trawl, while the other worked as baseline. The aim of the study was to determine if
FLEXSELECT could reduce the fish bycatch in a Nephrops-directed fishery. The data used in
the example are from haddock, which was found to be strongly affected by the counter-herding
device.

Following the steps of the published paper, we conducted a catch comparison analysis,
modeling the relative retention as a 4th-order polynomial. In addition, we used a spline with 4
degrees of freedom using the splines package and performed model selection to determine if
it fitted the data better. Considering that part of the hauls were conducted in day-time and part in
night-time, “time” was included in the model as an explanatory variable to determine if the
length-based efficiency of FLEXSELECT presented diel differences. We predicted both catch

comparison rates and catch ratio with bootstrapped confidence intervals using the predict

and bootsSel functions from selfisher. See Appendix 4 for details and code.

Discussion

We have introduced an open source R package for estimating fishing gear selectivity of
both towed and passive gear, making it easier for anyone to analyze fishing gear selectivity data
without writing extensive amounts of code. We have demonstrated its broad applicability in four

case studies spanning a range of experimental designs. The case studies have shown that
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results from selfisher are comparable to previously published results and that selfisher

is more flexible than some methods (e.g. a single model to quantify the effect of changing mesh
size on |, and SR). Some of the features of sel1fisher that were demonstrated in the case
studies are summarized in Table 2. The case studies aim to demonstrate best practices based
on current knowledge. However, this is an active area of research and with a new powerful
model fitting tool, best practices may change. Even with (or especially with) a powerful tool,
analyses require careful thought and checking of results. For example, in complicated models
such as paired gear models which contain two submodels (retention and relative fishing power),
it may be necessary to be cautious about identifiability of parameters and local optima
encountered during maximum likelihood estimation, but better starting values help avoid those
issues as demonstrated in Appendix 2 (Bolker et al., 2013).

We have several advancements for the package either planned for the future or already
underway. We plan to add functions to calculate discard ratio indices and indicator functions
(e.g. Wienbeck et al., 2014; Santos et al., 2016; Veiga-Malta et al., 2019). We may add a
function to facilitate model averaging, although it is currently possible to piece this functionality
together with the existing features. We have not tried to fit structured non-monotonic curves
(e.g. bell-shaped curves of gilinet absolute selectivity based on geometric similarity, Baranov
1948) with sel1fisher, butwe will explore this possibility in the future. We will investigate how
to choose starting values of parameters in models that have Richards link, to increase
robustness. We plan to implement a general method to extract I, and SR from complex models
as demonstrated in case studies 1 and 2. To handle overdispersion more elegantly, we plan to
add the option of having a beta-binomial distribution for the response (Miller, 2013). We are
already in the process of developing a Shiny app, which will facilitate simple standard analyses
without the need for writing code; this will help bridge the gap for scientists or managers with

extensive experience in gear development but little experience with R. As an open source
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package, code developers are encouraged to contribute improvements through GitHub such as
those listed here.

Having access to a free and open source software should benefit this field of research in
several ways. It allows researchers to share code and thereby foster a community for discussion
and repeatability. The free nature of the software will enable researchers and managers with
limited budgets - such as those in developing countries - to perform analyses themselves. It
gives statistical methods of retention modelling a way into classrooms containing the next
generation of fisheries scientists who are already learning modern regression methods as part

of a general scientific curriculum.
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Nina Number of fish caught in compartment i, haul h, in length class /
it Number of fish sampled in compartment i, haul h, in length class /
1.0, Proportion of fish sampled in compartment i, haul h, in length class /
Ghi = Sihl/Sj.h, Subsampling ratio for compartment i vs j in haul h, in length class /
r(l) Retention probability as a function of length /

Ph Relative fishing power of test vs control gear in haul h
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586 Table 2. A list of se1fisher features demonstrated in the four case studies with code

587 in Appendices 1 through 4 (respectively).

Feature Demonstrated in case studies
Random effects 1,2

Fixed effects other than length or size 1,2

Splines 3,4

Residual plot 1

Specifying initial values 2

Model selection via information criteria 1,2

Link functions other than default logit 1
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Appendix 1: Covered codend analyses of four codends catching

haddock
4 Dec 2020

This example deals with data from an experiment published by O’Neill et al. (2016) that investigated the
selectivity of haddock (Melanogrammus aeglefinus) in four codends made from netting materials with different
twine bending stiffnesses and mesh sizes. Three of the codends had a nominal mesh size of 120mm and one a
nominal mesh size of 130mm. The twine bending stiffness values were in the range 0.64 to 1.1kN mm?2. We
label the codends as 120low, 120med, 120high and 130med to reflect their mesh size and bending stiffness (as
categorised by the netting manufacturers). As in the original analysis, we show that selection is dependent
on both of these parameters and the total codend catch weight.

Preliminaries

library(selfisher)

library(plyr) #for aggregating data
library(ggplot2); theme_set(theme_bw())
library(parallel) #for bootstrapping in parallel
library(bbmle) #for AICtab BICtab
library(splines)

library(reshape)

Data structure

We load the data each row of which corresponds to the fish of a given length from a given haul. The length
(cm), haul number, mesh size (mm), twine bending stiffness (kNmm?), number of fish measured from the
codend, codend raising factor, number of fish measured from the cover, cover raising factor, catch size (kg)
and codend label are specified respectively.

data("coverhaddock")
head (coverhaddock)

##  Length haul mesh stiffness codend cod_rf cover cov_rf catch gear

## 1 10.5 36 119.3 0.69 0 1 0 1.00 617 120low
## 2 11.5 36 119.3 0.69 0 1 0 1.00 617 120low
## 3 12.5 36 119.3 0.69 0 1 0 1.00 617 120low
## 4 13.5 36 119.3 0.69 0 1 1 4.78 617 120low
## 5 14.5 36 119.3 0.69 0 1 4 4.78 617 120low
## 6 156.56 36 119.3 0.69 0 1 12 4.78 617 120low

Here we can see that the raising factor varied by length class, which is not a problem in selfisher.

summary (coverhaddock)

## Length haul mesh stiffness

## Min. :10.5  Min. : 6.0 Min. :119.3  Min. :0.6400
## 1st Qu.:21.5 1st Qu.:13.0 1st Qu.:119.3 1st Qu.:0.6900
## Median :33.0 Median :22.5 Median :119.6 Median :0.8000
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## Mean :33.0 Mean :22.0 Mean :122.5 Mean :0.8087
## 3rd Qu.:44.5 3rd Qu.:31.0 3rd Qu.:129.4 3rd Qu.:0.8000

## Max. :55.5 Max. :39.0 Max. :129.4 Max. :1.1000

## codend cod_rf cover cov_rf

## Min. : 0.00 Min. :1.000 Min. : 0.00 Min. : 1.000
## 1st Qu.: 0.00 1st Qu.:1.000 1st Qu.: 0.00 1st Qu.: 1.000
## Median : 0.00 Median :1.000 Median : 3.00 Median : 2.580
## Mean :11.89 Mean :1.349 Mean 1 24.82 Mean 3.437
## 3rd Qu.: 5.00 3rd Qu.:1.701 3rd Qu.: 38.00 3rd Qu.: 4.097
## Max. :156.00 Max. :2.989 Max. :272.00 Max. :59.330
## catch gear

## Min. 1267.0 120high:322

## 1st Qu.:482.0 1201low :368

## Median :535.5 120med :276

## Mean :566.7 130med :414

## 3rd Qu.:630.0

## Max. :979.0

We can also see that all the hauls are contained in one data frame. The data is organized into what is called
“long format”.

Transforming data

For a model in selfisher, we need to convert counts into proportions and totals. Unlike other GLM functions
for binomial regression, it is not possible to specify the binomial variable as a two-column response variable,
e.g. cbind(N_test, N_cover).

Because not all fish in the samples were counted, we will account for this in the model (Millar 1994). The
values we need in the model are calculated as cov_rf/cod_rf. If instead we had a sampling fraction, we
would calculate qratio = sampling_test/sampling_cover because a sampling fraction is the inverse of a
raising factor. We create a new column in the data with the value of qratio = cov_rf/cod_rf for each row.
An easy way to compute this value by row is to use the transform function.

coverhaddock = transform(coverhaddock,
total = codend + cover,
prop = codend / (codend+cover),
qratio = cov_rf / cod_rf)

We drop rows of data where no fish were observed because they don’t contain any information (i.e. where
total = 0). This doesn’t affect the model except to allow for bootstrapping later.

coverhaddock = subset(coverhaddock, !is.na(prop))

Single gear model with covered codend

We will start out with a simple example of one gear type (“120low”). So we need to subset the data.

coverhaddock_120low = subset(coverhaddock, gear=="120low")

The following is a model for multiple haul data from a covered codend experiment with subsampling. It could
be argued that there should be a random effect of haul in the models to account for variation among hauls
and avoid pseudoreplication, but we will keep it simple for this first example and only include a fixed effect of
length.

mod_base = selfisher(prop ~ Length, qratio=qratio, total=total, haul=haul, data=coverhaddock_120low)
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Extracting residuals and other standard methods

We can check the model residuals for patterns. There’s a residuals function for selfisher models. All
methods for selfisher models can be displayed as follows:

methods(class="selfisher")

## [1] anova confint df .residual extractAIC family fitted
## [7] fixef getME logLik model.frame nobs predict
## [13] print ranef residuals simulate summary terms
## [19] VarCorr vcov

## see '7methods' for accessing help and source code

Here is one way to plot the residuals.

coverhaddock_120low$res = residuals(mod_base, type="deviance")
ggplot (coverhaddock_120low, aes(Length, res, colour=factor(haul)))+geom_point()
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Residuals from GLMs are notoriously opaque, but in the future, we will try to make selfisher compatible
with the DHARMa package to make it easier to assess residuals (Hartig 2020).

Links other than logit

It is also possible to consider other link functions, or use a spline. See the function documentation (?selfisher)
for a list of implemented link functions. Here we fit the logistic, probit and Richard’s curve and a spline.

mod_probit = selfisher(prop ~ Length, gratio=qratio, total=total,
link="probit", haul=haul, coverhaddock_120low)

mod_richards = selfisher(prop ~ Length , qratio=qratio, total=total,
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link="richards", haul=haul, coverhaddock_1201ow)

## Warning in nlminb(start = par, objective
## optControl): NA/NaN function evaluation

fn, gradient = gr, control

## Warning in nlminb(start = par, objective = fn, gradient = gr, control
## optControl): NA/NaN function evaluation

mod_spline = selfisher(prop ~ bs(Length, 3), gqratio=qratio, total=total,
haul=haul, coverhaddock_120low)

Fitting the model with 1link="richards" produced some warnings, but this is ok. The model is valid if the
summary function is able to produce non-NA standard-errors as seen below.

summary (mod_richards)

## Family: binomial ( Richards )

## Selectivity formula: prop ~ Length
## Data: coverhaddock_120low

## Total: total

##

## AIC BIC loglik deviance Pearson.ChiSq
## 953.2 963.9 -473.6 491.9 22746.8
## df .resid

## 255

##

##

## Richards exponent parameter (delta): 0.542

##

## Selectivity model:

#it Estimate Std. Error z value Pr(>|z|)

## (Intercept) -11.65570 0.64953 -17.95 <2e-16 ***

## Length 0.35000 0.01549 22.60 <2e-16 ***

## ——-

## Signif. codes: O '**x' 0.001 '%xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Size at retention probability:

## p Lp.Est Lp.Std.Err

## 25 32.98060 0.05570708

1 0.
## 2 0.50 35.54755 0.07331880
## 3 0.75 38.38777 0.15044341
#it

## Selectivity range (SR):

## Estimate Std. Error

## 5.4071721 0.1568771

Predictions

To see how the model fits the data, in addition to residuals as above, it helps to plot observations and
predictions together. This could be done to examine any of the models above. We could have compared them
using log-likelihoods or information criteria, but we’ll demonstrate how to do that in the next section.

newdata = expand.grid(Length=unique(coverhaddock_120low$Length),
total=1,
haul=NA,
gratio=1)
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newdata$prop = predict(mod_base, newdata=newdata, type='"response')

For plotting observations, we need to aggregate the hauls and raise the data by the raising factor. The raised
data is only used for plotting, not for statistical analyses.

sumdat_base = ddply(coverhaddock_120low, ~Length, summarize,
prop = sum(codend)/sum(total),
total = sum(total),
raised_prop = sum(codend * cod_rf)/
sum(codend * cod_rf + cover* cov_rf),
raised_total=sum(codend * cod_rf + cover* cov_rf)

)

ggplot (sumdat_base, aes(Length, prop))+
geom_point(aes(size=total, y=raised_prop))+
geom_line(data=newdata)+
ylab("retention probability")
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Confidence intervals by bootstrapping

Following the method of Millar (1994) the bootstrapping function bootSel resamples hauls, then resamples
fish within hauls, fits the model to the resampled data, then applies a function FUN to each fitted model.
In the code below, we define FUN to make predictions from each fitted model onto newdata. The type of
predictions we want in this case are the retention probabilities, i.e. the estimated selection curve, so we specify
type="selection". To read about the predict function, type ?predict.selfisher in the R console.
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Mac and Linux bootstrapping in parallel

bs = bootSel (mod_base, nsim=1000, parallel="multicore", ncpus=4,
FUN=function(mod) {predict (mod, newdata=newdata, type='"selection")})

Windows bootstrapping in parallel

ncpus = 4

cl = makeCluster(rep("localhost", ncpus))

clusterExport(cl, "newdata")

bs = bootSel(mod_base, nsim=1000, parallel = "snow", cl=cl,
FUN=function(mod){predict(mod, newdata=newdata, type='"selection")})

stopCluster(cl)

Then we calculate quantiles across bootstraps for each row of newdata.

quants = apply(bs$t, 2, quantile, c(0.025, 0.5, 0.975))
newdatal,c("lo", "mid", "hi")] = t(quants)

ggplot (sumdat_base, aes(Length, prop))+geom_point(aes(size=total, y=raised_prop))+
geom_line(data=newdata)+
geom_ribbon(data=newdata, aes(ymin=lo, ymax=hi), alpha=0.2)+
ylab("Retention probability")
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All four codends in one model

We can analyze the data from all gear types together and test if the gear type affects selectivity by comparing
models of varying complexity. If we want to use models directly (i.e. before bootstrapping) for testing
the significance of a variable, we need to account for variability among hauls and avoid pseudoreplication
(Hurlbert 1984) by including a random effect of haul. The random effect is only needed when models are used
directly for hypothesis testing e.g. here, to test our hypothesis that the gear types differ in their selectivity.

modO
mod1

selfisher(prop~ Length +(1|haul), qratio=qratio, total=total, coverhaddock)
selfisher(prop~ Length * gear +(1|haul), qratio=qratio, total=total, coverhaddock)

BICtab(mod0O, modl)

##t dBIC df
## modl 0.0 9
## mod0 16.8 3

We use the Bayesian information criterion (BIC) to choose the best fit and this table tells us that mod1 is
more parsimonious, which means that the 4 codends are somehow different. To explore which aspect of
the gears made them different, we examine models with mesh size, twine bending stiffness and catch size.
Further, we assume that Baranov’s Principle Of Geometric Similarity applies, i.e. selectivity is a function of
fish length scaled by mesh size. It could also be reasonable to fit models with a main effect of mesh size and
length in addition to an interaction term, but we do not attempt to fit all possible models here and leave it
to users to decide what applies to their particular study.

mod_all = selfisher(prop ~ Length + (1|haul),
gratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_c = selfisher(prop ~ Length + catch + (1|haul),
gratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_s = selfisher(prop ~ Length + stiffness + (1|haul),
gratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_m = selfisher(prop ~ I(Length/mesh) + (1|haul),
gratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_c_s = selfisher(prop ~ Length + catch + stiffness + (1|haul),
qratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_c_m = selfisher(prop ~ I(Length/mesh) + catch + (1|haul),
gratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_s_m = selfisher(prop ~ I(Length/mesh) + stiffness + (1|haul),
qratio=qratio, total=total, haul=haul, data=coverhaddock)

mod_all_c_s_m = selfisher(prop ~ I(Length/mesh) + catch + stiffness + (1|haul),
gratio=qratio, total=total, haul=haul, data=coverhaddock)

BICtab(mod_all, mod_all_c, mod_all_s, mod_all_m, mod_all_c_s, mod_all c_m, mod_all_s_m,
mod_all_c_s_m)

## dBIC df
## mod_all c.s m 0.0 5
## mod_all_s

3.6 4
## mod_all_s m 9.4 4
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## mod_all_c_s 10.4 5
## mod_all 17.6 3
## mod_all_c 23.4 4
## mod_all m 24.9 3
## mod_all c.m 29.5 4

Again we use BIC to choose the best fit and this table tells us that the model that contains mesh size, twine
bending stiffness and catch size is the most parsimonious fit to the data.

Bootstrapping

We drop the random effect of haul from the most parsimonious model before bootstrapping for two reasons
(1) the bootstrapping method resamples among and within hauls and thereby accounts for variation among
hauls, and (2) random effects make model fitting much slower which can be burdensome when refitting the
model 1000 times or more.

mod_all_c_s_m_FE = selfisher(prop ~ I(Length/mesh) + catch + stiffness,
gratio=qratio, total=total, haul=haul, data=coverhaddock)

Then we create a new data set to use for predictions. It must include all variables that appear in the model.
Even though haul is not used in the mathematics behind the predictions, it must be included in the new data
for technical reasons. We include gear just because it makes it easy to organize and plot the data further
down. For each gear, we will make predictions over the range of catch weights observed for that gear.

newdata_v2 = unique(coverhaddock[,c("Length", "stiffness", "mesh", "gear", "catch")])

newdata_v2 = transform(newdata_v2,
gratio=1,
total=1,
haul=NA)

Windows bootstrapping code

ncpus = 4

cl = makeCluster(rep("localhost", ncpus))

clusterExport(cl, '"newdata")

bs = bootSel(mod_all_c_s_m_FE, nsim=1000, parallel = "snow", cl=cl,
FUN=function(x){predict(x, newdata= newdata_v2, type="selection")})

stopCluster(cl)

Mac and linux bootstrapping code
bs= bootSel(mod_all_c_s_m_FE, nsim=1000, parallel = "multicore", ncpus = 4,

FUN=function(x){predict(x, newdata= newdata_v2, type="selection")})

Organize bootstrap predictions with the predictor variables

Then we organize the bootstrap results and join them with the newdata used for predictions.

quants = apply(bs$t, 2, quantile, c(0.025, 0.5, 0.975))
newdata_v2[,c("lo", "mid", "hi")]=t(quants)

#all the bootstrap predictions with the wvariables used to create them
newdata_v3 = cbind(newdata_v2[,c("Length", "gear", "mesh", "stiffness", "catch")], t(bs$t))
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#put them in long format (i.e. separate the different bootstrap replicates)
newdata_v3 = melt(newdata_v3, id.vars=1:5)

names (newdata_v3) [6:7] = c("rep", "predicted_r")

Calculate /50 and SR from bootstraps

Here we define a function to evaluate the length at which a given proportion of fish (p) are retained using
interploation.We use this function to find the l5o and SR for each bootstrap while varying over mesh size,
twine bending stiffness and catch size and subsequently find the mean I5y, mean SR and their 95% confidence
limits. We plot the results against catch size, which is how they were presented in the original analysis of
O’Neill et al (2016).

# Function to interpolate lengths - assumes y strictly increases with
findx=function(x,y,p=0.5) {
n=1:length(x)
lo.obs=sum(y<p)
hi.obs=lo.obs+1
delta=(p-y[lo.obs])/(y[hi.obs]-y[lo.obs])
x[lo.obs]+delta*(x[hi.obs]-x[lo.obs])

#find 150 and SR for each bootstrap, still wvarying by gear characteristics and catch
sumsO = ddply(newdata_v3, ~gear + mesh + stiffness + catch + rep,
summarize, SR = findx(Length, predicted_r, 0.75) - findx(Length, predicted_r , 0.25),
150 = findx(Length, predicted_r, 0.5)

#summarize over bootstraps, but still varying by gear characteristics and catch
sumsl = ddply(sumsO, ~gear + mesh + stiffness + catch , summarize,

150_lo=quantile (150, 0.025),

150_mid=quantile (150, 0.5),

150_hi=quantile (150, 0.975),

SR_lo=quantile(SR, 0.025),

SR_mid=quantile(SR, 0.5),

SR_hi=quantile(SR, 0.975)

ggplot(sumsl, aes(x=catch, group=gear))+
geom_line(aes(y=150_mid, lty=gear))+
geom_ribbon(aes(ymin=150_lo, ymax=150_hi), alpha=0.1)+
ylab(expression(1[50]))
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ggplot(sumsl, aes(x=catch, group=gear))+
geom_line(aes(y=SR_mid, lty=gear))+
geom_ribbon(aes(ymin=SR_lo, ymax=SR_hi), alpha=0.1)+
ylab("SR")
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The plots presented here are very comparable to Fig 1 from the original manuscript, which finds a similar
dependence of haddock [59 on mesh size, twine bending stiffness and total codend catch weight but finds that
SR is a constant (O’Neill et al., 2016). We should not, however, expect the results to be identical as there
are many differences between the analyses. In the original, it was assumed that the slope and intercept of the
logistic link functions vary randomly from haul to haul and that 59 and log SR mean selection curve were
linearly dependent on the explanatory variables. Whereas, here we have assumed geometric similarity and
that overall retention is related to the explanatory variables.

Below we plot retention curves for each gear aggregated over catches.

sumdat = ddply(coverhaddock, ~Length+gear, summarize,
prop=sum(codend) /sum(total), total=sum(total),
raised_prop=sum(codend * cod_rf)/sum(codend * cod_rf + cover* cov_rf),
raised_total=sum(codend * cod_rf + cover* cov_rf)

newdata_v4 = ddply(newdata_v3,~Length + gear + mesh + stiffness , summarize,
lo = quantile(predicted_r, 0.025),
mid = quantile(predicted_r, 0.5),
hi = quantile(predicted_r, 0.975)

ggplot (sumdat, aes(colour=gear))+geom_point(aes(size=total, x=Length, y=raised_prop))+
geom_line(data=newdata_v4, aes(x=Length, y=mid))+
geom_ribbon(data=newdata_v4, aes(x=Length, ymin=lo, ymax=hi, fill=gear), alpha=0.2)+
ylab("retention probability")

11
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Appendix 2: Paired gear analysis of codend selectivity dependent
on mesh size

12 Nov 2020

Case study background

This example deals with brown shrimp selectivity data from Santos et al. (2018). The brown shrimp
beam-trawl fishery is one of the most important fisheries in the Southern North Sea. Despite its
relevance, this is also one of the least regulated fisheries in European waters. Concerns regarding
the size selection of the fishery motivated the German research project CRANNET (2013-2015),
which assessed brown shrimp size selection of commercially used and alternative codend designs.
Codend selectivity data was collected during experimental fishing trials using the paired gear method
(Millar and Walsh, 1992; Wileman, 1996). The experimental method consisted of fishing with two
identical beam trawls, simultaneously and in parallel on the same shrimp population. One of the
trawls mounted a small-mesh (11 mm) control codend with very limited selectivity (assumed to be
non-selective) on the range of shrimp lengths available for the trawl. The second trawl mounted,
one at a time, a total of 33 different test codend designs varying in mesh size and mesh type were
tested.

This case study draws on a subset of the CRANNET data to demonstrate the use and functionality
of selfisher in selectivity analysis based on paired gear data. It uses a subset of the catch data,
the 87 hauls during which 13 diamond-mesh codends varying in mesh size (ranging from 19.1 mm to
36.3 mm) were tested. Additional information relative to fishing conditions and catch characteristics
were recorded at haul level.

Preliminaries

library(selfisher)

library(xtable)

library (bbmle)

library(ggplot2); theme_set(theme_bw())

Data structure

We can read in the data that is distributed with the package and examine it.

data(pairedshrimp)
head (pairedshrimp)
##  length ms cw seast test control sampling_test sampling_control haul
# 1 23 20.188 12.074 4 0 1 0.232 0.182 1
## 2 24 20.188 12.074 4 1 1 0.232 0.182 1
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## 3 26 20.188 12.074 4 0 1 0.232 0.182 1
## 4 28 20.188 12.074 4 0 2 0.232 0.182 1
## 5 29 20.188 12.074 4 0 3 0.232 0.182 1
## 6 30 20.188 12.074 4 2 1 0.232 0.182 1

Here we can see the column names of the data. There is a column for haul because multiple hauls
h, i =1,2,...,87 are contained in the same data object. Therefore the information presented in the
remaining columns was collected at haul level. The column length contains observed (total) length
classes [ of brown shrimp (mm), ms contains the measured mesh size (mm) of the test codend, cw
is the total catch weight (kg) collected in the test codend, seast is the state of the sea recorded
during towing (Beaufort scale). Columns test and control contain the numbers of shrimps of
length | sampled from each of the paired codends, while sampling_test and sampling_control
are the associated sampling fractions.

Data transformation

In selfisher, it is necessary to model the binomial response as a proportion and total because
unlike many other methods for binomial GLMs, the underlying code does not accept a two column
response variable. Therefore, we transform the data to create these new columns. We also create a
column for qratio (i.e. g, below) which is the ratio of the sampling fraction of the test over the
control gear. If the data contained raising factors instead, then qratio would be the raising factor
of the control gear over the test gear.

pairedshrimp = transform(pairedshrimp, total = test + control,
gratio = sampling_test / sampling_control,
prop = test / ( test + control )

Selectivity analysis

The selectivity analysis based on paired gear data is usually done with the model introduced by
Millar and Walsh (1992):

pxr(l)

U= o=t per®

In the equation above, ¢(l) expresses the probability that a shrimp of length [ in the total catch of
the paired gear was caught by the test gear. This probability is related to a sequence of two fishing
events. The first event is controlled by the probability that a shrimp entering the paired gear did it
through the test trawl (relative fishing power), expressed as the length-independent split parameter
p. Conditioned on the probability of entering the test trawl, the second event is the length-dependent
retention probability of the test codend 7(I). Retention probability is usually (but not exclusively)
modelled with the logistic function, and summarized by two selectivity parameters Lso (length of
50% retention probability) and SR (difference in the lengths of 75% and 25% retention). Further
details of this model and extensions involving alternatives to the logistic function can be found in
Millar and Walsh (1992) and Wileman (1996).

In Santos et al. (2018), the effect of codend design as well as other variables describing catch
and operational characteristics of the hauls were assessed using the so-called Fryer method (Fryer,
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1991). The Fryer method is carried out in two steps. In the first step the parameters l50, SR, p
and associated Hessian-based covariance-variance matrix of individual hauls are estimated. The
estimates become the data used in the second step, where the effect of the measured explanatory
variables (fixed effects) on codend selectivty is estimatated. Such estimations are obtained using
the EM-algorithm, which allows quantifying the strength of the fixed effects in the presence of
between-haul variation.

The Fryer method was developed at a time before suitable generalized mixed modeling software such
as selfisher was available. The Fryer method suffers from small sample bias in the fits to individual
haul data. In contrast, selfisher enables quantifying and testing the effect of explanatory variables
in a single step and directly on the measured catch data.

The methods in selfisher generalize the original selectivity model introduced by Millar and Walsh
(1992), by allowing multiple fixed and random effects to simultaneously model relative fishing
efficiency and the selectivity of the test codend:

dn1 = qhPhTh,l
" (1.0 = pn) + qnprTh
In the equation above, g, = == is the ratio of the fraction of brown shrimp sampled in the test gear

to the fraction sampled in the control gear, py, is the relative fishing power of the test gear in haul h
(split parameter), where pj, = logit~! (i + up) and uy, is a random effect uj, ~ N(0,02) accounting
for haul-specific random variation from the mean value on the logit scale pu. For simplicity in this
example, we assume a logit link in the retention model and therefore the retention probability
%). This expresses the haul-specific
probability for a fish entering in the test gear to be retained where yy,; is the expectation on the
link scale combining fixed- and random-effects potentially influencing retention probability of the
test codend. Four models varying in the structure of y,; are initially considered:

model for haul h and length [ is rj,; = logit ! (yp;) =

model 1: yp; = Bo + ap, +
model 2: yp; = Bo + ap +
model 3: yp; = Bo + ap +
model 4 : yp; = Bo + ap +

B1 + Th) *

51+Th)*l+52*m8h

B1+ 1h) *x L+ Baxmsp + B |« msp,
B1+ 1) * 1/msy,

/‘\/\/‘\/‘\

All models listed above include an intercept By which expresses the baseline shrimp retention
log-odds when all additional covariates (including shrimp length) are set to 0. The coefficient ay, is
a random effect aj, ~ N(0,02) accounting for haul-specific random variation of the intercept. Model
1 assumes that codend retention can be exclusively described by shrimp length. In models 1, 2, and
3, P1 is the slope quantifying the rate of increment in retention probability (on the link scale) due
to increments in the length of shrimp. The slope of size selection curves can vary significantly and
randomly between hauls, even while keeping the design characteristics of the codend constant (Fryer,
1991). The coefficient 75, ~ N(0,02) is introduced to account for haul-specific random variation of
the baseline 31 value. Model 2 extends model 1 by adding mesh size (ms) as a fixed effect that
varies by haul: msy,. Model 2 assumes that retention probability is a result of separate effects of
shrimp length and mesh size. With the addition of an interaction term of mesh size and shrimp
length (f3), in model 3 it is assumed that mesh size influences both the position and slope of the
size selection curve.
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The tested diamond-mesh codends were made of the same netting material, same length, and
the number of meshes in circumference were reduced proportionally to increments in mesh size.
Therefore, we assume that the meshes of the tested codends present the same geometry during
fishing. Based on the principle of geometrical similarity (Baranov, 1948; Millar and Holst, 1997;
Revill and Holst, 2004) it would be a reasonable a priori assumption that the selection curves will
vary systematically with mesh size. Model 4 is built upon the hypothesis that variation in size
selection can be explained by the principle of geometrical similarity, implying that the size selection
varies proportionally to mesh size (i.e. doubling the mesh size implies doubling the values of 5y and
SR of the selection curve)(Millar and Holst, 1997).

Model fitting with selfisher

In this section, the models described above are fit using a function named selfisher within the
selfisher package. Formulas in these models follow the convention of the lme4 and glmmTMB
packages. The function takes a formula for the retention model rformula as the first argument.
This is a two sided model with the proportion on the left side and fixed and random effects on the
right side. For example, in model 1 (m1) below, prop ~ length + ( length | haul ) says that
the proportion (prop) of fish retained in the test gear depends on length and that the intercept
and slope vary randomly by haul. It also takes an argument for the relative fishing power model
(pformula) which is a one-sided formula, e.g. pformula =~( 1 | haul ); this says that relative
fishing power should be estimated and can vary randomly by haul. If instead, we wanted to fix the
split at 0.5, then we could specify pformula =~0. To tell the funciton that this is a paired gear
model with one non-selective gear, we use the argument psplit = TRUE. The function also takes as
arguments the names of the columns for the total and qratio within the data frame specified by
the argument data.

One optional argument appears in this example: the start argument. It tells the function what
starting values to use in maximum likelihood estimation. See ?selfisher for the full flexibility of
how to specify starting values, but here we only give starting values for the retention model. To get
good starting values for the retention model’s intercept (5y above) and coefficient on length (f;
in models 1, 2, and 3 above), we use the inits function which takes guesses for 59 and SR as its
arguments (30 and 8 respectively here). The coefficient 5 has a different meaning in model 4, but
the starting values work as supported by plots below, so it’s not a problem. Models fit with TMB
(as in selfisher) are usually robust to starting values, but due to the complexity of paired gear
models, they sometimes get stuck in local minima during maximum likelihood estimation. In this
case study, the length of the start vector must equal the number of fixed effects coefficients in the
retention model, i.e. the 8s in the equations above, so in m2 and m3 we combine guesses for 5y and
(1 with zeros for the other coefficients

As described above, model 4 (m4) assumes geometric similarity. To include length/ms in a model
in R, it is necessary to tell the formula interface to use the term “as is” by putting an I() around it.

ml = selfisher( prop ~ length + ( length | haul ),
total = total, psplit = TRUE, pformula =~( 1 | haul ),
qratio = gqratio, data = pairedshrimp, start = c(inits(30,8))
)

m2 = selfisher( prop ~ length + ms + ( length | haul ),

total = total, psplit = TRUE, pformula =~( 1 | haul ),
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gratio = gratio, data = pairedshrimp, start = c(inits(30,8),0)

)

m3 = selfisher( prop ~ length * ms + ( length | haul ),
total = total, psplit = TRUE, pformula =~( 1 | haul ),
gratio = qratio, data = pairedshrimp, start = c(inits(30,8),0,0)
)

m4 = selfisher( prop ~ I( length/ms ) + ( I( length/ms ) | haul ),
total = total, psplit = TRUE, pformula =~( 1 | haul ),
gratio = qratio, data = pairedshrimp, start = c(inits(30,8))
)

Model selection

Retention is a mechanical process that can be largely explained by the relationship between the
mesh characteristics and the morphology of the species being selected. Of the above models, model
4 is the only one that has a mechanistic justification, namely geometric similarity. In terms of
model selection we a priori propose model 4, taking the view that strong evidence against model
4 is required to prefer an alternative. There are several thousand observations in the data, and
consequently Akaike Information Criterion will tend to choose the most complicated model (Heinze
et al., 2018). In contrast, the Bayesian Information Criterion, BIC, includes a stronger penalty for
the number of parameters than AIC and therefore it tends to select simpler models than AIC. We
can use functions from the bbmle package to create either an AIC or BIC table of the models.

AICtab(ml, m2, m3, m4)

## dAIC df

## md 0.0 7
## m3 0.2 9
##* m2 7.5 8
## ml 96.6 7

BICtab(ml, m2, m3, m4)

## dBIC df
## md 0.0 7
## m3 13.1 9
## m2 13.9 8
## ml 96.6 7

Both AIC and BIC rank model 4 on top, as was the a priori expectation.

Extended models

Model 4 is now extended by adding other covariates in the data frame that could potentially influence
size selection, such as cw and seast. The following models are fitted following the same procedure
as for models 1 to 4:
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selfisher( prop ~ I( length/ms )+ cw + ( I( length/ms ) | haul ),

total = total, psplit = TRUE, pformula =~( 1 | haul ),
qratio= qratio, data = pairedshrimp, start = c(inits(30,8),0)
)

selfisher( prop ~ I( length/ms ) + seast + ( I( length/ms ) | haul ),

total = total, psplit = TRUE, pformula =~( 1 | haul ),
gratio= gratio, data = pairedshrimp, start = c(inits(30,8),0)
)

selfisher( prop ~ I( length/ms ) + cw + seast + ( I( length/ms ) | haul ),

total = total, psplit = TRUE, pformula =~( 1 | haul ),
gratio = qratio, data = pairedshrimp, start = c(inits(30,8),0,0)
)

selfisher( prop ~ I( length/ms ) + cw * seast +( I( length/ms ) | haul ),

total = total, psplit=TRUE, pformula =~( 1 | haul ),
gratio = qratio, data = pairedshrimp, start = c(inits(30,8),0,0,0)
)

Then we can compare all the models.

BICtab(mi, m2, m3, m4, m5, m6, m7, m8)

##
##
##
##
##
##
#it
##
#it

mé
mb
mé
m7
m8
m3
m2
ml
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W W o 0N O W
H
Q
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96.

This table shows that none of the individual or combined effects associated with cw and seast were
strong enough to be included in the most parsimonious model. Therefore model 4 is selected in this
case study for further assessments.

Simple results

Consistent with other model procedures implemented in R, a summary of model results and fit
statistics can be obtained via summary(model.object). Before inspecting the size selectivity results
provided by model 4, the estimated relative fishing efficiency of the test gear is presented. By
default, selfisher () summary shows the estimated split parameter p on the logit scale, but this
might be updated in a new version. An inverse logit transformation is needed to obtain the fishing

power p € [0,1]:

round(boot: :inv.logit(confint(m4, level=0.95, component="p")[1,c( 1, 3, 2)]1),3)

##

2.5 % Estimate 97.5 %
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## 0.484 0.503 0.522

The split parameter estimated by model 4 is p = 0.503 with 95% confidence interval (0.484 — 0.522),
very close to the value estimated in the original study (p = 0.492 (0.472 — 0.512)). This includes the
reference value of 0.5, from which we conclude that there is no significant evidence against equal
catch efficiency of the test and control gears.

Goodness-of-fit

The mixed models presented above are fitted at haul level. Therefore it is reasonable to assess the
goodness-of-fit of these models on individual haul data. Due to the large dataset used, a random
sample of 12 hauls are picked to demonstrate how well the ¢ (1) curves estimated by model 4 fit to the
data. We can use the function predict to examine the estimated retention curve, ie. the model’s
“response” variable. See ?predict.selfisher for details of how to use this function including the
different types of predictions available.

pairedshrimp$hat_phi = predict( m4, type = "response" )
set.seed( 999 )

ggplot (pairedshrimp [pairedshrimp$haul’infsample (unique(pairedshrimp$haul),12),],
aes(x=length,y=prop))+
ylab( eval( parse( text = pasteO("expression(","phi", "(1))") ) ) )+
xlab( "Shrimp length (mm)" )+
xlim( 20, 80 )+
geom_point( alpha = .7, size = 0.3 )+
geom_line( aes( x = length, y = hat_phi ) )+
facet_wrap( ~ haul, ncol = 4, nrow = 3)+
theme_bw ()
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The figure above reveals that the fitted ¢(I) curves describe well the trends and variability of the
data at individual haul level.

Population-average predictions

Mixed modelling is a formal procedure that takes into account specific details of the data collection
enabling sound hypothesis testing on fixed effects and model selection. However, fitting mixed
models can be a computational-intensive task. Moreover, the researcher is also typically interested
in obtaining average selectivity predictions, as these are relevant to the selectivity applied to the
fishery. It is therefore recommended to refit the best candidate model leaving out the random
effects. Bootstrapping can then be used to obtain valid standard errors and confidence intervals for
estimated quantities such as l5g and SR.

m4_fe = selfisher( prop ~ I( length/ms ), total = total,
psplit = TRUE, pformula =~1, haul = haul,
qratio = qratio, data = pairedshrimp, start = c( inits( 30, 8 ) ) )

A summary of model coefficients describing codend retention can be obtained using standard
procedures in R

coef ( summary( mé4_fe ) )$r

## Estimate Std. Error z value Pr(>|zl)
## (Intercept) -9.231103 0.09420144 -97.99322 0
## I(length/ms) 5.143515 0.06443302 79.82732 0
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Bootstrapping to get confidence intervals on population-average [5y and SR

Selectivity statistics l5g and SR are often obtained by simple calculations involving model coefficients
Bo and B1, or for simple models in selfisher, the function L50SR(model.object) can calculate
them. However, standard calculations need to be updated when using multiple fixed effects to
describe codend retention. Details on how to calculate l5g and SR from the models considered in
this case study can be found in Table 1 below.

To obtain a bootstrap distribution of the selectivity parameters estimated by model 4, first we
generate a bootstrap distribution of model coefficients using bootSel (), as follows. The bootSel()
function applies the user-defined function FUN to each refit model; here we define FUN so that it
returns the fixed effect (fixef) coefficients of the retention model ($r). This is the code to perform
the computations in parallel on Linux or Mac computers, but see the other case studies for how to
do it in Windows.

bootpars_mé4_fe = bootSel( m4_fe, nsim = 1000,
parallel = "multicore", ncpus = 4,
FUN = function( x ){fixef( x )$r }
)

Selectivity statistics 59 and SR are then calculated from each set of coefficients in the bootstrap
distribution generated above. Finally, the resulting bootstrap distribution is used to obtain 95%
percentile confidence intervals of l5g and SR.

# extract boostrap distribution from bootSel object
bootpars = bootpars_md_fe$t

# create a grid of mesh sizes within the experimental range for predictions
ms = seq( from = 20, to = 35, by = .5 )

# calculate bootstrap distribution of 150 based on model coefficients
## 150 = -m * beta_0 / beta_1 (see table 3)
L50_boot = apply( bootpars, 1, function( x ){ -ms * x[1] / x[2] } )

# get Efron confidence intervals for 150
L50_ci = t( apply( L50_boot, 1, quantile, ¢ ( 0.025, 0.5, 0.975 ) ) )

# create a data frame for plotting
L50_df = data.frame( mesh_size = ms )

L50_df [, c("lower_limit", "median", "upper_limit" )] = L50_ci
# calculate bootstrap distridbution of SR based on model coefficients
## SR = mxlog(9) / beta_1 (see table 3)

SR_boot = apply( bootpars, 1, function( x ){ ms * log(9) / x[2] } )

# get Efron confidence intervals for SR
SR_ci = t( apply( SR_boot, 1, quantile, c( 0.025, 0.5, 0.975 ) ) )

# create a data frame for plotting SR
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SR_df = data.frame( mesh_size = ms )
SR_df[, c( "lower_limit", "median", "upper_limit" )] = SR_ci

The following figure compares the predictions of I59 and SR estimated by model 4, with those from
Santos et al. (2018). The black points in the figure represent values of l5p and SR estimated at
haul level, and used in the original study as input data. Average predictions for l5¢ and estimation
uncertainty (expressed in the amplitude of the confidence band) by model 4 are equivalent to those
from the original study. Model 4 predicted higher values of SR , with larger uncertainty than
Santos et al. (2018). This is a plausible result considering the different model structures applied,
and the large variation of the by-haul estimates. Moreover, there is not statistical evidence to reject
the possibility that the true value of SR could fall within the continue region of confidence bands

overlap.
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model 150 SR
1 —a log(9)
B1 B1
5 Platposms) Loglo)
B1 B1
3 —(a+B2*xms) log(9)
B1+B3xms B1+B3*ms
4 —axms log(9)*ms
AL, b1
5.8 _(O‘+Zi:2 Bixxi)xms  log(9)xm.s
B1 B1

Table 1: Calculations to obtain selectivity parameters from population-average models 1-8 (fitted
leaving out the random effects). Note that the last row for models 5-8 is the extension of model 4
to include additional covariates x;,i = 2, ..., p.
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Appendix 3: Catch comparison on unpaired hauls
07 Dec 2020

This example deals with data from an experiment originally published by Savina et al. (2017). Two soak
tactics, i.e., 12h at day and 12h at night, were compared in the Danish gillnet plaice fishery to estimate
whether a change in soak tactics could help to catch less of the unwanted bycatch, i.e., the invertebrate
edible crab (Cancer pagurus). The method developed by Herrmann et al. (2017) for assessing the relative
length-dependent catch efficiency effect of changing from soak tactic Day to Night was used. This example is
representative of experimental fishing where the catch data obtained for two different gear designs were not
collected in pairs, and can allow for a different number of deployments.

Preliminaries

library(selfisher)

library(plyr) # for aggregating data across hauls
library(ggplot2); theme_set(theme_bw())
library(splines) # for bs function

Data structure

Load the data and check out the variables. This is a subset of the original dataset (one species, two soak
durations). The data contains the length measurement of each individual to the nearest mm below (carapace
width), as specified in the column “width”. Every day for 7 days (I to VII), three fleets (each consisting of
three gillnets tied together, and labelled A, B and C) were soaked for 12 h during the day (Day) and three
others during the night (Night). Each deployment of a fleet is considered as a “haul” (with haul name written
as Day_ Soak_Fleet). Gear unit design is the soak tactic, specified in the column “tactic”, with two levels:
12h at day (Day) and 12h at night (Night). “total” gives the number of individuals for each length class and
haul. There was no sub-sampling.

data("compcrab")
head (compcrab)

## # A tibble: 6 x 4

## width haul tactic total

## <dbl> <fct> <fct> <int>

## 1 58.5 VII_Night B Night 1

## 2 63.5 VI_Night B Night 1

## 3 64.5 I_Night B Night 1

## 4 66.5 VII_Day_A Day 1

## 5 69.5 VII_Night B Night 1

## 6 70.5 VI_Night B Night 1

summary (compcrab)

## width haul tactic total

## Min. : 8.5 VII_Night_A: 49 Day :117 Min. :1.000
## 1st Qu.: 99.5 VI_Night_B : 38 Night:446 1st Qu.:1.000
## Median :115.5 V_Night B : 34 Median :1.000
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## Mean :117.2  VII_Night_B: 33 Mean :1.181
## 3rd Qu.:133.5 V_Night A : 28 3rd Qu.:1.000
## Max. :197.5 I_Night B : 27 Max. :5.000
## (Other) :354

Here we can see that all hauls are contained in one data frame, organized into what is called “long format”,
with Day and Night one after the other (unpaired).

Transforming data

For a model in selfisher, we need to convert counts into proportions and totals. We use the ‘ddply’ function
to calculate the proportion of fish entering one of the gear design (here Night) for each length class and haul,
i.e., 1 for Night and 0 for Day.

dat = ddply(compcrab, ~width+haul+tactic, mutate,
prop = as.numeric(tactic == "Night")

)

Catch comparison

The following is a typical model for catch comparison of multiple haul data without subsampling using spline
with the bs function.

mod = selfisher(prop ~ bs(width, df = 3), total = total, haul = haul, pool = tactic, data = dat)

This models the proportion of fish in Night versus Day (prop) as a function of width. The selfisher
function takes the total number of fish in Day and Night using a separate argument, total. The argument
haul needs to be specified in order to perform double-bootstrapping as demonstrated below. Otherwise, it
could be omited from the model specification as it doesn’t affect the fit. The haul argument tells the software
how to group the data for resampling in the bootstrapping procedure. pool represents the different pools of
hauls, i.e., one for each soak tactic, that is used in double bootstrap to produce same number of hauls by
pool. Indeed, because the catch data obtained for Day and Night were not collected in pairs (and may not
have the same total number of deployments), we sum data of the deployments carried out with Day, and
data of the deployments carried out with Night.

Then we create a new data set to make predictions on.

newdata = expand.grid(width = unique(dat$width),

total = 1,
haul = 0,
tactic = NA) #not used as a predictor, so it doesn't matter

newdata$prop = predict(mod, newdata = newdata, type = "response")

Bootstrap to get CI on predictions

The code below runs in parallel on Mac and Linux computers as written here, but a Windows version was
given above. This call to the function bootSel predicts the response variable based on the model mod and the
covariates in newdata. Then we calculate the quantiles of the bootstrapped response variable, and transform
the proportion into a catch ratio.

bs = bootSel(mod, nsim = 100, parallel = "multicore", ncpus = 4,
FUN = function(mod){predict(mod, newdata = newdata, type = "response")})

quants = apply(bs$t, 2, quantile, c(0.025, 0.5, 0.975))
newdatal,c("lo", "mid", "hi")] = t(quants)
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bs$CR = bs$t/(1-bs$t)
CRquants = apply(bs$CR, 2, quantile, c(0.025, 0.5, 0.975))
newdatal,c("CRlo", "CRmid", "CRhi")] = t(CRquants)

Plot predictions

For plotting, we need to aggregate the hauls.

sumdat = ddply(dat, ~width, summarize,
prop = sum(total*prop)/sum(total),
total = sum(total),
CR = sum(prop)/sum(1-prop)
)

ggplot(sumdat, aes(width, prop))+geom_point(aes(size=total))+
geom_line(data = newdata)+
geom_ribbon(data = newdata, aes(ymin = lo, ymax = hi), alpha = 0.2)+
ylab("Catch comparison rate")

1001 o = «0=0-e00 @ 60 PO @G G0~ o0

0.75 -
Q
©
© total
5
2 o 4
®©
Q 0.50 ® s
£
S @ -
c
O 16
© ( [ ] ( .
O

0.25 -

0.00 4 o oo ° ®

100 150 200

width

A graphical comparison to the published results in Savina et al. (2017; in red) shows that the estimated catch
comparison curves and relative Cls are very similar.
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ggplot (sumdat, aes(width, prop/(l-prop))) + geom_point(aes(size = total))+
geom_line(data = newdata)+
geom_ribbon(data = newdata, aes(ymin = CRlo, ymax = CRhi), alpha = 0.2)+
ylab("Catch ratio rate")+
coord_cartesian(ylim = c(0,8))
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The catch comparison curves properly reflected the trend in the experimental points. The experimental rates
were subject to increasing binomial noise outside the length classes representing the main bulk of the catches.
The results for edible crab showed significantly higher catches for 12 h at night compared to 12 h at day.
On average, there were four times more catches for 12 h at night than 12 h at day. There was no strong
indication of a length dependency in the data.
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Appendix 4: Catch comparison analyses of paired hauls of
Nephrops twin-rigged trawls

7 Dec 2020

This example is based on the data from Melli et al. (2018). An anterior gear modification, namely the
counter-herding device FLEXSELECT, was tested in a twin-rig configuration, where two identical bottom
trawls were towed in parallel. One trawl was equipped with FLEXSELECT, while the other worked as
baseline. The aim of the study was to determine if FLEXSELECT could prevent fish species from entering
the trawl in a Nephrops (Nephrops norvegicus) fishery. Data for haddock Melanogrammus aeglefinus were
collected for 21 hauls. Of these, 13 were conducted in day-time and 8 in night-time. In each haul and for
each trawl, the total length (rounded down to the lower centimitre) of all haddock individuals was recorded.

Preliminaries

library(selfisher)

library(plyr) #for aggregating data across hauls
library(ggplot2); theme_set(theme_bw())
library(bbmle) #for AICtab

## Loading required package: stats4

library(statsé4)
library(splines)

Data structure

First, we load the data and check out the variables. Here we can see that all the hauls are contained in one
data frame (long format), with each row corresponding to a length class in a given haul. The number of
individuals of that length-class caught in each trawl is reported in the columns TEST1 (test trawl) and TEST2
(baseline trawl). The column TIME classifies the haul as day-time (D) or night-time (N).

data("comphaddock")
head (comphaddock)

## SPECIES HAUL TIME LENGTH TEST1 TEST2

## 1 Had 10 D 5.5 0 0
## 2 Had 10 D 6.5 0 0
## 3 Had 10 D 7.5 0 0
## 4 Had 10 D 8.5 0 0
## 5 Had 10 D 9.5 0 0
## 6 Had 10 D 10.5 0 1

To understand if the test trawl caught significantly fewer individuals of a given length-class than the baseline
trawl we need to perform a catch comparison analysis (Krag et al., 2015). This analysis estimates the
probability of catching an individual of a given length in the test trawl given that it was caught in either
trawl.

In addition, the analysis aims at determining if the length-based efficiency of FLEXSELECT presents diel
differences, as haddock is known to migrate vertically in the water column during the night.
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Transforming data
Before fitting a model in selfisher, the following preparatory steps need to be performed:

1) Convert counts (i.e. number of individuals caught per length-class) to totals, proportions and ratios;

comphaddock = transform(comphaddock,
total = TEST1 + TEST2,
prop = TEST1 / (TEST1+TEST2),
ratio = TEST1 / TEST2

)

This step is required because, unlike with other GLM functions for binomial regression, it is not possible
in selfisher to specify the binomial variable as a two-column response variable, e.g. cbind (N_TEST1,
N_TEST2).

2) Remove eventual length classes where no individuals were caught;

comphaddock = subset(comphaddock, !is.na(prop))

3) Scale the length. This step is necessary for numerical stability, as a model often used for catch
comparison analyses is the polynomial of order four, which requires to raise the length to the 4th power.

comphaddock$sl = scale(comphaddock$LENGTH)

head (comphaddock)

## SPECIES HAUL TIME LENGTH TEST1 TEST2 total prop ratio sl
## 6 Had 10 D 10.5 0 1 1 0.00000000 0.0000000 -1.750253
## 9 Had 10 D 13.5 0 5 5 0.00000000 0.0000000 -1.433650
## 10 Had 10 D 14.5 1 10 11 0.09090909 0.1000000 -1.328116
## 11 Had 10 D 15.5 8 15 23 0.34782609 0.5333333 -1.222581
## 12 Had 10 D 16.5 11 11 22 0.50000000 1.0000000 -1.117047
## 13 Had 10 D 17.5 7 21 28 0.25000000 0.3333333 -1.011513

Model fitting

The following is a typical model for catch comparison data with multiple paired hauls, which models the
proportion of fish in the test versus the baseline trawl (prop) as a function of length (s1). This is epressed in
the selfisher function by a two sided formula with the proportion (prop) on the left side and fixed and
random effects on the right side. Formulas in the selfisher package follow the convention of the 1me4 and
glmmTMB packages.

Since we are interested in determining if there is a length-dependent difference in the efficiency of the Test
gear between day-time and night-time, we include in the model TIME as an explanatory variable.

ml = selfisher(prop~(sl+I(s1~2)+I(s1"3)+I(s174))*TIME, total = total, comphaddock, haul = HAUL)

In this example all individuals were length-measured (i.e. there was no subsampling). In case of a subsampled
species, an offset or g-ratio needs to be specified in the model. The selfisher function takes the total
number of fish in the test and baseline using a separate argument, total. The argument haul needs to be
specified in order to perform double-bootstrapping as demonstrated below. Otherwise, it could be omited
from the model specificaiton as it doesn’t affect the fit. The haul argument tells the software how to group
the data for resampling in the bootstrapping procedure.

Alternative model

An alternative approach would consist in fitting a spline (Miller, 2013), often preferred to polynomial
interpolation because it yields similar results while avoiding Runge’s phenomenon (i.e. oscillation at the edges
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of the length range represented in the data).

m2 = selfisher(prop~(bs(sl, df=4))*TIME, total = total, comphaddock, haul=HAUL)
m3 = selfisher(prop~(bs(sl, df=5))*TIME, total = total, comphaddock, haul=HAUL)

Model comparison

We can determine which model fits best using the Akaike’s Information Criterion (AIC; Akaike, 1974).
AICtab(ml, m2, m3)

## dAIC df
## m3 0.0 12
## ml 0.4 10
## m2 6.8 10

This tells us that m1 and m3 show equally good fit (0.4 delta AIC units). According to the parsimony rule, we
selected m1 that is a simpler model.

Predictions

To see how the model fits the data, we need to plot observations and predictions together, keeping them
separated by TIME.

dat_D = comphaddock[ which(comphaddock$TIME=='D"'), ]
dat_N = comphaddock[ which(comphaddock$TIME=='N"), ]
newdatal = data.frame(LENGTH = unique(dat_D$LENGTH), TIME = "D")
newdata2 = data.frame(LENGTH = unique(dat_N$LENGTH), TIME = "N")

newdata = rbind(newdatal, newdata2, deparse.level = 1)

newdata = transform(newdata,
sl = (LENGTH-mean(comphaddock$LENGTH))/sqrt (var (comphaddock$LENGTH)) ,

total = 1,
HAUL = NA
)
newdata$prop = predict(ml, newdata = newdata, type = '"response')

Confidence intervals by double-bootstrapping

We then estimate the 95% Efron Confidence intervals (Efron, 1982), by accounting for within- and between-
hauls variation (Millar, 1993). The code below resamples hauls, then resamples fish within hauls, fits the
model to the resampled data, then makes predictions from the model onto newdata. The type of predictions
we want in this case are the catch comparison rates, thus we specify type="response". To read about the
predict function, type ?predict.selfisher in the R console.

Windows bootstrapping in parallel

library (snow)

ncpus = 4

cl = makeCluster(rep("localhost", ncpus))
clusterExport(cl, "newdata")

bs = bootSel(ml, nsim = 1000, parallel = "snow", cl = cl,
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FUN = function(mod){predict(mod, newdata = newdata, type = "response")})
stopCluster(cl)

Code for bootstrapping in Mac and Linux

bs = bootSel(ml, nsim = 1000, parallel = "multicore", ncpus = 4,
FUN = function(mod){predict(mod, newdata = newdata, type = "response")})

Then we calculate quantiles across bootstraps for each row of newdata.

quants = apply(bs$t, 2, quantile, c(0.025, 0.5, 0.975))
newdatal,c("lo", "mid", "hi")] = t(quants)

Plotting with CIs

Here, we plot the modelled catch comparison curve with Cls and experimental obsevations, obtained by
aggregating the hauls per TIME.

sumdatl = ddply(dat_D, ~LENGTH+sl, summarize,
prop = sum(TEST1)/sum(total),
ratio = sum(TEST1)/sum(TEST2),
total = sum(total),
TIME = "D")

sumdat2 = ddply(dat_N, ~LENGTH+sl, summarize,
prop = sum(TEST1)/sum(total),

ratio = sum(TEST1)/sum(TEST2),
total = sum(total),
TIME = "N")

sumdat = rbind(sumdatl, sumdat2)

ggplot(sumdat, aes(LENGTH, prop))+geom_point(aes(size = total, col = TIME), alpha = 0.5)+
geom_line(data = newdata, aes(col = TIME))+
geom_ribbon(data = newdata, aes(ymin = lo, ymax = hi, fill = TIME), alpha = 0.2)+
ylab("Catch comparison rate") + xlab("Length (cm)")
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In accordance to Melli et al. (2018) a significant difference in catch comparison rate between day-time and
night-time is found for individuals between 16 and 18 cm, as represented by the lack of overlapping between
the ClIs.

Melli et al. (2018) argued that, being the difference in a length range that is not usually retained when
using a commercial codend, and that commercial fishing operations take place in both day- and night-time
conditions, it is of greater interest to estimate the effect of FLEXSELECT with respect to the baseline trawl
without the factor TIME.

Therefore, we repeat the steps of the process leaving out the factor TIME.

m4 = selfisher(prop~sl+I(s1”2)+I(s173)+I(s1”4), total = total, comphaddock, haul = HAUL)
mb6 = selfisher(prop~bs(sl, df = 4), total = total, comphaddock, haul = HAUL)

AICtab(m4, mb)

## dAIC df
## md 0.0 5
## mb 5.1 5

Again, we select the polynomial of order 4 and use it to predict the catch comparison rates with CIs, which
are then plotted against the overall experimental observations.

Windows code

ncpus = 4

cl = makeCluster(rep("localhost", ncpus))
clusterExport(cl, '"newdata")

bs = bootSel(m4, nsim = 1000, parallel = "snow", cl = cl,
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FUN = function(mod){predict(mod, newdata = newdata, type = "response")})
stopCluster(cl)

Mac and Linux code

bs = bootSel(m4, nsim = 1000, parallel = "multicore", ncpus = 4,
FUN = function(mod){predict(mod, newdata = newdata, type = "response")})

quants = apply(bs$t, 2, quantile, c(0.025, 0.5, 0.975))
newdatal,c("lo", "mid", "hi")] = t(quants)

sumdat = ddply(comphaddock, ~LENGTH+sl, summarize,
prop = sum(TEST1)/sum(total),
ratio = sum(TEST1)/sum(TEST2),
total = sum(total))

ggplot (sumdat, aes(LENGTH, prop))+geom_point(aes(size = total), alpha = 0.5)+
geom_line(data = newdata)+
geom_ribbon(data = newdata, aes(ymin = lo, ymax = hi), alpha = 0.2)+
ylab("Catch comparison rate") + xlab("Length (cm)")

0.8+
0.6
2
©
= total
5
2 @ 400
[4y)
g_0.4- @ 800
S @ 1200
5 @ 1600
4}
O
0.2
0.0

10 20 30 40 50
Length (cm)

A graphical comparison to the published results in Melli et al. (2018; in red) shows that the estimated catch
comparison curves and relative Cls are very similar.
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Catch ratio

To directly quantify the difference in catch between the test and baseline trawls, it is common practice to
estimate the catch ratio curve, using the relationship between catch comparison rate (cc) and catch ratio (cr):
cr=cc/(1-cc)

First, we obtain predictions for the catch ratio specifying type="ratio" in the predict function.

newdata$ratio = predict(m4, newdata = newdata, type = "ratio")

Second, we apply the relationship between cc and cr to obtain the CIs for the catch ratio curve.

bs$cr = bs$t/(1-bs$t)
CRquants = apply(bs$cr, 2, quantile, c(0.025, 0.5, 0.975))

newdatal,c("cr_lo", "cr_mid", "cr_hi")] = t(CRquants)

Catch ratio plot

ggplot (sumdat, aes(LENGTH, ratio))+
geom_line(data = newdata, aes(y = ratio))+
geom_hline(aes(yintercept = 1), size = 0.2, linetype = "dashed")+
geom_ribbon(data = newdata, aes(ymin = cr_lo, ymax = cr_hi), alpha = 0.2)+
ylab("Catch ratio")+ xlab("Length (cm)") +
coord_cartesian(ylim = c(0, 3))
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The results show that for individuals above 16 and up to 53 cm, the test gear with FLEXSELECT retained
significantly fewer individuals. The effect is length-dependent, with a more pronounced reduction at larger
length classes. Considering a minimum conservation reference size of 27cm for haddock in the fishing area
(Skagerrak and Kattegat), the reduction of commercial-sized individuals is above 60%.
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