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Abstract  
 
Long non-coding RNAs (lncRNAs) play an important role in gene regulation and can contribute to 

tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult 

malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we 

curate RNA sequencing data for 1,044 pediatric leukemia and solid tumors and integrate paired tumor 

whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, 

regulation, and association with cancer. We report a total of 2,657 robustly expressed lncRNAs across 

six pediatric cancers, including 1,142 lncRNAs exhibiting histotype-specific expression. DNA copy 

number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding 

genes. Analysis of upstream regulation via tissue-specific, oncogenic transcription factors further 

implicated 608 distinct histotype-associated lncRNAs. Application of a multi-dimensional framework to 

identify and prioritize lncRNAs impacting entire gene networks revealed that lncRNAs dysregulated in 

pediatric cancer are associated with proliferation, metabolism, and DNA damage pathways. Silencing 

TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of 

neuroblastoma cells. Taken together, these data provide a comprehensive characterization of lncRNA 

regulation and function in pediatric cancers and pave the way for hypothesis-driven mechanistic studies.  
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Long non-coding RNAs (lncRNAs) are transcribed RNA molecules greater than 200 nucleotides in length 

that do not code for proteins. These molecules account for 70% of the expressed human transcriptome 

and influence key aspects of gene regulation [1-4]. Compared to protein coding genes (PCGs), lncRNAs 

typically have fewer exons, weaker conservation, and lower abundance [3]. Despite this, lncRNAs have 

been shown to play significant roles in both transcriptional and post-transcriptional gene regulation [5]. 

LncRNAs perform these roles by physically interacting with a variety of substrates, including proteins 

(transcription co-factors), RNAs (microRNA sponges), and DNA (chromatin interaction scaffolds) [1, 2, 6, 

7]. While the mechanisms and function for the majority of lncRNAs remain unknown [3, 8], those that 

have been experimentally characterized are involved in a variety of cellular processes [6] including gene 

silencing (ANRIL) [9], modulation of chromatin architecture (Xist) [10], and pre-mRNA processing 

(MALAT1) [11]. LncRNAs are also important in development [12]. For example, the H19 lncRNA is 

involved in imprinting [13], while the well-conserved TUNA lncRNA controls stem cell pluripotency and 

lineage differentiation [14].  

Dysregulation of lncRNA expression has been widely observed in cancer [3, 15, 16] and studies 

have shown that lncRNAs play important roles in tumor initiation and progression [17]. LncRNAs can 

function as tumor suppressors, such as the PANDA lncRNA which regulates DNA damage response in 

Diffuse Large B-cell lymphoma [18]; however, many more lncRNAs appear to be oncogenes. Examples 

include the HOTAIR and PVT1 lncRNAs which promote proliferation in various cancers through tissue 

specific mechanisms [19, 20]. Pan-cancer analyses of lncRNA expression in adult malignancies have 

uncovered many cancer-associated lncRNAs [3, 15-17, 21, 22]. Identification of functional lncRNAs 

amongst the large set of cancer-associated lncRNAs, however, remains challenging [15, 23]. Current 

methods to identify putative functional lncRNAs involve identifying lncRNA-specific genetic aberrations 

[15, 16, 24] or using lncRNA expression to predict overall patient survival [16]. To address how lncRNAs 

may actually drive cancer, recent computational methods seek to assign function to these molecules 

based on predicted target genes and regulatory network models. These methods have been applied to 

adult malignancies and allow for more focused hypotheses to be tested [21, 22]. 
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LncRNA studies and evidence of related function in pediatric cancers have been primarily limited 

to neuroblastoma (NBL) [25-30], T-lymphoblastic leukemia (T-ALL) [31, 32], and more recently 

glioblastoma [33]. CASC15 and NBAT-1 are a sense-antisense lncRNA pair that map to a NBL 

susceptibility locus identified by genome-wide association study [26, 34]. Both lncRNAs are 

downregulated in high-risk NBL tumors and have been shown to be involved in cell proliferation and 

differentiation [25, 26]. In pediatric T-ALL, the NOTCH- regulated lncRNA, LUNAR1, promotes T-ALL cell 

growth by sustaining IGF1 signaling [32]. To date, it is unknown whether lncRNAs function as common 

drivers across multiple pediatric cancers, or if instead, the majority of lncRNAs influence oncogenesis in 

a histotype-specific manner. 

Here, we perform a pan-pediatric cancer study of lncRNAs across 1,044 pediatric leukemias and 

solid tumors [35, 36]. We present the landscape of lncRNA expression across these childhood cancers 

and perform integrative multi-omic analyses to assess tissue specificity, regulation, and putative function. 

To validate our approach, we show that silencing of the top-prioritized NBL-specific lncRNA, TBX2-AS1, 

impairs NBL cell growth in human-derived NBL cell line models.  

 

Results 

The lncRNA landscape of pediatric cancers  

To define the repertoire of lncRNAs expressed in childhood cancers, we analyzed RNA-sequencing data 

for six distinct pediatric cancer histotypes profiled through the Therapeutically Applicable Research to 

Generate Effective Treatments (TARGET) project (https://ocg.cancer.gov/programs/target/data-matrix) 

(Online Methods; Supplementary Table 1). This curated set of 1,044 leukemia and solid tumor samples 

includes 280 acute myeloid leukemia (AML), 190 B-lymphoblastic leukemias (B-ALL), 244 T-

lymphoblastic leukemias (T-ALL), 121 Wilms tumors (WT), 48 rhabdoid tumors (RT), and 161 

neuroblastomas (NBL) (Fig. 1a). Since one of our goals was to identify novel cancer-associated lncRNAs, 

we performed guided de novo transcriptome assembly using StringTie v1.3.3 [37] with the GENCODE 

v19 database [38] as a gene annotation reference (Supplementary Fig. 1). Expressed gene sequences 

that did not match exons and transcript structures of any known gene in the GENCODE v19 or RefSeq 
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v74 databases were considered putative novel genes (Supplementary Fig. 1, Online Methods). Of 

these novel genes, we identified candidate lncRNAs by using the PLEK v1 algorithm [39] to assess non-

coding potential, and then additionally filtered hits by transcript length, exon read coverage, and genomic 

location (Fig. 1a, Online Methods, Supplementary Fig. 1). As validation of our lncRNA discovery 

pipeline, we observed that 36% (87 of 242) of identified novel lncRNAs not annotated in Gencode v19 

(hg19) were indeed annotated in the more recent Gencode v29 (hg38) genome build (Supplementary 

Table 2). To ensure that we considered robustly expressed genes in the setting of cancer heterogeneity 

and sequencing variability, we selected a conservative expression cutoff of Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM) >1 in at least 20% of samples for each cancer. Across all 

cancers there were 15,588 PCGs, 2,512 known lncRNAs, and 145 novel lncRNAs expressed, though the 

total number of expressed genes varied per cancer (Fig 1b, Supplementary Table 3). Collectively, this 

pan-pediatric cancer catalog of robustly expressed lncRNA and protein-coding genes serves as the basis 

for downstream integrative lncRNA analyses focused on tissue specificity, predicted function, and gene 

regulation (Fig 1b). 

 Overall, lncRNAs had lower average expression compared to PCGs resulting in fewer highly 

expressed lncRNAs (Supplementary Fig. 2a). Between 10-100 (3.7%) lncRNAs accounted for 50% of 

the total sum of lncRNA expression (Fig. 1c). In contrast, between 100-1000 (6.4%) PCGs accounted for 

50% of the total sum of PCG expression (Fig. 1d). We examined the union of the top five most highly 

expressed lncRNAs across pediatric cancers (total 11 lncRNAs). Some of these lncRNAs had higher 

expression in the blood cancers (MALAT1 and RP11-386I14.4), in the solid cancers (H19), or in only one 

cancer, such as MEG3 and RP11-386G11.10 in NBL (Fig. 1e). Five of these lncRNAs were among the 

top 10 lncRNAs expressed across normal tissues in the Genotype-Tissue Expression (GTEx) project 

[40]. Specifically, C17orf76-AS1 (LRRC75A-AS1), MALAT1, GAS5, SNHG6, SNHG8 were expressed 

ubiquitously in 30 of the 49 GTEx tissues (Supplementary Table 4).   

 Principal component analysis (PCA) of lncRNA gene expression showed that blood (AML, B-ALL, 

T-ALL) and solid (NBL, WT, RT) cancers form two distinct groups. Moreover, individual cancer histotypes 
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clustered more closely using lncRNA expression than PCG expression alone (Supplementary Fig. 2b-

c), consistent with the known tissue specific nature of lncRNA expression and function [3]. 

 

Tissue specific lncRNA expression distinguishes pediatric cancers  

To evaluate more formally the tissue specific expression of lncRNAs, we annotated all genes with a tissue 

specificity index (tau score) [41, 42] (Online Methods). The established tau score ranges from 0 

(ubiquitous expression) to 1 (tissue-specific). As an example, the highly expressed lncRNA C17orf76-

AS1 yielded a tau score of 0.296 in this study, indicating ubiquitous expression (Supplementary Fig. 

2d). In contrast, the highly expressed MEG3 lncRNA, which is known to have tissue-specific expression 

in NBL [30, 43], yielded a tau score of 0.986 (Supplementary Fig. 2e). Overall, we observed that 

lncRNAs yielded a higher tau score range and mean, and thus greater tissue specific expression than 

PCGs (t-test p=1.62x10-42). Novel lncRNAs had the greatest tissue specific expression (t-test: vs proteins- 

p=1.62x10-42, vs known lncRNAs- p = 3.39x10-13) (Fig. 2a). A tau score threshold of 0.8 has been 

suggested to distinguish tissue specific genes [42], and using this cutoff we identified 1,142 (43%) tissue 

specific (TS) lncRNAs (Fig. 2b, Supplementary Table 5). To assess how well TS lncRNAs distinguish 

cancers, we performed clustering based on the top five highest expressed TS lncRNAs per cancer (30 

total). The expression of just these lncRNAs was sufficient to cluster samples of the same cancer type 

(Fig. 2c). Furthermore, the blood and solid cancers separately clustered together with little expression 

overlap observed between the two groups across the 30 genes (Fig. 2c). Finally, we identified a similar 

proportion of TS lncRNAs (38%, n = 1624) across 12 adult cancers from The Cancer Genome Atlas 

(TCGA) (Online Methods) and observed that adult cancer tissue types were also well distinguished 

based on the expression of the top 5 most TS lncRNAs (Supplementary Fig. 2f-g). 

Notably, NBL tumors expressed 2.5x more TS lncRNAs (n=522) than the cancer with the next 

highest: WT (TS lncRNAs: n=211), and 10x more than AML, which had with the least number of TS 

lncRNAs (n=49) (Fig. 2b). To validate NBL’s striking quantity of TS lncRNAs, we first assessed whether 

the known immune and stromal cell infiltration within our NBL tumor samples [36] could be contributing 

to the variety of lncRNAs expressed. We ran the ESTIMATE algorithm as previously described [36] 
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(Online Methods), to determine levels of immune and stromal cell presence in each tumor sample using 

expression data. Using these purity estimates, we re-calculated each cancer’s tau score and restricted 

our analysis to NBL samples with either 80% or 90% purity. In both cases, we found that NBL still had 

the greatest number of TS lncRNAs (n =588 – NBL 90% purity) compared to other cancers 

(Supplementary Table 6). Finally, given that the TARGET NBL RNA-seq dataset is un-stranded, we 

validated our findings using stranded RNA-seq data in an independent NBL cohort generated through 

the Gabriela Miller Kids First (GMKF) program (n=223). We observed that 48% of expressed lncRNAs 

were tissue specific in the GMKF cohort, an increase from the 31% observed in the TARGET cohort 

(Supplementary Table 6). These results confirm NBL’s lncRNA abundance and demonstrate that the 

tau score robustly identifies TS lncRNAs across varying datasets.  

 

Somatic DNA copy number alterations impact lncRNA expression  

Many pediatric cancers are marked by a lower single nucleotide variant (SNV) and insertion-deletion 

(indel) burden than observed in adult cancers [36]. Instead, large chromosomal events, such as 

somatic copy number aberrations (SCNAs) and other structural variants (SVs) have been shown to 

dysregulate protein coding driver genes [36, 44]. However, the extent to which large chromosomal 

alterations impact lncRNAs in pediatric cancers remains unknown. We thus sought to identify SCNAs 

and SVs using whole genome sequencing (WGS) data from the TARGET project available for NBL 

(n=146), B-ALL (n=302), AML (n=297), and WT (n=81) (Online Methods). The GISTIC v2 algorithm 

[45] was applied to detect regions of recurrent SCNA (q-value < 0.25) (Supplementary Fig. 3a). We 

identified 673 expressed lncRNAs overlapping 176 significant SCNA regions across the cancers 

(Supplementary Table 7). WGS samples with matched RNA-sequencing were then used to compare 

lncRNA expression in samples with or without an SCNA event and determine significant differential 

expression (DE) (Online Methods, Supplementary Table 8). Across all cancers, between 10-30% 

of expressed genes overlapping SCNA regions showed significant differential expression based on 

SCNA, a proportion that was similar for both PCGs and lncRNAs (Fig 3a). Altogether, there were 198 

(29%) unique lncRNAs with significant DE due to SCNA (Supplementary Fig 3b). The majority of the 
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significantly dysregulated lncRNAs were identified in the two cancers with the greatest overall number 

of expressed lncRNAs, NBL and WT, and mapped to regions with highly recurrent SCNAs in those 

cancers (chromosomes 1, 7, 11, and 17) (Fig 3b).   

While SCNAs can cause the dysregulation of lncRNA expression based on gene dosage, 

structural variant (SV) breakpoints within a lncRNA could cause loss or gain of function [36, 44]. We 

utilized WGS data to identify lncRNAs disrupted by SV breakpoints using a previously described 

combination approach involving copy number read-depth and discordant junction approach [44] (Online 

Methods). There were 650 unique expressed lncRNA genes disrupted by SVs, 89% of which were 

found in only one sample (Supplementary Fig. 4a). We observed 212 SV-impacted lncRNA genes 

located at SCNA regions (Fig. 3c), and 65% of lncRNAs genes disrupted by SV breakpoints in at least 

five samples were located at SCNA regions (Supplementary Fig. 4b, Supplementary Table 9). 

Indeed, the top-ranked SV-impacted lncRNA MYCNOS, in both NBL and WT, associates with the 

disease driving chr2p24 amplification [46, 47] (Supplementary Fig. 4c-d). In B-ALL, the SV-impacted 

lncRNAs: KIAA0125 and CDKN2B-AS1 (ANRIL) associate with the well-studied IGH translocation and 

CDKN2A/B deletion locus (Supplementary Fig. 4e) [48]. The top-ranked SV-impacted lncRNA in 

AML, MIR181A1HG (MONC), associates with a recurrent SCNA deletion on 1q (Fig 3a) and is mildly 

up-regulated in the AML dataset (p = 0.061, Supplementary Fig. 4f). MIR181A1HG (MONC) was 

described previously as an oncogene in acute megakaryoblastic leukemia [49, 50]. Finally, we 

observed 30 lncRNAs with pan-cancer (n>3) expression and SV breakpoints(Supplementary Fig. 

4h). The most number of breakpoints across unique samples was observed in LINC00910, which was 

shown previously to be essential for cell growth in the K562 cell line [51]. 

 

Identification of potential cancer driver lncRNAs via integration of epigenetic data  

Given the low SNV and indel mutational burden of pediatric cancers, we next sought to determine whether 

upstream regulation of lncRNAs by known cancer driver transcription factors (TFs) could be used to 

further implicate cancer-associated lncRNAs. The NBL and T-ALL datasets were chosen for this analysis 

given that their cancer driver TFs, defined as their core transcriptional circuitry (CRC), have been well-
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studied [52-55]. The CRC involves a set of co-bound and auto-regulated TFs that drive a cell’s 

transcriptional state and cell identity [56]. CRC-bound regulatory loci were identified from publicly 

available ChIP-seq data for two MYCN-amplified NBL cell lines, SKNBE(2)C and KELLY, for the CRC 

TF’s: MYCN, PHOX2B, HAND2, GATA3, ISL1, and TBX2 [53, 57] (Fig. 4a, Online Methods). Similarly, 

we used available ChIP-seq data for the TAL1 mutated T-ALL cell lines, Jurkat and CCRF-CEM, to 

identify loci bound by the T-ALL CRC TF’s (TAL1, MYB, GATA3, and RUNX1) [55]. CRC gene regulation 

occurs both by direct promoter binding (Fig. 4a-1) and by distal binding to either promoter (Fig. 4a-2) or 

enhancer regions (Fig. 4a-3) which then regulate the gene of interest via long-range chromatin 

interactions [52-55]. To comprehensively identify both short- and long- range CRC gene regulation, we 

generated high-resolution (i.e. using 4-cutter restriction enzyme DpnII) genome-wide promoter-focused 

Capture C [58] in the NBL cell line NB1643 and used publicly available SMC1 (cohesin) ChIA-PET data 

for the T-ALL Jurkat cell line [54]. After pinpointing gene promoters interacting with CRC TF bound 

regulatory loci (promoters or enhancers)(Fig. 4a, Online Methods), we identified 547 lncRNA genes 

associated with the NBL CRC and 71 lncRNA genes associated with that of T-ALL’s (Fig 4b, 

Supplementary Table 10). Notably, only 249 (NBL) and 22 (T-ALL) of these respective lncRNA genes 

were bound by CRC TFs within their promoter regions.  

Given that co-regulated lncRNA and PCGs could share functional pathways [15, 22], we assessed 

globally the correlation between CRC-regulated lncRNAs and PCGs on the same chromosome (Online 

Methods). We identified 295 (NBL) and 21 (T-ALL) lncRNAs with significant expression correlation 

(Pearson’s r > 0.4 and FDR < 0.1) to a CRC-regulated PCG (Fig 4b, Supplementary Table 11). Since 

co-regulation of lncRNAs and PCGs may reveal shared functional pathways [15, 22], we performed gene 

set enrichment analysis of correlated PCGs using the MsigDB’s Hallmark Gene Sets (HMS) [59] (Fisher 

exact test FDR < 0.1, Online Methods). Results showed enrichment of proliferation and immune related 

hallmarks in NBL, while signaling hallmarks dominated in T-ALL (Fig 4c-d, Supplementary Table 11).  

The CRC TFs MYCN and TAL1 are known to be mutated in NBL and T-ALL, respectively. [53, 

54]. We therefore investigated CRC-regulated lncRNAs that are associated with the MYCN-amplified and 

TAL1 subtypes of NBL and T-ALL, respectively. We observed 384 differentially expressed (DE) lncRNAs 
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(23%) associated with MYCN amplification in NBL and 98 DE-lncRNAs (11%) associated with the 

previously defined TAL1 subgroup in T-ALL [60], which includes samples with either TAL1 mutation or 

TAL1-associated gene expression signature (Supplementary Table 12, Supplementary Fig. 5). We 

prioritized 72 (NBL) and 7 (T-ALL) CRC-regulated lncRNAs with differential expression and significant 

correlation to CRC-regulated protein-coding gene (Fig. 4b). One of the strongest correlations identified 

in NBL was between the DE-lncRNAs, NR2F1-AS1, and PCG: NR2F1 (Pearson’s r =0.74, FDR < 0.1) 

(Fig. 4e). The two genes share a CRC-regulated promoter (Fig. 4f). NR2F1 encodes a transcription 

factor known to bind regulatory elements of neural crest cells, the precursor cells of NBL tumors [61], 

though the role of NR2F1-AS1 is unknown. In T-ALL, we observed that the DE-lncRNA, PRKCQ-AS1, 

was highly correlated with PRKCQ (Pearson’s r =0.66) (Fig. 4g). The shared promoter of PRKCQ-AS1 

and PRKCQ appeared to be interacting with a CRC-bound enhancer region within the PRKCQ gene (Fig. 

4h). PRKCQ is a known T-cell activator and is suggested to have a role in the initiation of leukemia [62], 

though the role of PRKCQ-AS1 in leukemia is unknown. Taken together, this novel data integration 

nominates multiple lncRNAs with previously unknown function for further study as potential driver genes 

in these respective cancers.  

 

Characterization of transcriptional network perturbation mediated by dysregulated lncRNAs  

To determine how lncRNAs may drive pediatric cancers, we examined the downstream impact of 

lncRNAs on gene regulation. We focused on identifying lncRNAs that mediate transcriptional regulation 

by modulating TF activity (lncRNA modulators) [63-66]. We wrote custom scripts to implement the lncMod 

computational framework [67] (Online Methods) to first identify DE-lncRNAs and then to assess their 

impact on correlated expression between a TF and its target genes [21, 67] (Fig. 5a, Supplementary 

Fig. 6a, Online Methods). Across all cancers studied, we identified 313,370 unique, dysregulated 

lncMod triplets (lncRNA-TF-target gene), representing 0.02-0.2% of possible triplets, which have 

significant correlation differences between a TF and target gene upon lncRNA expression dysregulation 

(Supplementary Table 13-14). This proportion was consistent with previous findings from the lncMap 

study in adult cancers [21], although more triplets were identified in datasets with greater sample size 
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(Supplementary Table 13-14). LncRNA modulators were assigned to one of three categories based on 

their impact on TF-target gene correlation; either the correlation was enhanced, attenuated, or inverted 

(Fig 5a-b). LncRNA modulators have context specific function such that for different TF-target gene pairs 

they could exert different types of regulation (Supplementary Fig. 6b). The majority of lncRNA 

modulators also appeared to be active in only one cancer, with only 15% (138 of 923 lncRNAs) having 

pan-cancer activity (n>3) (Fig. 5c). 

To determine the biological impact of lncRNA modulators, we identified lncRNAs whose target 

genes were enriched in MsigDB’s Hallmark Gene Sets (HMS) [59] (Fisher exact test FDR < 0.1, Online 

Methods). Across the majority of cancers, lncRNA modulator target genes had significant enrichment in 

the proliferation, metabolism, and DNA damage hallmark categories (FDR range: 0.1 to 2.24x10-36; Fig. 

5d). Overall, the top-enriched hallmark pathways closely mirrored those found for lncRNA modulators in 

adult cancers [22]. Consistent with its role in development and as an oncogene in certain cancers [23], 

the top-enriched hallmarks for the H19 lncRNA, dysregulated in NBL, were EMT (development) and G2M-

checkpoint (proliferation) (Supplementary Fig. 6c). The blood cancers exhibited strong enrichment of 

lncRNA modulators regulating MYC targets, which has a well-established role in leukemias[68]. 

Furthermore, in AML, we observed that gene targets of the myeloid-specific lncRNA, HOTAIRM1, were 

most enriched for proliferation hallmarks (Supplementary Fig. 6d), consistent with this lncRNA’s known 

role in proliferation as an oncogene in adult AML [69].  

Finally, we sought to determine potential lncRNA mechanism by identifying recurring patterns of 

regulation amongst lncMod triplets. To this end, we nominated candidate lncRNA-TF associations by 

ranking TF’s based on the number of target genes regulated by each given TF (Supplementary Table 

15). As proof-of-concept, we were able to detect known lncRNA-TF associations such as GAS5 with 

E2F4 [70] (RNA-protein), and SNHG1 with TP53 [71] (RNA-RNA) amongst lncMod triplets in our study 

(Supplementary Fig. 6e-f). A notable example from the hundreds of novel associations identified is 

between the B-ALL specific lncRNA, BLACE (B-cell acute lymphoblastic leukemia expressed, tau score: 

0.999) and its top associated TF, XBP1, which has known roles in pre-B-ALL cell proliferation and 
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tumorigenesis [72] (Fig 5e-f). These predictions of lncRNA transcriptional networks provide focused 

avenues to elucidate the mechanisms through which lncRNAs can drive pediatric cancers.  

 

Integrative multi-omic analysis prioritizes TBX2-AS1 as a candidate functional lncRNA in NBL  

To obtain a comprehensive prioritization of candidate functional lncRNAs, we annotated lncRNA 

modulators with information on (1) tissue specific expression, (2) dysregulation due to DNA copy 

number aberration, and (3) regulation by CRC TFs (Supplementary Table 16). Here, we focus on the 

NBL cohort since this cancer has data available for all of the prioritization steps (Supplementary Table 

17). The top ranked lncRNA in NBL was MEG3, which has a known role in both NBL and other cancers 

[43]. The next prioritized lncRNA, TBX2-AS1, has unknown function, yet shares a promoter and is 

highly correlated (Pearson’s r=0.77) with the CRC transcription factor TBX2 (Fig. 6a). TBX2 has been 

shown to drive NBL proliferation via the FOXM1/E2F1 gene regulatory network [57]. We observed that 

TBX2-AS1, like TBX2, was up-regulated in NBLs harboring 17q gain (Fig. 6b). In addition, both genes 

exhibit NBL-specific expression (tau score: TBX2- 0.807, TBX2-AS1- 0.86; Supplementary Fig. 7a). 

Predictions from our lncMod analysis indicate that TBX2-AS1 impacts E2F targets and G2M 

checkpoint genes (Fig. 6c), the same pathways observed to be impacted upon knockdown of the 

TBX2 protein in a previous study [57]. Furthermore, the TFs primarily impacted by TBX2 knockdown 

[57], MYBL2 and E2F1, were found to have the most target genes predicted to be regulated by TBX2-

AS1 (Fig 6d-e). Evidence for this association was further supported by the correlation (Spearman’s 

rho > 0.4) between TBX2-AS1 and TBX2’s target TFs: FOXM1, E2F1, and MYBL2 (Supplementary 

Fig. 7b). While the strong correlation between TBX2-AS1 and TBX2 may confound our predictions, a 

previous study showed positionally conserved lncRNAs, such as TBX2-AS1, which share promoter 

regulation with developmental TFs (TBX2), can play roles in genome organization, development, and 

cancer [69]. Based on the promising in silico evidence, we prioritized TBX2-AS1 for experimental 

study.  

 
Silencing of TBX2-AS1 inhibits cell growth and alters morphology of neuroblastoma cells  
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We assessed the role of TBX2-AS1 using human-derived NBL cell line models. First, we evaluated 

TBX2-AS1 expression across 38 NBL cell lines using RNA-seq [73] (Supplementary Fig 8a). 

Expression of TBX2 and TBX2-AS1 were subsequently validated in eight cell lines using RT-qPCR 

(Supplementary Fig. 8b). We selected NLF and SKNSH models for further study based on their high 

TBX2-AS1 expression and differing levels of TBX2 expression. Silencing of TBX2-AS1 using small 

interfering RNA (siRNA) achieved 63 - 95% reduction of TBX2-AS1 expression (Fig. 6f, 

Supplementary Fig. 8c). We monitored cell growth via the real-time cell electronic sensing (RT-CES) 

system and observed that siTBX2-AS1 treated cells exhibited an average of 46.6% decreased cell 

growth in NLF (SD =0.02, t-test: p = 8.1 x 10-4) and 42% in SKNSH as compared to non-targeting 

control (NTC) (SD =0.06, t-test: p = 3.87 x 10-3) (Fig. 6g). In addition, live cell analysis using the 

IncuCyte revealed changes in cell morphology for siTBX2-AS1 treated cells, featuring an appearance 

of disrupted cell to cell adhesion and elongated cell body (Supplementary Fig. 8c). Taken together, 

these data demonstrate the utility of our integrative lncRNA characterization and prioritization approach 

and suggest that TBX2-AS1 is a newly identified functional lncRNA in NBL. 

Discussion  

LncRNAs have emerged as important regulators of gene expression and their dysregulation can impact 

key cancer pathways and drive tumorigenesis [1-4]. Despite this, relatively few lncRNAs have been 

experimentally characterized and the landscape of lncRNA expression across pediatric cancers remained 

unknown. In this study, we explored lncRNA expression, cancer association, and regulatory networks 

across 1,044 pediatric leukemias and solid tumors, representing six different cancer types. The breadth 

of samples and cancer types included allowed for robust identification of novel and cancer-specific 

lncRNAs, and facilitated identification of expression patterns for both up- and downstream lncRNA gene 

regulation. We provide multi-dimensional insight into the predicted biological and functional relevance of 

lncRNAs by integrating WGS, ChIP-seq, chromatin capture, and predictions of transcriptional networks. 
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Analysis of the lncRNA landscape across pediatric cancers revealed the histotype and context-

specific nature of lncRNAs. We report a total of 2,657 robustly expressed lncRNAs across the six cancer 

types studied. This number is notably smaller than reports from pan-cancer studies of adult malignancies 

[15, 17], likely due to the smaller number of cancer types studied here and conservative expression 

threshold applied. However, similar to our findings in adult cancers, 43% (1,142/ 2,657) of expressed 

lncRNAs exhibited tissue-specific (TS) expression across pediatric cancers. Indeed, lncRNAs had 

significantly greater tissue specificity than protein coding genes, making them more ideal candidates as 

biomarkers. Currently there is one lncRNA, PCA3, that is FDA-approved as a biomarker for prostate 

cancer [74] and multiple trials investigating ncRNAs in cancer prognostics are underway [75]. In this 

study, the top five most TS lncRNAs per cancer were sufficient to differentiate each cancer histotype, 

suggesting there is potential for a small number of lncRNAs to be used as highly sensitive markers in 

childhood cancers.  

 

Typically, investigation of lncRNA dysregulation involves comparing lncRNA expression between 

cancer and normal control samples and is an analysis that amply yields adult-cancer associated lncRNAs 

[15]. However, the lack of normal expression controls for the majority of pediatric cancers [36] is a major 

complication in defining pediatric cancer-associated lncRNAs. To overcome this and the previously 

described low mutation burden [46, 47, 60], we integrated ChIP-sequencing of CRC transcription factors 

with our expression data to identify cancer-associated lncRNAs. CRC TFs bind to cell-type-specific 

enhancers and regulate the expression of cell-type-specific genes [76]. By taking advantage of this 

information we were able to prioritize lncRNAs likely to be important for cancer cell identity based on 

CRC TF regulation. CRC TFs have been well defined for NBL and T-ALL [53, 55]; however, the fact that 

they largely bind enhancer regions necessitated that we also use chromatin interaction data to accurately 

determine regulated genes. Incorporation of these datasets allowed us to identify 2-fold more CRC 

regulated lncRNAs in NBL and 3-fold in T-ALL as compared to using just ChIP-seq data alone, which 

restricts lncRNA identification to those with CRC TFs bound at their promoter. Notably, there were ten 

common CRC-regulated lncRNAs between NBL and T-ALL, and an important next step for further 
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identification of pan-pediatric cancer associated lncRNAs is application of this novel analysis to a broader 

set of pediatric cancers.  

 

While upstream regulation can help nominate cancer-associated lncRNAs, determining the 

mechanism through which dysregulated lncRNAs impact downstream target genes is also crucial. 

However, prediction of lncRNA function is limited given that very few lncRNA mechanisms have been 

fully established and lncRNAs lack conserved sequence and structure [77]. Many studies instead use 

correlated protein coding gene expression as a proxy to define lncRNA pathways, but this approach often 

results in many false positives and does not provide mechanistic insight [77]. To address this, we used 

the lncMod method [21, 67] to model the functional mechanism of dysregulated lncRNAs by examining 

correlated changes in transcription factor to target gene regulation. We used motif presence and 

regression analysis to identify TF-target gene relationships, though future studies will be strengthened 

by incorporating TF ChIP-seq data, when it becomes more widely available for pediatric cancers. 

Nevertheless, we were able to successfully associate lncRNAs to TFs with known interactions, such as 

SNHG1 with TP53, while also providing a prioritized list of novel associations that serve as a starting 

point for future experimental studies such as RIP/MS [78] and ChiRP-seq [79]. Finally, while our lncMod 

analysis was focused on transcriptional regulation, the addition of microRNA binding and RNA-binding 

protein data, as utilized in adult cancers [22], is an important next step in understanding how lncRNAs 

impact post-transcriptional regulation in pediatric cancers.   

 

Our study delineated high confidence lncRNA expression across pediatric cancers within the 

restrictions set by the sequencing depth and RNA-seq type available per cancer dataset. We required 

RNA-seq samples included in our study to have at least 10 million reads and read length of at least 75 

bp; and with the exception of the T-ALL samples, all samples were poly-A selected. Future studies 

involving total RNA-seq, greater sequencing depth, and longer read sizes could capture a larger diversity 

and more accurate set of expressed lncRNAs by accounting for non-polyadenylated genes and 

identifying scarcer or temporally expressed lncRNAs. Nevertheless, our high confidence set of lncRNAs 
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are very likely to be functional given that low or rare expression can be an indicator of transcriptional 

noise [80]. In addition to having a limited number of RNA matched WGS samples, the Complete 

Genomics short read technology limits the detection of structural variants based on size as previously 

described [36, 44]. The use of long-read sequencing and greater sequencing depth in future studies will 

enable more accurate copy number and structure variant detection in pediatric cancers.  

 

Finally, multi-dimensional integration of our computational predictions resulted in the nomination 

of functionally relevant lncRNAs in each pediatric cancer. We annotated tissue specificity, copy number, 

pathway, and likely targets for these lncRNAs, providing a solid foundation for mechanistic studies. As 

proof-of-principle, we demonstrate that the top-prioritized tissue-specific and copy number dysregulated 

lncRNA, TBX2-AS1, impacts NBL cell growth, validating our approach and corroborating the pathway 

analysis results. Overall, this study provides a comprehensive characterization of lncRNAs across 

pediatric cancers and serves as a rich resource for future mechanistic studies; these data may also aid 

in the selection of cancer biomarkers and candidate therapeutic targets. 
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Online Methods 
 

RNA-seq data processing. A comprehensive RNA-seq analysis pipeline was used on all samples 

(Supp. Table 1, Supp. Fig 1). First FASTQC was run on all samples and any samples that had a Phred 

score < 30 for more than 25% of read bases were removed. Samples were then aligned using 

STAR_2.4.2a [81] with the following parameters: “STAR --runMode alignReads --runThreadN 10 --

twopassMode Basic --twopass1readsN -1 --chimSegmentMin 15 --chimOutType WithinBAM –genomeDir 

X--genomeFastaFiles ucsc.hg19.fa --readFilesIn fasta1 fasta2 --readFilesCommand zcat --outSAMtype 

BAM SortedByCoordinate --outFileNamePrefix X --outSAMstrandField intronMotif --quantMode 

TranscriptomeSAM GeneCounts --sjdbGTFfile gencode.v19.annotation.gtf --sjdbOverhang X.” To 

assess the quality of the aligned RNA-seq data we ran MultiQC [82], and removed samples with < 70% 

uniquely mapped reads and < 10 million mapped reads.  

 

Gene/transcript mapping and quantification. To map reads to genes and quantify gene expression 

we ran StringTie 1.3.3 [37]. StringTie involves three steps, first quantifying expression of both known and 

novel gene transcripts using an annotation guided approach. We used the Gencode v19 gene annotation 

to guide gene detection.1) “stringtie bamfile -G gencode.v19.annotation_stringtie.gtf -B --rf -o out.gtf -A 

gene_abund.tab -C cov_refs.gtf -p 10. ” In the second step, StringTie merges the gene annotation across 

all samples such that there is a uniform annotation for known and novel gene transcripts in one 

transcriptome gtf file. 2) “stringtie All_PanTARGET_PreMerge_StringTie_Files.txt --merge -G 

gencode.v19.annotation_stringtie.gtf -o StringTie_PanCancer_AllMergedTranscripts.gtf.” Finally, 

StringTie is run again to quantify expression using the pan-TARGET transcriptome gtf file and de novo 

gene transcript detection is turned off. 3) “stringtie bamfile -G 

StringTie_PanCancer_AllMergedTranscripts.gtf -B -e --rf -o out.gtf -A gene_abund.tab -C cov_refs.gtf -p 

10”.  
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Comparison of pan-TARGET transcriptome with reference annotation. Novel transcripts were 

assigned as an isoform of a known gene based on exonic overlap (>50% by bp) with genes in either the 

GENCODE v19 or RefSeq v74 databases using custom Python scripts. Any remaining novel transcripts 

were assigned as novel genes (MSTRG_Merged.# or MSTRG.#) based on overlapping exon positions. 

Novel genes were further filtered based on read coverage, in that we required that at least one transcript 

for a novel gene have more than one exon with at least 5 reads in at least 20% of samples per cancer. 

High confidence novel genes were required to have at least 3 exons. Finally, for all transcripts (known 

and novel), to obtain gene level quantification, transcript FPKM and count values were summed to get a 

gene level value. 

 

Prediction of novel gene coding potential and lncRNA gene annotation. We predicted coding 

potential of novel transcripts using the PLEK v1 algorithm tool [39]. PLEK uses a support vector machine 

(SVM) for a binary classification model to distinguish a lncRNA versus a coding mRNA. The features 

used as input for the SVM are calibrated k-mer usage frequencies of a transcript’s sequence. PLEK has 

previously been validated on RefSeq mRNAs and GENCODE lncRNAs (the main reference annotations 

used in our study) and has achieved >90% accuracy in predicting gene coding potential [39]. To further 

delineate lncRNAs, we removed any predicted novel non-coding transcripts that were < 200bp (sum of 

total exon length). We updated the gene type of GENCODE v19 genes with the gene type of genes that 

had matching gene names in GENCODE v29. Additionally, we filtered out lncRNA genes that have been 

deprecated in Gencode v29. Finally, some lncRNA genes in Gencode v19, have both a lncRNA and small 

RNA transcript. For these 147 cases we did not include the small RNA transcript when summing gene 

transcripts to obtain gene level expression.  

 

Tissue specific gene expression. The tau score, a measure of the tissue specific expression of a gene 

was calculated as described by Yadai et. al [35]. The formula for the score is listed below. xi is defined 

as the mean expression of a gene in a particular cancer and n is the total number of cancers considered, 

in this case n = 6. Since the total RNA-sequencing method was used for the T-ALL dataset, we removed 
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genes that have been previously confirmed [83] to lack a polyA tail (146 protein coding genes, 4 

lncRNAs),  given that the tau score for these genes would not be interpretable. 

 

CNV detection, processing, and impact on gene expression. Copy number calls were made by 

Complete Genomics (CGI) from WGS for NBL, WT, AML, and B-ALL. We used CGI files: 

“somaticCnvDetailsDiploidBeta” containing ploidy estimates and tumor/blood coverage along 2kb bins 

across the genome. To create segmentation files, we used custom scripts to reformat CGI coverage data 

to meet requirements of the “copynumber” R bioconductor package as previously described [44]. We 

used the winsorize function in this package, which performs data smoothing and segmentation via a 

piecewise constant segmentation (pcf) algorithm (kmin =2 and gamma= 1000). Segmentation files were 

visualized using the R package svpluscnv (https://github.com/ccbiolab/svpluscnv) 

https://doi.org/10.1093/bioinformatics/btaa878. We then ran GISTIC2.0, using segmentation data as 

inputs and parameters: “GISTIC2 -v 30 -refgene hg19 -genegistic 1 -smallmem 1 -broad 1 -twoside 1 -

brlen 0.98 -conf 0.90 -armpeel 1 -savegene 1 -gcm extreme -js 2 -rx 0”. To determine which genes are 

impacted by copy number, we intersected CNV regions listed in the “all_lesions.conf_90.txt” file from 

GISTIC output with gene positions. We used section 1 from the “all_lesions.conf_90.txt” file to assign a 

binary descriptor to each gene as either being not amplified or deleted (CNV-no) if the sample had actual 

copy gain 0 for the region containing the gene. We assigned CNV-yes if the region containing the gene 

was amplified or deleted, which included samples with actual copy gain 1 or 2, where 1 indicates low 

level copy number aberration (exceeds low threshold of copy number: 1: 0.1<t< 0.9) and 2 indicates a 

high level of copy number aberration, CNV exceeds high threshold (t>0.9) according to GISTIC. To 

determine CNV impact on gene expression, we assessed differential expression of the gene in samples 

from the two groups (CNV yes or no) using Wilcoxon rank sum test (p < 0.01). Genes were considered 

to have evidence of differential expression due to copy number if the absolute value of the log2 fold 

change between the two groups was > 0.58 and p < 0.05.  
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Structural variant detection and filtering. Structural variants were identified from WGS via 

identification of incongruously aligned read mate-pairs. SVs involve sequence junctions spanning two 

breakpoints in the genome (SJ-BP). Additionally, breakpoints for copy number events can also be 

identified using read-depth tumor-blood ratios (RD-BP) converted to segmentation profiles. This method 

can provide breakpoint resolution at 2kb, unlike sequence junction break points where location is known 

at a 1bp resolution. Furthermore, with copy number read depths we can only know dosage information 

(amplification vs deletion), while with sequence junctions we can determine the size and type of variant 

(inversion (>30bp), translocation, deletion (>500bp), duplications (>40bp), and tandem-duplication). 

Nevertheless, these two distinct approaches to identify SVs can provide orthogonal validation for some 

events. 

Somatic sequence junctions that were completely absent in the normal genome are reported by CGI 

in the somaticAllJunctionsBeta file. To obtain a high confidence set of junctions, where there is a likely 

true physical connection between the left and right sections of a junction, the following filtering was 

applied by CGI to obtain the highConfidenceSomaticAllJunctionsBeta.  

 

1) DiscordantMatePairAlignments ≥ 10 (10 or more discordant mate pairs in cluster 
2) JunctionSequenceResolve = Y (local de novo assembly is successful) 
3) Exclude interchromosomal junction if present in any genomes in baseline samples 

(FrequencyInBaseline > 0) 
4) Exclude the junction if overlap with known underrepresented repeats 

(KnownUnderrepresentedRepeat = Y): ALR/Alpha, GAATGn, HSATII, LSU_rRNA_Hsa, and 

RSU_rRNA_Hsa 
5) Exclude the junction if the length of either of the side sections is less than 70 base pairs. 

 

Further filtering of these high confidence structural variants included removing rare/common germline 

variants that passed the CGI filters. We used the Database of Genomic Variants (DGV v. 2016-05-15, 

GRCh37) in order to remove SVs that had at least 50% reciprocal overlap with DGV annotated common 

events and were type matched.  
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Structural variant analysis. To obtain a comprehensive landscape of SVs we combined both the 

sequence junction and copy number read depth approaches to identify SVs, with co-localizing break 

points being orthogonally validated. Recurrence of SVs was considered based on overlap with genes 

from our pan-pediatric cancer transcriptome. Genomic overlap between SVs and genes was determined 

using the bedtools intersect tool (default parameters). Variants were assigned to genes based on if the 

sequence junction (left/right position) + 100 bp overlapped gene coordinates +/- 2.5kb. Genes were then 

ranked based on the number of unique samples per cancer with a SV breakpoint.  

 

ChIP-seq data analysis. To determine which lncRNAs are regulated by transcription factors involved in 

the core regulatory circuitry (CRC) we utilized previously generated/ analyzed histone and transcription 

factor ChIP-sequencing data for NBL and T-ALL. For NBL, we used peak files for our previously 

generated histone ChIP-seq data of: H3K27ac, H3K4me1, H3K4me3 for the BE(2)C cell line [84], 

available on GEO: GSE138315. We downloaded raw sequencing files for CRC transcription factor ChIP-

seq data for MYCN, PHOX2B, HAND2, GATA3, TBX2, and ISL1 for the BE(2)C and KELLY cell lines 

from GEO: GSE94822 [53] and selected peaks with q-value < 0.001 for further analysis. We identified 

regions in the genome where at least 4/6 of the transcription factors overlapped. This was obtained using 

the homer mergePeaks tool: “mergePeaks -d 1000 -cobound 6 bed_file1… bed_file6” and the resulting 

coBoundBy4 output file. For the T-ALL CRC we obtained overlapping CRC transcription factor loci for 

TAL1, GATA3, and RUNX1 from the study by Sanda et. al [55], GEO: GSE29181 for both the Jurkat and 

CCRF-CEM cell lines and integrated ChIP-seq data for the MYB transcription factor from GEO: 

GSE59657 [54], only available in the Jurkat line. We selected loci for further analysis if they were bound 

by TAL1, GATA3, and RUNX1 as previously annotated by Sanda et. al.  

 

Identification of CRC transcription factor regulated genes. To identify genes regulated by the NBL 

or T-ALL CRC we considered CRC TF binding at both the gene’s promoter and other regulatory region 

interacting with the gene’s promoter. We first overlapped CRC regions using bedtools intersect with gene 
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transcript promoter regions, which we defined as 3000bp upstream and downstream of the transcripts 

first exon. For NBL, we then utilized the promoter-focused Capture C data, inclusive of all interactions 

within 1Mb on the same chromosome, to identify genomic regions that were both bound by NBL CRC 

TFs and interacting with a gene’s promoter. To determine this, we used bedtools intersect to determine 

overlap (minimum 1bp) between CRC bound loci with loci involved in chromatin interactions. From these 

regions, we determined which interacting regions corresponded with a lncRNA promoter region. We 

performed a similar analysis in T-ALL, however we utilized publicly available SMC1 (cohesin) ChIA-PET 

data available on the ENCODE project to consider chromatin interactions.  

 

Promoter-focused Capture C data generation. High resolution promoter-focused Capture C was 

performed in the neuroblastoma cell line, NB1643, (untreated) in triplicate. Cell fixation, 3C library 

generation, capture C, and sequencing was performed as described by Chesi et. al (2019) and Su et al 

(2020). For each replicate, 107 fixed cells were centrifuged to cell pellets and split to 6 tubes for a pre-

digestion incubation with 0.3%SDS, 1x NEB DpnII restriction buffer, and dH2O for 1hr at 37ºC shaking 

at 1,000rpm. A 1.7% solution of Triton X-100 was added to each tube and shaking was continued for 

another hour.10 ul of DpnII (NEB, 50 U/µL) was added to each sample tube and continued shaking for 2 

days. 100uL Digestion reaction was then removed and set aside for digestion efficiency QC.The 

remaining samples were heat inactivated incubated at 1000 rpm in a MultiTherm for 20 min, at 65°C to 

inactivate the DpnII, and cooled on ice for 20 additional minutes. Digested samples were ligated with 8 

uL of T4 DNA ligase (HC ThermoFisher, 30 U/µL) and 1X ligase buffer at 1,000 rpm overnight at 16°C 

.The ligated samples were then de-crosslinked overnight at 65°C with Proteinase K (20 mg/mL, Denville 

Scientific) along with pre-digestion and digestion control. Both controls and ligated samples were 

incubated for 30 min at 37°C with RNase A (Millipore), followed by phenol/chloroform extraction, ethanol 

precipitation at -20°C, then the 3C libraries were centrifuged at 3000 rpm for 45 min at 4°C to pellet the 

samples. The pellets of 3C libraries and controls were resuspended in 300uL and 20μL dH2O, 

respectively, and stored at −20°C. Sample concentrations were measured by Qubit. Digestion and 
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ligation efficiencies were assessed by gel electrophoresis on a 0.9% agarose gel and also by quantitative 

PCR (SYBR green, Thermo Fisher). 

Isolated DNA from 3C libraries was quantified using a Qubit fluorometer (Life technologies), and 

10 μg of each library was sheared in dH2O using a QSonica Q800R to an average fragment size of 

350bp.QSonica settings used were 60% amplitude, 30s on, 30s off, 2 min intervals, for a total of 5 

intervals at 4 °C. After shearing, DNA was purified using AMPureXP beads (Agencourt). DNA size was 

assessed on a Bioanalyzer 2100 using a DNA 1000 Chip (Agilent) and DNA concentration was checked 

via Qubit. SureSelect XT library prep kits (Agilent) were used to repair DNA ends and for adaptor ligation 

following the manufacturer protocol. Excess adaptors were removed using AMPureXP beads. Size and 

concentration were checked again by Bioanalyzer 2100 using a DNA 1000 Chip and by Qubit fluorometer 

before hybridization. One microgram of adaptor-ligated library was used as input for the SureSelect XT 

capture kit using manufacturer protocol and custom-designed 41K promoter Capture-C probe set. The 

quantity and quality of the captured libraries were assessed by Bioanalyzer using a high sensitivity DNA 

Chip and by Qubit fluorometer. SureSelect XT libraries were then paired-end sequenced on Illumina 

NovaSeq 6000 platform (51bp read length) at the Center for Spatial and Functional Genomics at CHOP. 

 

Promoter-focused Capture C data analysis. Paired-end reads from each replicated were pre-

processed using the HICUP pipeline (v0.5.9), with bowtie2 as aligner and hg19 as the reference genome. 

The unique ditags output from HiCUP were further processed by the chicagoTools bam2chicago.sh script 

before significant promoter interaction calling. Significant promoter interactions at 1-DpnII fragment 

resolution were called using CHiCAGO (v1.1.8) with default parameters except for binsize set to 2500. 

Significant interactions at 4-DpnII fragment resolution were also called using CHiCAGO with artificial 

baitmap and rmap files in which DpnII fragments were concatenated in silico into 4 consecutive fragments 

using default parameters except for removeAdjacent set to False. Interactions with a CHiCAGO score > 

5 in either 1-fragment or 4-fragment resolution were considered as significant interactions. The significant 

interactions were finally converted to ibed format in which each line represents a physical interaction 

between fragments.  
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lncRNA pathway association. Each CRC regulated lncRNA was correlated (Pearson’s r) with the 

expression of all CRC regulated PCGs in NBL and T-ALL respectively. To account for multiple testing, 

we applied the Benjamini-Hoschberg method and selected correlated lncRNA-PCG pairs with adjusted 

p-value. < 0.1. We then assigned these PCGs and by association their correlated lncRNAs to pathways 

using Fisher exact test, FDR < 0.1 for gene sets in the MsigDB Hallmarks Gene Set Collection. We 

similarly assigned pathways to lncRNA modulators identified from our lncMod analysis based on the 

pathways assigned to their target PCGs.  

 

Differential gene expression analysis for NBL/T-ALL subtypes. We identified differentially expressed 

genes using the DESeq2 tool. We compared gene expression between MYCN Amplified NBL and Not-

Amplified samples as annotated in the TARGET clinical file (https://ocg.cancer.gov/programs/target/data-

matrix). We also elucidated expression differences between the TAL1 subgroup of T-ALL samples as 

compared to other T-ALL subgroups. The TAL1 subtype was defined previously by Liu, et al [60] based 

on samples with either TAL1 mutation or TAL1-associated gene expression signature. We ran DESeq2 

using default parameters and considered genes as significantly differentially expressed if their absolute 

value of the log2 fold change was > 0.58 and their Benjamini-Hoschberg adjusted-p value was < 0.01.   

 

lncMod implementation: transcription factor target gene regulation. We developed custom Python 

scripts to implement the general framework of the lncMod method. The first part of this framework 

involved determining transcription factor target gene regulation specific to each cancer. Target genes 

here are defined as any protein coding or lncRNA gene and excludes pseduogenes and small RNAs. 

Given that ChIP-seq binding profiles for the majority of transcription factors were not available for tissues 

associated with each of these cancers we instead used transcription factor motif analysis as a proxy. We 

utilized motifs in the JASPAR database [85] and predictions of binding across the genome determined 

by FIMO and available in the UCSC genome database:  
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http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2018/hg19/tsv/. For each 

transcript we determined potential regulatory transcription factors based on the presence of predicted 

binding motifs in the gene promoter region. Promoter regions were defined as regions 3000 bp upstream 

and downstream of the transcript’s first exon. Next we selected transcription factors based on their 

expression in each cancer and then performed linear regression considering the expression of the 

transcription factor and target gene specific to each cancer. We adjusted the false discovery rate due to 

multiple testing using the Benjamini-Hochberg method and selected TF-target gene pairs with 

significantly associated expression (adjusted p-value < 1e-5).  

 

Identification of lncRNA modulators. To identify transcriptional perturbations, we first delineated genes 

(TF, target genes, or lncRNAs) that had high expression variance (IQR > 1.5). We evaluated each 

differentially expressed lncRNA in each cancer in a manner similar to previous studies [21, 22, 67]. 

Specifically, for a given cancer and given lncRNA, we sorted samples in the cancer based on the given 

lncRNAs expression (low to high). We then determined the correlation (Spearman’s rho) between the 

expression of all transcription factor and target gene pairs previously identified in the given cancer. This 

correlation was calculated for the 25% of samples with the lowest lncRNA expression and separately for 

the 25% of samples with the highest expression for the given lncRNA. To ensure that we observed TF-

target gene regulation we required that the correlation between the TF-target pair in either the low or high 

lncRNA expressing group was at least R>0.4. We only further evaluated the lncRNA TF-target gene 

triplet if the correlation difference between the low and high lncRNA expression group was R>0.45. To 

formally compare the difference in correlation we first normalized the correlation using the Fisher r to z 

transformation. Then we calculated the rewiring score, z-statistic, as previously described [21], which is 

used to describe the degree of regulation change between the TF and target gene.  
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As a departure from what is described by Li et. al (lncMod method) [67], we used permutation analysis 

to robustly assess the significance of the rewire score in the context of multiple hypothesis testing as 

described by Sham et. al [86, 87]. We randomly shuffled target gene expression (TF-target gene pair 

labels) and calculated the rewire score P value across all TF-target gene pairs per given lncRNA. We 

kept the smallest observed P value and repeated the permutation 100 times. This empirical frequency 

distribution of the smallest P values was then compared to the P value in our real data to calculate an 

empirical adjusted P value (adj P value) as given by the formula below, where r is the number of 

permutations where the smallest P value are less than our actual P value and n is the number of 

permutations.  

 

The lncRNA-TF-target gene triplets, with adjusted p < 0.1 were considered significant. Datasets with 

smaller sample sizes had lower statistical power and thus fewer significant triplets. Triplets were then 

classified into three patterns based on correlation changes between the low and high expressing lncRNA 

group: increased correlation – enhanced, decreased correlation – attenuated, and inverted – positive to 

negative correlation and vice versa. We annotated lncRNA target genes as cancer genes based on if 

they were listed in the COSMIC database or a complied list from Chiu et. al [22].  

 

Cell lines and reagents. NBL cell lines were obtained from the American Type Tissue Culture Collection 

(ATCC) and grown in RPM1-1640 with HEPES, L-glutamine and phenol red, supplemented with 10% 

FBS, 1% L-glutamine in an incubator at 37°C with 5% CO2. Cell line identity was confirmed biennially 

through genotyping and confirmation of STR (short tandem repeat) profiles, while routine testing for 

Mycoplasma contamination was confirmed to be negative. 
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siRNA and growth assays. The NBL cell lines, NLF and SKNSH, were plated in a 96-well RTCES 

microelectronic sensor array (ACEA Biosciences, San Diego, CA, USA). Cell density measurements 

were made every hour and were normalized to 24 hours post-plating (at transfection time). We used 

siRNAs to knockdown the expression of genes in NLF and SKNSH. The siRNAs utilized were either a 

non-targeting negative control siRNA (SilencerTM Select Negative Control siRNA, cat #4390843), TBX2-

AS1 SilencerTM Select siRNA (cat # n514841), and SMARTpool: ON-TARGETplus PLK1 siRNA (cat # L-

003290-00-0010). Transfection of cells was done using the DharmaFECT 1 transfection reagent (cat # 

T-2001-02). siRNA at a concentration of 50nM and 2% DharmaFECT was added to RPMI medium without 

10% FBS or any antibiotic separately and then incubated at room temperature for 5 minutes. The siRNA 

medium was then added to the DharmaFECT and incubated for another 20 minutes to form a complex. 

This solution was then mixed with our normal growth media and applied to cells 24 hours after they had 

been initially plated. All experiments were repeated in triplicate, with technical replicates (n=3) being 

averaged per biological replicate. 

 

Real time quantitative PCR. Total RNA was extracted from NBL cells using miRNeasy kit (Qiagen) and 

the provided protocol for animal cells. The concentration of RNA was determined with the Nanodrop 

(Thermo Scientific). cDNA synthesis was performed using the SuperScriptTM First-Strand Synthesis 

System for RT-PCR using the SuperScriptTM reverse transcriptase (Invitrogen). 5-20ng of cDNA were 

mixed with the TaqMan Universal PCR Master Mix (Thermo Fisher Scientific) and TaqMan 

probes/primers for either TBX2-AS1 (Hs00417285_m1) or the house keeping gene, HPRT1 

(Hs02800695_m1). Gene expression from these reactions were measured using RT-qPCR and TBX2-

AS1 expression was normalized to HPRT1 expression.  

 
 
Data Availability 
 
All TARGET RNA and DNA-sequencing data analyzed in this study are available through the database 

of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap/) under study-id phs000218 

and accession number phs000467. Neuroblastoma cell line RNA-sequencing data analyzed in this study 
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are available through GEO at accessions GSE89413. NBL histone ChIP-seq and transcription factor 

ChIP-seq data used in this study are both available through GEO at accessions GSE138315 and 

GSE94822, respectively. T-ALL transcription factor ChIP-seq data and SMC1 ChIA-PET data are 

available through GEO at accessions GSE29181, GSE59657, and GSE68977. 
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Fig 1: Pan-pediatric transcriptome characterization.  
a. Overview of RNA-seq sample sizes for each histotype and schematic of data processing and filtering. 
Reads from RNA-seq fastq files were aligned using the STAR algorithm and then gene transcripts were 
mapped in a guided de-novo manner and quantified via the StringTie algorithm. Genes were considered 
novel if they did not have transcript exon structures matching genes in the Gencode v19 or RefSeq v74 
databases. Novel genes were assigned as lncRNAs based on length >200bp and non-coding potential 
calculated using the PLEK algorithm. Transcripts with low expression (FPKM <1 in >80% samples per 
histotype) were not considered for further analysis. b. Pie graph showing the quantity of robustly 
expressed protein coding genes, Gencode/RefSeq annotated lncRNAs, and novel lncRNAs. Bar graph 
showing number of protein coding genes and lncRNAs expressed per cancer. Adjoining schematic gives 
overview of additional data types that were integrated with transcriptome data: WGS, ChIP-seq, and 
chromatin capture. Listed are the analyses used to elucidate which lncRNAs are likely to  play functional 
roles in pediatric cancer. c. Cumulative expression plots comparing the number of lncRNAs and d. protein 
coding genes, respectively, that constitute the total sum of gene expression (FPKM) per pediatric cancer. 
e. Percentage of total lncRNA expression (FPKM) accounted for by the union of top 5 expressed lncRNAs 
per cancer (total 11 lncRNAs).  
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Figure 3
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Figure 4
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Fig 4: Identification of cancer associated lncRNAs regulated by core transcription factors in NBL 
and T-ALL 
a. Schematic of how CRC regulated genes are identified using ChIP-seq and chromatin interaction data. 
We identified lncRNAs based on three types of regulation. 1) CRC transcription factors binding directly 
at the promoter of the lncRNA. 2) CRC TFs bind an enhancer region that interacts with a lncRNA 
promoter. 3) CRC TFs bind the promoter of a different gene and this promoter interacts with a lncRNA 
promoter. CRC TF binding was identified from ChIP-seq data, while enhancer-promoter and promoter 
promoter interactions were identified from chromatin capture data. b. Filtering of lncRNAs expressed in 
either NBL or T-ALL based on CRC TF regulation, co-regulation with a CRC associated protein-coding 
gene, and differential expression based on cancer subtypes. In NBL, differentially expressed lncRNAs 
are between MYCN-amplified vs non-amplified samples. In T-ALL, differentially expressed lncRNAs are 
between the TAL1 subgroup vs other T-ALL sample subtypes. Co-regulation of CRC regulated lncRNAs 
and protein coding genes was determined by correlation analysis. c-d. Gene set enrichment analysis 
results for protein coding genes significantly correlated with CRC regulated lncRNAs (Pearson’s r > 0.4 
and FDR < 0.1) in NBL and T-ALL, respectively. e. Expression of NR2F1 and NR2F1-AS1 stratified by 
NBL sample MYCN amplification status f. ChIP-seq tracks for histone marks and CRC transcription 
factors in the NBL cell line: BE(2)C, and promoter capture C chromatin interactions in NBL cell line: 
NB1643, at the NR2F1/NR2F1-AS1 locus. g. Expression of PRKCQ and PRKCQ-AS1 stratified based 
on the TAL1 subgroup of T-ALL samples. h. ChIP-seq tracks for histone marks and CRC transcription 
factors and ChIA-PET chromatin interactions in the T-ALL cell line: Jurkat, at the PRKCQ/ PRKCQ-AS1 
locus. 
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Figure 5
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Fig 5: lncRNA modulators impact transcriptional networks involving proliferation. 
a. Schematic that shows the three ways (attenuate, enhance, or invert) in which differentially expressed 
lncRNA modulators can impact transcription factor and target gene relationships. lncRNA modulators are 
associated with a TF-target gene pair based on a significant difference between TF-target gene 
expression correlation in samples with low lncRNA expression (lowest quartile) vs samples with high 
lncRNA expression (highest quartile). b. The proportion of lncRNA modulator types associated with 
significantly dysregulated lncRNA modulator- TF-target gene (lncMod) triplets. The number of 
significantly dysregulated lncMod triplets is listed per cancer. c. Number of lncRNA modulators genes 
that are common in lncMod triplets across cancers. Pan-cancer lncRNA modulator genes tend to have a 
lower tau score compared to lncRNA modulators only associated with one cancer. d. Gene set 
enrichment using the MsigDB Hallmark gene set, of target genes associated with lncRNA modulators in 
each cancer (Fisher exact test, FDR < 0.1). e. Transcription factors associated with the B-ALL expression 
specific lncRNA, BLACE, ranked based on number of regulated target genes. f. Expression heatmap of 
BLACE and the target genes of the XBP1 transcription factor, grouped by associated hallmark gene set, 
in samples that fall within the bottom and top quartiles of BLACE expression across all B-ALL samples. 
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Fig 6: The TBX2-AS1 lncRNA plays a role in neuroblastoma proliferation 
a. Chromatin interactions and ChIP-seq tracks for NBL-CRC transcription factors in the NBL cell lines, 
Be(2)C and NB1643, at the TBX2/TBX2-AS1 locus. b. Expression of TBX2 and TBX2-AS1 in NBL tumor 
samples with and without 17q gain. c. The top MsigDB Hallmarks enriched across targets genes (p-value 
< 0.01) regulated by TBX2-AS1 as predicted using the lncMod analysis. d. The transcription factors with 
most target genes regulated by TBX2-AS1 as predicted from lncMod analysis. e. Expression of gene 
targets of the E2F1 transcription factor that are enriched for proliferation hallmarks, in samples with low 
and high TBX2 and TBX2-AS1 expression. TBX2 expression is highly correlated with that of TBX2-AS1 
(Pearson’s r=0.77). f. siRNA knockdown efficiency of TBX2-AS1 in the NBL cell line: NLF is 98% and in 
the SKNSH cell 63% knockdown was achieved. g. Representative image of cell growth (as measured by 
RT-Ces assay) of the NBL cell lines: NLF and SKNSH. Cell index is normalized to time point when siRNA 
reagent is added at 24 hours post cell plating. 
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