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Abstract		10 

Deconvolution	analyses	have	been	widely	used	to	track	compositional	alternations	of	11 

cell-types	 in	 gene	 expression	 data.	 Even	 though	 numerous	 novel	 methods	 have	 been	12 

developed	 in	 recent	 years,	 researchers	 are	 still	 having	 difficulty	 selecting	 optimal	13 

deconvolution	methods	due	to	the	lack	of	comprehensive	benchmarks	relative	to	the	newly	14 

developed	methods.	To	 systematically	 reveal	 the	pitfalls	 and	challenges	of	deconvolution	15 

analyses,	we	studied	the	impact	of	several	technical	and	biological	factors	such	as	simulation	16 

model,	 quantification	 unit,	 component	 number,	 weight	matrix,	 and	 unknown	 content	 by	17 

constructing	three	benchmarking	frameworks	that	cover	comparative	analysis	of	11	popular	18 

deconvolution	 methods	 under	 1,766	 conditions.	 We	 hope	 this	 study	 can	 provide	 new	19 
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insights	 to	 researchers	 for	 future	 application,	 standardization,	 and	 development	 of	20 

deconvolution	tools	on	RNA-seq	data.		21 

Background		22 

Deconvolution	refers	to	a	process	that	separates	a	heterogeneous	mixture	signal	into	23 

its	 constituent	 components.	 In	 the	 biomedical	 field,	 researchers	 have	 been	 using	24 

deconvolution	methods	to	derive	cell-type-specific	signals1–3	 from	heterogeneous	mixture	25 

data.	 Cellular	 composition	 information	 is	 crucial	 for	 developing	 sophisticated	 diagnostic	26 

techniques	as	it	enables	researchers	to	track	each	cellular	component's	contribution	during	27 

disease	progressions4.	Although	some	experimental	approaches	like	fluorescence-activated	28 

cell	 sorting(FACS),	 immunohistochemistry(IHC),	 and	 single-cell	 RNA-seq	 can	 derive	 cell-29 

type	proportion	data3,	all	these	approaches	are	either	restricted	by	its	throughput	or	remain	30 

too	 costly	 and	 laborious	 for	 large-scale	 clinical	 applications.	 By	 far,	 deconvolution	 is	31 

recognized	 as	 the	 most	 cost-effect	 approach	 to	 derive	 cell-type	 proportion	 data	 from	32 

heterogenous	biospecimens	and	has	the	potential	to	bring	a	considerable	improvement	in	33 

the	speed	and	scale	of	cell-type-specific	clinical	diagnosis.	34 

	By	January	2018,	there	have	been	around	50	deconvolution	methods	developed2	and	35 

researchers	are	now	 facing	 the	challenge	of	 selecting	 the	right	method	 for	deconvolution	36 

analysis.		In	a	methodological	paper,		authors	usually	compared	the	method	of	their	own	to	37 

a	chosen	set	of	published	methods	and	arrived	at	the	conclusion	that	their	method	was	the	38 

best.		However,	only	a	limited	number	of	deconvolution	methods	and	biological	conditions	39 

were	 considered	 in	 these	 comparisons.	 Moreover,	 different	 research	 groups	 applied	40 
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inconsistent	testing	frameworks	with	different	simulation	strategies,	evaluation	metrics,	and	41 

cell-type	annotations,	making	it	difficult	for	researchers	to	determine	the	optimal	method	42 

for	the	deconvolution	analysis.		For	a	fair	and	comprehensive	comparison	of	deconvolution	43 

applications	 in	 complex	 biological	 systems,	 an	 independent	 benchmarking	 is	 in	 need5.	44 

Previously,	Sturm	et	al.3	and	Cobos	et	al.6	performed	quantitative	evaluations	of	reference-45 

based	and	marker-based	deconvolution	methods	on	RNA-seq	data.	Sturm	et	al.3	focused	on	46 

spill-over	 effects,	minimal	 detection	 fraction,	 and	 background	 predictions	 and	 suggested	47 

removing	 non-specific	 signature	 genes	 to	 improve	 deconvolution	 accuracy.	 Cobos	 et	48 

al.6	focused	on	the	impact	of	different	normalization	strategies,	reference	platforms,	marker	49 

gene	selection	strategies,	and	missing	cellular	components	in	the	reference.	Compared	with	50 

previous	benchmarks,	our	study	focuses	on	technical	and	biological	factors	caused	by	varied	51 

experimental	mixture	conditions	such	as	mixture	noise	levels,	quantification	unit	selection,	52 

cellular	component	number,	weight	matrix	property,	and	unknown	cellular	contents.	 	We	53 

also	studied	the	major	factors	that	determine	an	evaluation	framework,	such	as	simulation	54 

model	 selection,	 evaluation	metric	 selection,	 and	measurement	 scale	 selection.	Our	work	55 

carefully	examined	the	joint	impact	of	different	technical	parameters	and	biological	design	56 

factors	 to	provide	 an	 insightful	 reference	 guide	 for	mixture	 condition	determination	 and	57 

deconvolution	method	selection.		58 

There	 are	 three	 types	 of	 benchmarking	 frameworks	 for	 the	 evaluation	 of	59 

deconvolution	methods:	in	silico	framework7,8,	in	vitro	framework9,	and	in	vivo	framework10	60 

(Supplementary	Table	1).	The	in	vivo	testing	framework	mainly	rely	on	indirect	performance	61 

assessment	and	usually	cannot	derive	a	definite	conclusion	of	 the	method's	performance.		62 

Only	a	few	in	vivo	benchmarking	datasets3	have	coupled	FACS	results.	Nevertheless,	these	63 
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benchmarking	datasets	are	often	restricted	by	limited	cell	types	and	sample	numbers3,8	.	The	64 

in	vitro	testing	framework	where	mixtures	are	generated	in	the	tube	with	predefined	mixing	65 

compositions	also	suffers	from	limited	cell	types	and	sample	numbers.	Moreover,	most	 in	66 

vitro	 testing	 frameworks	 applied	 ‘orthogonal’	 weights,	 leading	 to	 over-optimistic	67 

performance	 assessment.	 The	 in	 silico	 testing	 framework	 uses	 RNA-seq	 profiles	 from	68 

purified	biological	samples	as	primary	building	blocks	and	generates	heterogeneous	mixing	69 

samples	 by	 in	 silico	 mixing	 procedures.	 Among	 all	 three	 benchmarking	 frameworks,	 we	70 

selected	 the	 in	 silico	 testing	 framework	 to	 systematically	 explore	 the	 impact	 of	 different	71 

biological	 and	 technical	 factors,	 which	 require	 large	 amounts	 of	 benchmarking	 datasets	72 

under	controlled	and	finely	tuned	multi-factor	testing	environments.		73 

To	provide	a	reliable	reference	for	the	application	and	development	of	deconvolution	74 

methods,	we	compared	11	deconvolution	methods	(Figure	1b	and	Supplementary	Table	3).	75 

To	 establish	 benchmarking	 frameworks	 that	 mimic	 application	 scenarios	 of	 more	76 

complicated	 and	 diverse	 biological	 systems,	 we	 designed	 three	 sets	 of	 benchmarking	77 

frameworks	that	mimic	up	to	1,766	biological	conditions	with	varying	noise	levels,	library	78 

sizes,	 cellular	 component	 numbers,	 weight	 matrix	 properties,	 simulation	 models,	 and	79 

proportions	 of	 unknown	 contents	 (Figure	1a,	 Supplementary	Table	 2).	 To	determine	 the	80 

impact	 of	 evaluation	 frameworks,	we	performed	 comparisons	under	different	 simulation	81 

models	and	measurement	scales	with	two	sets	of	evaluation	metrics:	correlation	(Pearson's	82 

Correlation	 Coefficient)	 and	 mAD	 (Mean	 Absolute	 Deviation)(Methods).	 Compared	 with	83 

previous	benchmarks,	we	applied	more	flexible	and	sophisticated	simulation	strategies	to	84 

create	mixtures	 covering	 dynamic	 conditions,	which	 enable	 us	 to	 investigate	 the	 tipping	85 

point	 where	 each	 method	 deteriorates.	 Moreover,	 we	 studied	 the	 impact	 of	 commonly	86 
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applied	 simulation	 strategies,	 and	 by	 comparison	 to	 the	 real	 mixture	 data,	 we	 derived	87 

improved	 simulation	 strategies	 that	 can	 generate	 more	 complex	 and	 yet	 authentic	88 

simulation	data.	Our	 results	 provide	 a	dynamic	 testing	 landscape	 that	 allows	 the	user	 to	89 

select	the	right	method	that	performs	well	in	the	targeted	experimental	condition.		90 

Results		91 

Using	simulation	to	generate	diverse	deconvolution	testing	environments	92 

We	 designed	 three	 benchmarking	 frameworks	 to	 test	 the	 performance	 of	93 

deconvolution	methods	under	multiple	application	scenarios.	Each	framework	was	designed	94 

to	 study	 the	 impact	 of	 specific	 technical	 and	biological	 factors	 on	deconvolution	 analysis	95 

(Figure	1a).	The	first	benchmarking	framework	(Sim1)	was	designed	to	reveal	the	impact	of	96 

the	noise	structure	under	diverse	noise	levels.	The	second	benchmarking	framework	(Sim2)	97 

was	 designed	 to	 reveal	 the	 impact	 of	 cellular	 component	 numbers	 and	 weight	 matrix	98 

properties.	The	third	benchmarking	framework	(Sim3)	was	designed	to	reveal	the	impact	of	99 

unknown	biological	contents	and	measurement	scales.		100 

In	 an	 in	 silico	 benchmarking	 framework,	 a	 deconvolution	 testing	 environment	101 

consists	of	mixture	data,	reference	data,	ground	truths,	and	testing	methods.	Mixture	data	102 

refers	to	heterogeneous	gene	expression	profiles	for	deconvolution.	Reference	data	refers	to	103 

homogeneous	cell-type-specific	data,	which	is	used	to	guide	the	deconvolution	process.			104 
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	105 

Fig.1|	Overview	of	in	silico	testing	frameworks	and	methods	categorization	106 

a,	Three	benchmarking	 frameworks	were	constructed	 to	 investigate	 the	 impact	of	 seven	 factors	 that	affect	107 

deconvolution	analysis:	noise	level,	noise	structure,	other	noise	sources,	quantification	unit,	unknown	content,	108 

component	number,	and	weight	matrix.	b,	11	deconvolution	methods	are	tested	and	have	been	categorized	109 

based	on	the	required	reference	input:	marker-based,	reference-based,	and	reference-free.		110 
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Ground	truths	refer	to	the	real	mixing	proportions	of	constituent	cell	types	in	the	mixture	111 

data.	 The	 accuracy	 of	 deconvolution	 methods	 can	 be	 assessed	 by	 comparing	 estimated	112 

proportions	to	the	ground	truths.	Reference	data	can	vary	based	on	the	required	input	of	the	113 

tested	 deconvolution	method.	 In	 this	 study,	we	 classified	 eleven	 deconvolution	methods	114 

according	 to	 the	 required	 reference	 data	 in	 the	 following	 categories:	 marker-based,	115 

reference-based,	 and	 reference-free	 (Figure	 1b,	 Supplementary	 Table	 3).	 	 Marker-based	116 

methods	 such	 as	 DSA11,	 MMAD12,	 and	 CAMmarker13	 use	 marker	 gene	 lists	 to	 guide	 the	117 

deconvolution	 analysis.	 Reference-based	 methods	 such	 as	 CIBERSORT7,	 CIBERSORTx8,	118 

EPIC14,	 TIMER10,	 DeconRNASeq15,	 and	 MuSiC16	 use	 cell-type-specific	 gene	 expression	119 

profiles.	Except	for	MuSiC16,	nearly	all	reference-based	methods	require	signature	gene	lists	120 

as	an	additional	input.		MuSiC16	implements	weighted	non-negative	least	squares	regression	121 

(W-NNLS)	 and	 does	 not	 require	 any	 pre-determined	 gene	 sets.	 Finally,	 reference-free	122 

methods	such	as	LinSeed17	and	CAMfree13	do	not	require	any	external	references.		123 

Selection	of	simulation	model	affects	the	deconvolution	evaluation		124 

The	 benchmarking	 framework	 Sim1_simModel	 is	 designed	 to	 learn	 the	 impact	 of	125 

noise	structure	under	different	noise	levels	(Fig.	1a,	Methods).		To	understand	the	impact	of	126 

noise	structure,	we	simulated	noise	based	on	three	simulation	models:	normal,	log-normal,	127 

and	 negative	 binomial	 (nb).	 All	 these	 simulation	 models	 have	 been	 applied	 in	 previous	128 

publications7,15,17–19	 to	 generate	 in	 silico	 mixing	 expression	 profiles.	 For	 each	 simulation	129 

model,	we	generated	ten	levels	of	noise	to	evaluate	the	robustness	of	deconvolution	methods	130 

to	the	magnitude	of	noise(Supplementary	Fig.	1a).	To	ensure	the	generality	of	our	conclusion	131 

across	 different	 datasets	 and	 account	 for	 reference-mixture	 variance,	 we	 performed	132 

repeated	mixture	simulation	with	three	independent	blood	datasets	and	created	nine	testing	133 
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environments	with	different	mixture-reference	pairs	(Methods,	Supplementary	Table	2	and	134 

Supplementary	Table	4).		135 

For	the	noise	level,	consistent	with	previous	findings,	we	observed	that	the	accuracies	136 

of	the	deconvolution	methods	decreased	as	the	noise	level	increased,	which	was	exhibited	137 

as	decreasing	correlation	(Supplementary	Fig.	3)	and	increasing	mAD	(Supplementary	Fig.	138 

4)	 values.	 We	 also	 noticed	 that	 the	 impact	 of	 the	 RNA-seq	 quantification	 unit	 is	 trivial	139 

(Supplementary	 Fig.	 3	 and	 4)	 and	 thus	 selected	 the	 most	 commonly	 used	 unit	 tpm	 for	140 

remaining	illustrations	of	testing	results	in	Sim1_simModel.	Unless	specifically	indicated	(as	141 

in	Sim1_libSize),	all	results	in	this	study	are	from	mixture	data	with	the	tpm	unit.			142 

To	reveal	the	impact	of	the	simulation	models,	we	averaged	evaluation	metrics	across	143 

noise	 levels	 and	 generated	 summarized	 evaluation	 heatmaps	 (11	× 	3)	 where	 row	 index	144 

number	 11	 indicates	 the	 number	 of	methods	 and	 column	 index	 number	 3	 indicates	 the	145 

number	of	simulation	models.	Based	on	the	summarized	evaluation	heatmaps	of	correlation	146 

(Fig.	2a)	and	mAD	(Supplementary	Fig.	5a),	we	observed	that	the	selection	of	the	simulation	147 

model	strongly	affected	evaluation	results.	For	instance,	methods	like	DSA11,	TIMER10,	and	148 

CAMfree’s13	 rankings	 were	 all	 relatively	 higher	 in	 the	 negative	 binomial	 group	 in	 both	149 

correlation	 (Fig.	 2b)	 and	 mAD	 (Supplementary	 Fig.	 5b)	 metrics	 when	 comparing	 with	150 

evaluations	from	normal	and	log-normal	groups.	The	above	phenomenon	indicated	that	the	151 

performance	 of	 some	 deconvolution	 methods	 is	 underestimated	 due	 to	 the	 underlying	152 

simulation	model.		153 
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	154 

Fig.2|	Evaluation	results	of	Sim1_simModel	and	noise	structure	comparisons	between	155 

real	and	simulated	data		156 
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a,	Heatmap	of	summarized	evaluation	results	based	on	the	Pearson’s	correlation	coefficients	and	b,	rankings	157 

of	 tested	 deconvolution	methods	 in	 the	 Sim1_simModel.	 In	 each	 heatmap,	 row	 indexes	 refer	 to	 the	 tested	158 

methods	and	column	indexes	refer	to	the	simulation	models	(negative	binomial,	log-normal,	and	normal).	c,d,	159 

Mean-variance	plots	of	 (c)	 real	 and	 (d)	 simulated	data.	 (r:	 Spearman’s	 correlation	 coefficient,	 d:	Euclidean	160 

distance)	e,f,	sample-sample	scatter	plots	of	(e)	real	and	(f)	simulated	data.		g,h,	Density	plots	of	CV	(Coefficient	161 

of	variation)	of	(g)	real	and	(d)	simulated	data.	(Real	data	are	derived	from	GSE113590	and	GSE60424	and		162 

Supplementary	Figure	6	and	7	contain	detailed	variance	analysis	results	for	each	dataset)	(All	simulated	data	163 

in	Figure	2	are	based	on	simulations	derived	from		GSE51984	with	the	P6	noise	level.)	(Results	in	a	and	b	are	164 

in	tpm	unit,	results	in	c-f	are	in	count	unit)	165 

The	negative	binomial	model	recapitulates	noise	structures	of	real	data		166 

In	the	Sim1_simModel,	we	found	that	the	noise	structure	is	the	main	factor	obscuring	167 

deconvolution	performance	assessment	(Fig.	2a	and	b,	Supplementary	Fig.	5).	To	identify	the	168 

simulation	 model	 that	 best	 recapitulates	 the	 essential	 characteristics	 of	 real	 data,	 we	169 

performed	noise	structure	comparisons	between	real	and	simulated	data	by	mean-variance	170 

plots,	sample-sample	scatter	plots	and	coefficient	of	variance	(CV)	density	plots.		171 

We	used	the	mean-variance	plots	to	study	the	overall	trend	of	variance	along	with	the	172 

gene	expression	 level	 in	both	real	and	simulated	data	 (P6	noise	 level)	 (Fig.	2c	and	d).	As	173 

expected,	we	observed	that	the	variance	and	mean	value	of	counts	follow	a	linear	trend	in	174 

the	 log	 space	with	 a	 clear	 overdispersion	 phenomenon,	which	 is	 typical	 to	 the	 RNA-seq	175 

data20(Fig.	2c).	However,	in	the	simulation	group,	only	the	simulations	generated	from	the	176 

negative	binomial	and	normal	models	showed	a	similar	mean-variance	trend	to	the	trend	177 

observed	in	the	real	data	(Fig.	2d).	178 

Next,	we	used	sample-sample	scatter	plots	to	study	the	concordance	trend	of	gene	179 

expression	 profiles(Fig.	 2e	 and	 f).	 In	 real	 data,	 we	 observed	 that	 lowly	 expressed	 genes	180 
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exhibited	 larger	 relative	 deviances	 to	 the	 diagonal	 reference	 line	 (y	 =	 x)	 than	 highly	181 

expressed	genes	 (Fig.	2e).	This	phenomenon	 indicates	 larger	uncertainties	 in	quantifying	182 

RNA	molecules	with	lower	abundance.	In	the	simulation	group,	only	simulation	data	from	183 

the	negative	binomial	model	recapitulated	higher	deviances	of	lowly	expressed	genes	(Fig.	184 

2f).		185 

We	also	compared	the	magnitude	of	noise	between	the	real	and	simulated	data.	In	the	186 

real	data,	the	sample-sample	Spearman’s	correlation	values	range	from	0.53	to	0.99	while	187 

the	 sample-sample	 Euclidean	 distances	 fluctuate	 around	 the	 order	 of 	10!~	10"	188 

(Supplementary	Fig.6	a	and	b	and	Supplementary	Fig.	7	a	and	b).	In	three	tested	simulation	189 

models,	only	the	negative	binomial	model	was	capable	of	generating	simulated	profiles	with	190 

comparable	 sample-sample	 correlation	 (0.57	 –	0.98)	 and	Euclidean	distance	 (around	 the	191 

order	of10!~	10")	to	the	real	datasets	(Supplementary	Figure	8)	while	maintaining	mean-192 

variance	trend	with	overdispersion	phenomenon	(Supplementary	Fig.	9).		193 

We	 compared	 the	 density	 curve	 of	 CV	 (coefficient	 variation)	 values	 in	 real	 and	194 

simulated	data	(Fig.	2g	and	h).	Real	data	exhibited	a	unimodal	bell-shaped	curve,	indicating	195 

that	most	of	the	genes	had	low	to	moderate	levels	of	CV	(Fig.	2g).	In	the	simulation	group,	196 

only	simulations	derived	from	the	negative	binomial	model	maintained	the	unimodal	bell-197 

shaped	curve	throughout	all	noise	levels	(Fig.	2h).	CV	density	distributions	of	normal	and	198 

log-normal	simulation	models	showed	density	curves	that	were	skewed	towards	the	high	CV	199 

value	 from	 noise	 level	 P6	 to	 P10,	 which	 indicating	 unauthentic	 noise	200 

structure(Supplementary	Fig.	10b).			201 
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In	 conclusion,	 the	 negative	 binomial	 simulation	 model,	 which	 successfully	202 

recapitulates	 the	 mean-variance	 trend,	 sample-sample	 concordance,	 the	 density	 of	 CV,	203 

presents	the	most	similar	noise	structure	to	the	real	data.	The	negative	binomial	model	also	204 

kept	 the	 magnitude	 of	 noise	 at	 comparable	 levels	 to	 the	 real	 data	 and	 thus	 should	 be	205 

considered	as	the	most	appropriate	simulation	model	for	generating	 in	silico	mixtures	for	206 

deconvolution	benchmarking.			207 

Library	size	normalization	is	required	to	ensure	the	deconvolution	accuracy		208 

In	this	benchmarking	framework,	we	focused	on	the	impact	of	RNA-seq	quantification	209 

units	with	mixtures	that	varied	in	their	library	sizes	(Supplementary	Fig.	1b).	To	reveal	bias	210 

caused	by	varied	library	sizes,	we	designed	Sim1_libSize	in	which	every	mixture	comprised	211 

of	 samples	with	varied	 library	 sizes	 (first	10	samples	with	12M	reads,	 and	 remaining	10	212 

samples	with	24M	reads),	and	our	results	indicate	using	quantification	units	normalized	by	213 

library	sizes	can	mitigate	the	bias	caused	by	library	size	variation	(Fig.	3a,	Supplementary	214 

Fig.	 11a). We	 summarized	 evaluation	 results	 across	 all	 10	 noise	 levels	 and	 generated	215 

evaluation	heatmaps	with	dimensions	11	by	4	where	11	indicates	the	number	of	methods	216 

and	4	indicates	the	number	of	quantification	units	being	tested.		217 

We	observed	 that	 three	methods,	CIBERSORT7,	 CIBERSORTx8,	 and	MuSiC16,	which	218 

implemented	normalization	procedures,	showed	decent	performance	(𝑟	 ≥ 0.9,	𝑚𝐴𝐷	 ≤ 0.1)	219 

regardless	of	the	selected	quantification	unit	(Fig.	3a,	Supplementary	Fig.	11a).	Six	methods	220 

(DSA11,	 MMAD12,	 CAMmarker13,	 TIMER10,	 CAMfree13,	 and	 LinSeed17)	 showed	 improved	221 

accuracy	after	library	size	normalization	(Fig.	3a,	Supplementary	Fig.	11a).		222 

	223 
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	224 

Fig.3|	Evaluation	results	of	Sim1_libSize		225 

a,	Heatmap	of	summarized	evaluation	results	based	on	the	Pearson’s	correlation	coefficients	and	b,	rankings	226 

of	tested	deconvolution	methods.	In	each	heatmap,	row	indexes	refer	to	the	tested	methods	and	column	indexes	227 

refer	to	the	quantification	units	(count,	countNorm,	cpm,	and	tpm).		228 

	229 

Contradicting	to	the	Sim1_simModel	(Supplementary	Fig.3	and	4),	we	observed	that	230 

the	choice	of	quantification	unit	had	a	high	impact	on	Sim1_libSize,	which	was	reflected	by	231 

discrepant	 rankings	 of	 tested	 methods	 (Supplementary	 Fig.	 3b	 and	 11b).	 As	 the	 only	232 

difference	between	the	two	benchmarking	frameworks	was	the	library	size,	we	deduced	that	233 

the	inconsistent	performance	over	different	quantification	units	was	due	to	the	library	size	234 

variation	 in	 the	 mixture	 dataset.	 	 We	 thus	 suggest	 researchers	 applying	 RNA-seq	235 

quantification	units	that	are	normalized	by	library	sizes	to	mitigate	the	bias	caused	by	varied	236 

library	sizes	unless	indicated	by	the	author	of	the	method(MuSiC16)	to	use	the	count	unit.		237 
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Impact	of	cellular	component	number	and	weight	matrix	on	deconvolution	analysis		238 

To	investigate	the	joint	impact	of	the	cellular	component	number	and	weight	matrix	239 

property,	we	designed	the	benchmarking	framework	Sim2	with	six	gradients	of	component	240 

number	 ranging	 from	 5	 to	 10	 and	 two	 types	 of	 weight	 matrices:	 ‘orthog’	 and	 ‘real’	241 

(Supplementary	Fig.	2a	and	Supplementary	Table	2	and	4).		The	‘orthog’	weight	matrix	was	242 

generated	by	minimizing	the	condition	number,	and	the	‘real’	weight	matrix	is	constructed	243 

based	on	whole	blood	immune	cell	proportions	in	the	real	biological	samples21(Methods).		244 

We	discarded	 the	CAMfree13	method	 in	Sim2	due	 to	 the	poor	 scalability	of	CAMfree13	 on	245 

mixtures	with	large	component	numbers.		246 

We	found	that	nearly	all	deconvolution	methods	achieved	higher	accuracies	with	the	247 

‘orthog’	 weight	 matrices	 (Fig.	 4a)	 than	 the	 ‘real’	 weight	 matrices,	 indicating	 that	 the	248 

mathematical	 property	 of	 the	 weight	 matrix	 has	 a	 significant	 impact	 on	 deconvolution	249 

analysis.		In	the	mixtures	with	five	components	(Comp	5),	eight	methods	(DSA11,	MMAD12,	250 

CAMmarker13,	EPIC14,	CIBERSORT7,	CIBERSORTx8,	MuSiC16,	and	LinSeed17)	exhibited	high	251 

accuracy	levels(	𝑟	 ≥ 0.95,	𝑚𝐴𝐷	 ≤ 0.05)	in	the	 ‘orthog’	group	(Fig.	4a	and	Supplementary	252 

Fig.	12a)	while	only	three	of	those	eight	methods	(CIBERSORT7,	CIBERSORTx8,	and	MuSiC16)	253 

in	the	‘real’	group	achieved	the	same	level	of	accuracy	(Fig.	4b	and	Supplementary	Fig.	12b).		254 

In	addition	to	the	impact	of	the	weight	matrix	selection,	cellular	component	numbers	255 

also	affect	deconvolution	accuracy.	In	both	‘orthog’	and	‘real’	groups,	the	majority	of	methods	256 

exhibited	 poorer	 performance	 as	 cellular	 component	 number	 increasing	 (Fig.	 4	 a,b	 and	257 

Supplementary	 Fig.	 12).	 It	 is	 also	 worth	 noting	 that	 none	 of	 the	 tested	 deconvolution	258 
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methods	 showed	 a	 correlation	 larger	 than	 0.9	 with	 mixtures	 consist	 of	 large	 cellular	259 

component	numbers	(Comp	7	to	Comp	10)	in	the	‘real’	group	(Fig.	4b).		260 

To	 further	 investigate	 the	 performance	 of	 deconvolution	 methods	 with	 large	261 

component	numbers,	we	explored	the	accuracies	of	mixtures	with	10	cellular	components	262 

and	the	‘real’	weight	matrix	by	drawing	scatters	plots	of	estimations	and	ground	truths	(data	263 

corresponds	 to	 the	 last	 column	of	 Fig.	 4b	 and	 Supplementary	 Fig.	 12b).	 Surprisingly,	we	264 

found	that	the	correlation	evaluation	metric,	which	was	considered	as	the	golden	standard	265 

for	the	evaluation	of	deconvolution	methods,	cannot	reflect	the	deviance	of	estimations	from	266 

ground	 truths	 (Fig.	4c).	However,	 the	deviance	of	 estimation	can	be	 reflected	by	another	267 

evaluation	metric	mAD	(Supplementary	Fig.	12).	For	instance,	MMAD12	and	CAMmarker13	268 

performed	relatively	well	on	the	correlation	evaluation	metric	(𝑟	 ≥ 0.65,	Fig.	4b),		but	both	269 

methods	 had	 mAD	 values	 larger	 than	 0.1,	 indicating	 large	 estimation	 deviance	270 

(Supplementary	Fig.	12b).	Consistent	with	the	results	from	scatter	plots	(Fig.	4c),	we	found	271 

that	the	best	performers	were	CIBERSORT7,	CIBERSORTx8,	and	MuSiC16.	All	three	methods	272 

achieved	high	accuracies	on	both	correlation	evaluation	metric	(𝑟	 ≥ 0.65)	(Supplementary	273 

Fig.	4b)	and	mAD	evaluation	metric	(𝑚𝐴𝐷	 ≤ 0.02)	(Supplementary	Fig.	12b)	in	the	Comp	274 

10	mixture	with	‘real’	weight	matrix.		275 

To	understand	the	impact	of	each	cellular	component	on	deconvolution	analysis,	we	276 

drew	 evaluation	 heatmaps	 with	 cell-type-specific	 correlation	 and	 mAD	 values	277 

(Supplementary	Fig.	13,	14).	Based	on	the	evaluation	heatmap	of	mixtures	with	ten	cellular	278 

components	and	the	‘real’	weight	matrix,	which	is	the	most	complicated	in	silico	mixture	set	279 

in	 the	 Sim2	 benchmark	 framework,	 we	 identified	 three	 best	 performers:	 CIBERSORT7,	280 
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CIBEERSORTx8,	and	MuSiC16	(Fig.	4	d	and	e).		First,	we	found	that	all	three	methods	correctly	281 

estimated	major	cellular	components	(	𝑟	 ≥ 0.85,	𝑚𝐴𝐷	 ≤ 0.05),	such	as	Neutrophils,	CD4T,	282 

and	CD8T	in	the	respective	mixtures.	Second,	while	all	three	methods	failed	to	estimate	the	283 

linear	 trend	of	proportions	of	 rare	 cell	 subpopulations	 that	occupies	 less	 than	1%	 in	 the	284 

mixture,	 such	as	Myeloid	DC	and	HSC	(Hematopoietic	Stem	Cells)	 (𝑟:−0.19	~	0.35	),	 they	285 

correctly	 identified	 them	 as	minor	 components	 and	 did	 not	 attribute	 the	 percentages	 of	286 

other	cell	types	to	these	rare	cell	populations	(𝑚𝐴𝐷: 0	~	0.01).	Moreover,	because	none	of	287 

the	 tested	 deconvolution	methods	 showed	 good	 accuracies	 in	 both	 correlation	 and	mAD	288 

metrics	with	Myeloid	DC	and	HSC	(Figure	4	d	and	e),	we	concluded	that	none	of	the	currently	289 

developed	 deconvolution	 methods	 could	 not	 reliably	 estimate	 some	 rare	 cellular	290 

populations	that	have	proportions	 less	 than	1%.	Finally,	we	also	discovered	that	marker-291 

gene	 based	 methods	 like	 DSA11,	 MMAD12,	 and	 CAMmarker13	 showed	 high	 mAD	 values	292 

(Figure	 4d	 and	 e),	 indicating	 larger	 deviances	 in	 their	 estimations	 in	 the	 major	293 

components(𝑚𝐴𝐷: 0.36	~	0.44)(Fig.	4e).		294 

By	inspecting	cell-type-specific	evaluation	results	of	‘real’	weight	matrices	across	6	295 

component	gradients,	we	found	that	introducing	rare	cellular	components	MyeloidDC	in	the	296 

Comp	7	mixture	caused	the	deterioration	of	deconvolution	performance,	which	might	be	due	297 

to	 the	 close	 relationship	 between	 MyeloidDC	 to	 the	 monocytes22.	 However,	 introducing	298 

relatively	 distinct	 HSC	 in	 the	 Comp	 8	 mixture	 further	 exacerbated	 the	 performance	299 

deterioration	(Supplementary	Figures	13	and	14,	‘real’	group).		Therefore,	we	concluded	that	300 

the	deterioration	of	deconvolution	performance	on	mixtures	with	large	component	number	301 

is	due	 to	 the	confounding	effect	of	 the	highly	correlated	cellular	component	and	 the	rare	302 

cellular	component	in	the	mixture	dataset.		303 
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Fig.4|	Evaluation	results	of	Sim2	305 

a,b,	 Heatmaps	 of	 summarized	 evaluation	 results	 based	 on	 the	 Pearson’s	 correlation	 coefficients	 with	 (a)	306 

‘orthog’	weight	matrix	and	(b)	real	weight	matrix.	In	each	heatmap,	row	indexes	refer	to	the	tested	methods	307 

and	column	indexes	refer	to	the	cellular	component	numbers.	c,	Scatter	plots	of	estimated	weights	vs.	ground	308 

truths	of	mixtures	with	10	cellular	components.	d,e,	Cell-type	specific	evaluation	metrics	of	mixtures	consist	of	309 

10	cellular	components	based	on	(d)	Pearson’s	correlation	coefficient	and	(e)	Mean	absolute	deviance.		310 

	311 

Impact	of	tumor	content	on	deconvolution	analysis		312 

Unknown	 biological	 content,	 such	 as	 tumor	 content,	 is	 another	 major	 factor	 that	313 

influences	 deconvolution	 analysis	 for	 several	 reasons.	 	 First,	 unknown	 content	 could	 be	314 

treated	as	a	source	of	noise	unless	explicitly	modeled	by	deconvolution	methods7,14.	Second,	315 

unknown	content	is	not	counted	in	the	estimated	cell-type	proportions	and	violates	the	sum-316 

to-one	assumption	applied	by	the	majority	of	deconvolution	methods2,9.		317 

To	study	 the	 impact	of	unknown	biological	 content	on	deconvolution	analysis,	we	318 

designed	a	benchmarking	framework	that	contains	mixtures	with	three	sets	of	tumor	spike-319 

ins:	the	‘small’	group	refers	to	mixtures	with	low	levels	of	tumor	spike-ins	(0	–	20%),	the	320 

‘large’	 group	 refers	 to	mixtures	with	 high	 levels	 of	 tumor	 spike-ins	 (70	 –	 90%),	 and	 the	321 

‘mosaic’	group	refers	to	mixtures	with	more	dynamic	levels	of	tumor	spike-ins	(5%	-	95%).	322 

Tumor	spike-ins	were	introduced	to	the	12	mixture	sets	generated	in	the	Sim2	framework	323 

to	 analyze	 the	 joint	 impact	 of	 the	 component	 numbers,	 weight	 matrix	 properties,	 and	324 

unknown	 biological	 contents	 (Supplementary	 Fig.	 2b,	 Methods).	 	 In	 the	 performance	325 

assessment	 step,	 we	 used	 two	 sets	 of	 ground	 truths	 to	 derive	 evaluation	 results	 that	326 
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represent	different	measurement	scales	(Supplementary	Table	5,	Methods).	The	first	set	of	327 

ground	 truths	 used	 the	 absolute	 proportions	 of	 immune	 cell	 types	 and	 led	 to	 ‘absolute’	328 

deconvolution	accuracy.	The	second	set	of	ground	truths	used	the	relative	proportions	of	329 

immune	 cells	 and	 led	 to	 ‘relative’	 deconvolution	 accuracy.	 In	 this	 set	 of	 analyses,	 we	330 

considered	additional	settings	of	deconvolution	methods	that	were	relevant	 to	 the	tumor	331 

content.	 Thus,	 we	 evaluated	 eleven	 methods	 and	 two	 specific	 method	 settings	332 

TIMERtumor10	 and	 EPICabsolute14,	 which	 are	 tailored	 for	 deconvolution	 analysis	 with	333 

unknown	tumor	contents	(Methods,	Supplementary	Table	3).		334 

Our	results	indicated	the	weight	matrix	property	as	the	leading	factor	that	affected	335 

deconvolution	accuracy	because	the	‘orthog’	group	presented	higher	accuracies	throughout	336 

all	deconvolution	methods	and	tumor	content	conditions	(Fig.	5a,	b	and	Supplementary	Fig.	337 

15).	In	addition	to	the	weight	matrix	property,	we	found	that	the	size	of	tumor	content	also	338 

affected	deconvolution	accuracy	as	we	observed	deconvolution	methods	performed	better	339 

on	mixtures	with	smaller	tumor	content	(Fig.	5a,	b	and	Supplementary	Fig.	15).	Moreover,	340 

we	found	that	all	methods	showed	inconsistent	performance	with	the	‘mosaic’	mixture	group	341 

when	evaluated	on	different	measurement	scales	(Fig.	5a,	b	and	Supplementary	Fig.	15).	For	342 

instance,	in	the	‘mosaic’	column,	CIBERSORT7	and	CIBERSORTx8	showed	higher	accuracies	343 

(𝑟:	0.69~0.95,	𝑚𝐴𝐷:	0.03)	in	the	relative	measurement	scale	(Fig.	5a	and	Supplementary	Fig.	344 

15a)	 than	 in	 the	absolute	measurement	 scale	 (𝑟: 0.4~0.97,	𝑚𝐴𝐷:	0.06~0.07)	 (Fig.	5b	and	345 

Supplementary	 Fig.	 15b).	 Methods	 like	 DSA11,	 MMAD12,	 CAMmarker13,	 EPIC14,	346 

EPICabsolute14,	 TIMER10,	 TIMERtumor10,	 and	 MuSiC16	 showed	 higher	 accuracies	 in	 the	347 

absolute	measurement	scale	(𝑟:	0.33	~	0.9,	𝑚𝐴𝐷:	0.21)	(Fig.	5b	and	Supplementary	Fig.	15b)	348 
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than	 in	 the	 relative	 measurement	 scale	 ( 𝑟:	0.22	~	0.68 ,	 𝑚𝐴𝐷:	0.17 )	 in	 the	 ‘mosaic’	349 

column(Fig.	5a	and	Supplementary	Fig.	15a).		350 

	351 

a b

c

d

relative absolute 
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Fig.5|	Evaluation	results	of	Sim3	352 

a,b,	Heatmaps	of	summarized	evaluation	metric	based	on	Pearson’s	correlation	coefficients	on	the		(a)	relative	353 

measurement	 scale	and	 (b)	 absolute	measurement	 scale.	 In	each	heatmap,	 row	 indexes	 refer	 to	 the	 tested	354 

methods	and	column	indexes	refer	to	the	types	of	tumor	spike-ins	(small,	large,	and	mosaic).	c,d,	Scatter	plots	355 

of	estimated	weights	vs.	ground	truths	of	mixtures	consist	of	5	cellular	components	and	mosaic	tumor	spike-356 

ins.		(c)	estimated	weights	vs.	relative	ground	truth	(d)	estimated	weights	vs.	absolute	ground	truth.		357 

	358 

To	further	investigate	the	performance	of	deconvolution	methods	under	the	cell-type	359 

resolution,	we	drew	scatter	plots	of	estimations	from	5	Comp	mixtures	with	‘mosaic’	tumor	360 

spike-ins	and	‘real’	weight	matrix	(Fig.	5	c,d).	In	the	relative	measurement	scale,	CIBERSORT7	361 

and	CIBERSORTx8	were	the	top	performers	and	achieved	high	accuracy	(𝑟	 ≥ 0.95,	𝑚𝐴𝐷	 ≤362 

0.05)	 (Fig.	 5c	 and	 Supplementary	 Fig.	 16).	However,	 in	 the	 absolute	measurement	 scale,	363 

EPICabsolute14	was	 the	 top	 performer	 and	 correctly	 estimated	 the	 absolute	 immune	 cell	364 

proportions	 ( 𝑟	 ≥ 0.95 ,	𝑚𝐴𝐷	 ≤ 0.05 	)	 (Fig.	 5d	 and	 Supplementary	 Fig.	 17).	 Based	 on	365 

inconsistent	evaluation	results	from	two	measurement	scales,	we	suggest	researchers	pay	366 

attention	to	the	impact	of	measurement	scales	when	performing	deconvolution	analysis	on	367 

mixtures	with	unknown	contents.		368 

Next,	we	checked	the	robustness	of	the	three	best	performers	in	terms	of	component	369 

number	and	tumor	content	in	the	‘real’	weight	matrix	group.	The	robustness	of	CIBERSORT7	370 

and	CIBERSORTx8’s	performance	to	the	component	number	is	high	on	the	mAD	evaluation	371 

metric	 (mAD:	0.02	~	0.05)	 in	 the	 relative	 measurement	 scale	 (Supplementary	 Fig.	 16b).	372 

EPICabsolute14	 also	 showed	 high	 robustness	 to	 the	 component	 number	 on	 the	 mAD	373 

evaluation	metric	 (𝑚𝐴𝐷: 0.02	~	0.07	)	 in	 the	absolute	measurement	 scale(Supplementary	374 
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Fig.	17b).	We	found	that	having	a	larger	variance	in	tumor	content	will	increase	the	accuracy	375 

of	EPICabsolute14,	as	we	observed	that	with	mosaic	tumor	spike-ins,	EPICabsolute	achieved	376 

higher	 accuracies	 (r:	 0.31~0.95,	 mAD:	 0.02~0.05)	 than	 other	 tumor	 spike-in	 groups(r:	377 

0.17~0.84,	mAD:	0.02~0.07)	(Supplementary	Fig.	17)	in	the	absolute	scale.	Consistent	with	378 

the	observation	in	Sim2,	we	observed	decreasing	accuracies	of	CIBERSORT7,	CIBERSORTx8,	379 

and	EPICabsolute14	with	 the	 increasing	component	number	 (Supplementary	Fig.	16a	and	380 

Supplementary	Fig.	17a),	and	we	deduced	this	phenomenon	is	due	to	the	difficulty	of	current	381 

deconvolution	methods	estimating	rare	subpopulations	and	closely	related	cell-types.			382 

Our	 results	 revealed	 the	 impact	 of	 unknown	 biological	 content	 on	 deconvolution	383 

analysis.	We	found	both	size	(large	vs.	small	spike-ins)	and	variance	(large	vs.	mosaic	spike-384 

ins)	of	unknown	content	affected	deconvolution	analysis.	We	also	observed	a	discrepancy	in	385 

performance	evaluation	when	used	different	measurement	scales.	In	the	relative	scale,	we	386 

concluded	CIBERSORT7	and	CIBERSORTx8	were	the	top	performers,	while	 in	the	absolute	387 

scale,	EPICabsolute14	was	the	top	performer.		388 

Discussion	389 

In	this	study,	we	designed	three	in	silico	benchmarking	frameworks	to	systematically	390 

explore	the	impact	of	several	biological	and	technical	factors.	We	identified	top-performing	391 

deconvolution	methods	for	each	framework	and	clearly	illustrated	the	strengths	and	limits	392 

of	these	tested	methods	under	different	application	scenarios.	Moreover,	we	offered	several	393 

strategies	to	mitigate	systematic	biases	caused	by	different	technical	and	biological	factors	394 

such	as	varied	library	sizes,	simulation	models,	and	cellular	compositions.		395 
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In	 the	 first	 framework	 (Sim1),	 we	 explored	 the	 impact	 of	 noise	 structure	 under	396 

different	noise	levels.	We	identified	CAMmarker,	MMAD,	DSA,	and	CIBERSORT	as	the	best	397 

performers	since	these	methods	showed	high	accuracy	and	high	robustness	to	diverse	noise	398 

levels.	For	 the	noise	structure,	we	 identified	 the	negative	binomial	as	 the	best	simulation	399 

model	 that	 captures	 the	 essential	 characteristics	 of	 real	 data.	 In	 the	 second	 framework	400 

(Sim2),	we	explored	the	 impact	of	 the	cellular	component	number	and	the	weight	matrix	401 

property.	We	identified	CIBERSORT,	CIBERSORTx,	and	MuSiC	as	top-performers	since	these	402 

two	methods	achieved	high	accuracies	across	a	gradient	of	cellular	component	numbers	with	403 

both	 ‘orthog’	 and	 ‘real’	 weight	 matrices.	We	 also	 found	 all	 marker-gene	 based	methods	404 

exhibited	larger	estimation	deviances	from	ground	truths,	this	type	of	estimation	biases	is	405 

reflected	 in	 the	 scatter	 plots	 and	 can	 be	 quantitatively	 captured	 by	 the	mAD	 evaluation	406 

metric,	 indicating	 the	 necessity	 of	 using	 mAD	 as	 an	 auxiliary	 evaluation	 metric	 for	407 

deconvolution	performance	 assessment.	 In	 the	 third	 framework	 (Sim3),	we	 explored	 the	408 

impact	of	unknown	biological	content	and	measurement	scales.	In	the	relative	measurement	409 

scale,	CIBERSORT	and	CIBERSORTx	were	the	best	performers.	In	the	absolute	measurement	410 

scale,	EPICabsolute	was	the	best	performer.	Our	analysis	also	illustrated	different	evaluation	411 

results	under	the	absolute	and	relative	measurement	scale,	which	have	been	overlooked	in	412 

the	previous	deconvolution	benchmarks.		413 

Based	on	the	observations	in	this	benchmark,	we	give	the	following	suggestions	for	414 

best	practices	of	deconvolution	analysis	and	evaluations.	For	the	in	silico	benchmarking	data	415 

generation,	 we	 suggest	 researchers	 1)	 Use	 the	 negative	 binomial	 model	 as	 the	 primary	416 

simulation	 model	 for	in	 silico	mixture	 data	 generation.	 2)	 Referencing	 real	 biological	417 

composition	data	when	building	weight	matrices.	3)	Consider	at	least	two	evaluation	metrics.	418 
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One	is	used	for	checking	linear	concordance	between	estimation	and	ground	truth,	and	the	419 

other	one	is	used	for	checking	estimation	deviances.	4)	In	the	context	of	unknown	biological	420 

content,	 beware	 of	 the	 influence	 caused	 by	 different	 measurement	 scales(absolute	 vs.	421 

relative).	5)	Constructing	multi-factor	conditions	on	a	large	scale	to	ensure	the	robustness	422 

and	comprehensiveness	of	the	benchmark.		423 

For	 deconvolution	 analysis,	we	 suggest	 researchers	 1)	Use	 the	 quantification	 unit	424 

(countNorm,	cpm,	or	tpm)	that	is	normalized	by	library	sizes.	2)	Check	for	the	compositional	425 

information	from	previous	publications.	When	the	targeted	tissue	type	has	a	relatively	stable	426 

composition	over	several	samples,	consider	using	deconvolution	methods	that	are	robust	to	427 

non-orthog	 weight	 matrices	 such	 as	 CIBERSORT,	 CIBERSORTx,	 and	 MuSiC.	 When	 an	428 

unknown	cellular	component	is	expected	(i.e.,	tumor	sample)	and	the	researcher	needs	to	429 

derive	 absolute	proportion,	 consider	methods	 like	EPIC,	which	 is	 specifically	 tailored	 for	430 

deconvolution	with	unknown	content.	3)	When	referencing	benchmark	paper	to	select	the	431 

optimal	method,	beware	of	different	technical	factors	that	might	derive	different	estimation	432 

accuracies	such	as	the	resolution	of	analysis(number	of	cellular	components),	the	variance	433 

of	 proportions	 across	 samples(weight	 matrix	 property),	 reference	 selection,	 evaluation	434 

metric	selection,	and	measurement	scale	selection.		435 

In	addition	 to	 the	suggestions	mentioned	above,	previous	benchmark	publications	436 

also	clarified	the	impact	of	signature	matrices1,	multicollinearity	issue7,	spill-over	effects3,23	437 

caused	 by	 missing	 cellular	 components	 in	 the	 reference,	 minimal	 detection	 fraction3,	438 

background	 predictions3,	 marker/signature	 gene	 selection4,6,	 the	 variance	 between	439 

reference	and	mixture	sources4.	Some	deconvolution	methods	like	CIBERSORT,	CIBERSORTx,	440 

and	MuSiC	can	derive	both	cell-type-specific	expression	and	composition	signals.	However,	441 
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by	far,	all	independent	deconvolution	benchmark	studies	have	been	focused	on	the	accuracy	442 

of	 compositional	 information3,6.	 More	 benchmarks	 that	 derive	 accuracies	 of	 cell-type-443 

specific	expression	estimation	are	still	in	need.	444 

	For	the	future	advancement	of	deconvolution	analysis	on	RNA-seq	data,	we	suggest	445 

more	efforts	be	put	into	the	refinement	of	simulation	models	to	generate	more	authentic	in	446 

silico	testing	 environments	 that	 mimic	 diverse	 application	 scenarios.	 The	 weight	 matrix	447 

property	was	revealed	as	the	most	important	factor	affecting	deconvolution	analysis	in	this	448 

study	and	have	been	overlooked	by	the	community.	Therefore,	more	studies	on	the	cellular	449 

compositional	information	and	its	corresponding	effects	on	deconvolution	analysis	are	still	450 

in	 need.	 Devotions	 on	 improving	 in	 silico	 benchmark	 generation	 strategy	 could	 further	451 

enhance	the	efficiency	of	deconvolution	method	development	and	enable	a	wide	range	of	452 

clinical	applications.		453 

Methods	454 

Data	processing:		455 

Raw	SRA	files	were	downloaded	from	the	GEO	repository,	processed	by	SRA	Toolkit	456 

(2.10.0)24,	and	reads	were	aligned	to	the	hard	masked	human	reference	GRCh38	(v95)	using	457 

alignment	tool	STAR	(2.6.1)25,	and	quantification	was	performed	with	RSEM	(1.3.1)26	with	458 

default	 parameter	 settings.	 	 Quantification	matrices	with	 the	 count,	 tpm,	 and	 fpkm	units	459 

were	 loaded	 into	R	(3.6.1)27	 for	 feature	 ID	 transformation,	duplication	removal,	and	 low-460 

abundant	 gene	 removal.	 For	 low-abundant	 gene	 removal,	 we	 relied	 on	 two	 parameters:	461 

minimum	sample	threshold	(GSE11359028	-	4,	other	datasets	-	5)	and	minimum	expression	462 

threshold	(10	counts,	1	tpm,	and	1fpkm).	For	instance,	the	filtering	parameter	(5,	10)	is	used	463 
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to	 retain	 genes	with	more	 than	 10	 counts	 in	 at	 least	 5	 samples.	 GSE113590	 only	 has	 4	464 

samples	per	cellular	category,	and	we	set	the	minimum	sample	thresholds	as	4.	In	the	Sim1,	465 

we	performed	filtering	independently	on	each	dataset	with	a	minimum	sample	threshold	set	466 

at	5.	For	Sim2	and	Sim3,	we	first	concatenated	samples	into	one	matrix	and	then	performed	467 

filtering	with	a	minimum	sample	threshold	set	at	10.	For	the	information	of	datasets	involved	468 

in	Sim1,	Sim2,	and	Sim3,	please	refer	to	Supplementary	Table	4.	469 

Marker	gene	selection:		470 

For	 the	marker	gene	 selection,	we	selected	genes	 that	are	highly	expressed	 in	 the	471 

targeted	cell-type	and	lowly	expressed	in	other	cell-types.	The	expression	threshold	is	set	at	472 

the	80th	percentile	 for	high	expression	 (the	 targeted	group)	 and	50th	percentile	 for	 low	473 

expression	(other	groups).	Ideally,	it	would	be	nice	if	all	samples	pass	the	criteria;	however,	474 

to	 successfully	 derive	 marker	 genes	 with	 a	 larger	 number	 of	 cellular	 components,	 we	475 

gradually	relaxed	the	threshold	(the	percentage	of	samples	pass	the	criteria,	initial	value	p	=	476 

0.95)	by	a	step	parameter	(default	value	s	=	0.03)	until	there	are	at	least	two	marker	genes	477 

determined.		478 

Signature	gene	selection:			479 

We	performed	differential	expression	testing	on	all	cell-type	pairs	(all	combinations	480 

of	 2	 elements)	 using	 DESeq229.	 Then	 we	 selected	 genes	 with	 𝑝#$% ≤ 0.01 		 and	481 

𝑙𝑜𝑔2𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒	 ≥ 10.		482 

Benchmarking	framework	construction:		483 
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Three	benchmarking	 frameworks	 are	 constructed	 to	 study	 the	 impact	 of	 different	484 

technical	and	biological	factors	on	deconvolution	analysis	(Figure	1).	We	created	simulated	485 

mixture	data	M	(N	by	J)	by	multiplying	signature	gene	profiles	S	(N	by	K)	to	the	predefined	486 

weight	matrix	W	(K	by	J).	Here,	N	is	the	number	of	genes,	J	is	the	number	of	samples,	and	K	487 

is	the	number	of	cellular	components.	The	noise	term	𝜀	is	used	to	model	sample	to	sample	488 

variability	where	the	value	of	𝜀	determines	the	noise	level.		489 

𝑀	 = 	𝑆 ×𝑊	 + 	𝜀	490 

Sim1:	 In	 the	 Sim1,	we	 aimed	at	 understanding	 the	 impact	 of	 noise	 from	different	491 

aspects	 such	 as	 noise	 structure	 and	 noise	 level.	 Sim1	 consists	 of	 two	 sub	 frameworks:	492 

Sim1_simModel	and	Sim1_libSize,	where	Sim1_simModel	focuses	on	the	noise	structure,	and	493 

Sim1_libSize	focuses	on	noise	caused	by	varied	library	sizes.		494 

Sim1_simModel:		In	this	benchmarking	framework,	we	mainly	focused	on	the	impact	495 

of	the	simulation	model	that	was	used	to	generate	noise.	We	selected	three	models	for	this	496 

study,	which	are	the	normal,	log-normal,	and	negative	binomial	models.	For	each	simulation	497 

model,	we	generated	ten	levels	of	noise	where	the	magnitude	of	the	noise	is	controlled	by	a	498 

corresponding	variance	term	in	each	model.		499 

Normal	model:		500 

𝑀 =	2('()*(+×-)/0(1,3×4!))		501 

	502 

Log-normal	model:		503 

𝑀 = 𝑆 ×𝑊 +	20(1,3×4!)	504 
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	505 

	506 

In	both	Log-normal	and	Normal	simulation	models,	the	level	of	noise	is	controlled	by	507 

the	product	of	a	constant	variance	parameter	𝜎	and	a	perturbation	level	parameter	𝑝6 .	In	this	508 

study,	we	set	𝜎	to	10	based	on	previous	publications7	and	set		𝑝6	as	a	length-10-vector	(0,	0.1,	509 

0.2,	…	,	0.9).		510 

Negative	binomial	model:		511 

𝜇1 = 𝑟 × 𝐿% 	512 

𝜇% = 𝐺𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒 = 	
1
𝜎* , 𝑠𝑐𝑎𝑙𝑒 = 	

𝜇1
𝑠ℎ𝑎𝑝𝑒)	513 

	𝜎 = Q1.8 × 𝑝6 +
1

R𝜇1	
S × 𝛿	𝑤ℎ𝑒𝑟𝑒	𝛿~𝑒0(1,1.*")	514 

	515 

𝑣% = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇%)	516 

We	followed	the	simulation	process	suggested	by	Law	et	al.19	and	used	𝑝6	to	control	517 

the	noise	level	for	simulation.	r	is	a	vector	of	genomic	feature	proportions,	𝐿% 	is	the	library	518 

size	and,	𝜇1	is	the	expected	gene	expression	in	the	simulation.	In	the	negative	binomial	model,	519 

two	layers	of	variance	are	added	from	the	Gamma	distribution	and	Poisson	distribution.	We	520 

derived	 sample	 gene	 expression	 vector	 𝜇% 	from	 Gamma	 sampling	 to	 model	 biological	521 

variance.	In	the	Gamma	distribution,	the	variance	is	determined	by	shape	parameter	𝜎.		We	522 

used	𝑝6 ,	a	length-10	vector	(0.1,	0.2,	…,	0.9,	1),	to	regulate	the	value	of		𝜎		to	control	the	noise	523 
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level	 in	the	negative	binomial	simulation.	Then	we	performed	Poisson	sampling	to	model	524 

technical	variance	and	get	the	final	simulated	expression	vector.		525 

To	ensure	 the	universality	of	 our	 conclusion	on	different	datasets,	we	applied	 the	526 

Sim1	 framework	 on	 3	 blood	 datasets	 to	 generate	 reference	 and	 in	 silico	 mixtures	527 

(Supplementary	Fig.1).	Different	 from	previous	 studies	 that	 concatenate	 samples	derived	528 

from	different	datasets,	we	generated	3	sets	of	simulated	mixtures	and	3	sets	of	references	529 

independently.	 And	 then	 used	 combinations	 of	 mixtures	 and	 references	 to	 generate	 9	530 

replicated	testing	environments	for	each	noise	level.		For	one	testing	environment,	there	are	531 

9	 (3	 times	 3)	 deconvolution	 results	 from	which	 6	 of	 them	 have	mixture-reference	 pairs	532 

derived	from	different	sources.	For	simplicity,	we	only	presented	the	averaged	performance	533 

across	9	mixture-reference	pairs,	but	the	impact	of	mixture-reference	variance	is	considered	534 

in	this	analysis.	Above	mentioned	mixture-reference	variance	modeled	in	Sim1	is	named	as	535 

other	noise	sources	in	Supplementary	Table	2.		536 

To	understand	the	impact	of	quantification	units	over	different	application	scenarios,	537 

we	generated	simulations	of	the	most	commonly	used	RNA-seq	quantification	units:	count,	538 

countNorm,	cpm,	and	tpm.		539 

𝑐𝑝𝑚8,%	 =	
𝐶𝑜𝑢𝑛𝑡8,%
∑ 𝐶𝑜𝑢𝑛𝑡8,%8

× 109	540 

𝑡𝑝𝑚8,%	 =	
𝐶𝑜𝑢𝑛𝑡8,%
𝐿8,%

× (
1

∑
𝐶𝑜𝑢𝑛𝑡8,%
𝐿8,%8

) × 109	541 
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Here	j	is	the	index	of	the	sample	and	i	is	the	index	of	the	gene.	cpm	is	normalized	by	542 

library	size.	countNorm	is	acquired	from	cpm	units	with	every	value	rounded	to	the	integer.	543 

tpm	is	normalized	by	both	library	size	and	feature-length.	544 

Sim1_libSize:	 In	 this	 testing	 framework,	we	mainly	 focused	 on	 bias	 derived	 from	545 

varied	library	sizes.	We	first	simulated	mixtures	based	on	the	negative	binomial	model	with	546 

the	lowest	level	of	noise	in	Sim1_simModel	(𝑝:	perturbation	level).	The	library	size	variation	547 

is	 controlled	 by	 the	 library	 size	 parameter	𝐿% 	in	 the	 negative	 binomial	model.	 For	 every	548 

simulation	dataset	that	consists	of	20	simulated	profiles,	we	set	the	library	size	of	the	first	549 

ten	 samples	 as	 12	 million	 reads	 and	 the	 remaining	 ten	 samples	 as	 24	 million	 reads	550 

(Supplementary	Fig.	1b).		551 

Sim2:	In	this	benchmarking	framework,	we	studied	the	impact	of	cellular	component	552 

numbers	 and	 the	 mathematical	 property	 of	 the	 weight	 matrix	 (Supplementary	 Fig.2a).	553 

Mixtures	are	generated	based	on	the	negative	binomial	model	with	the	𝑝:	level	noise.	For	554 

component	 number,	 we	 generated	 six	 sets	 of	 mixtures	 from	 5	 components	 up	 to	 10	555 

components.	For	the	weight	matrix,	we	generated	two	sets	of	weight	matrix:	orthog	and	real.	556 

Weight	simulations:	557 

‘Orthog’	refers	to	the	idealized	weight	matrix	with	a	small	condition	number,	which	558 

provides	a	 relatively	optimal	mathematical	 condition	 for	deconvolution	analysis.	We	 first	559 

simulated	1000	matrices	(K	by	J)	by	randomly	sampling	weights	from	a	uniform	distribution	560 

and	then	rescaled	sampled	weights	so	that	for	each	mixture	sample,	all	components	sum	to	561 

1.	Among	1000	proportion	matrices,	we	picked	the	one	weight	matrix	that	has	the	smallest	562 

condition	number.	‘Real’	refers	to	the	weight	matrix	that	mimics	immune	cell	compositions	563 
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in	the	real	whole	blood	sample.	We	generated	weights	based	on	uniform	distribution	with	564 

min	and	max	value	defined	based	on	previous	observations	of	whole	blood	samples21	and	565 

then	rescaled	weights	so	that	all	components	sum	to	1.		566 

Sim3:	In	this	benchmarking	framework,	we	studied	the	impact	of	unknown	biological	567 

content	 and	 measurement	 scales	 (Supplementary	 Fig.2b).	 To	 study	 unknown	 biological	568 

content,	we	generated	mixtures	with	tumor	content	spike-ins.	In	total,	we	created	three	sets	569 

of	tumor	spike-ins:	small,	large,	and	mosaic.	Tumor	proportions	are	sampled	from	uniform	570 

distributions	and	only	differ	in	parameters	used	to	set	minimum	and	maximum	values	in	the	571 

sampling.	‘Small’	tumor	spike-ins	are	sampled	within	the	range	0-0.2,	‘large’	tumor	spike-ins	572 

are	sampled	within	the	range	0.7-0.9,	and	‘mosaic’	tumor	spike-ins	are	sampled	within	the	573 

range	 0.05-0.95.	We	 then	 added	 three	 sets	 of	 tumor	 spike-in	 proportions	 to	 the	 weight	574 

matrices	generated	in	the	Sim2	and	rescaled	them	to	have	proportions	of	all	components	575 

sum	to	1.	After	defining	weights,	we	performed	in	silico	mixing	in	the	count	unit	and	then	576 

normalized	it	to	other	quantification	units.	To	study	the	impact	of	the	measurement	scale,	577 

we	 generated	 two	 sets	 of	 evaluations	 where	 one	 used	 absolute	 proportions	 of	 immune	578 

components	 as	 the	 ground	 truth	 and	 the	 other	 used	 relative	 proportions	 of	 immune	579 

components	as	the	ground	truth.	The	toy	example	of	the	absolute	measurement	scale	and	580 

the	relative	measurement	scale	is	in	Supplementary	Table	5.		581 

Assessment	of	deconvolution	performance		582 

J	 is	 the	 total	 number	 of	mixture	 samples	 in	 a	 dataset	 and	 j	 is	 the	 sample	 index.	𝑥% 	is	 the	583 

estimated	 proportion	 of	 sample	 j	 and	 𝑦% 	is	 the	 ground	 truth	 of	 sample	 j.	 When	 a	584 
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deconvolution	 returns	 NA	 values,	 we	 directly	 assign	 highest	 penalty	 for	 the	 evaluation	585 

metrics:	r	=	-1,	and	mAD	=	1.		586 

Pearson	Correlation	Coefficient	(r):	587 

∑ (𝑥% −	𝑥̅)(𝑦% −	𝑦_)
;
%<:

`∑ a𝑥% −	𝑥̅b
*;

%<: ∑ a𝑦% −	𝑦_b
*;

%<:

	588 

Mean	Absolute	Deviance	(mAD):		589 

∑ |𝑥% − 𝑦%|
;
%<:

𝐽 	590 

	591 

Datasets	description:		592 

1. GSE6042430	 -	Consists	of	134	RNA-seq	profiles	of	6	 immune	cell	 types	and	whole	593 

blood	from	both	healthy	donors	and	donors	with	five	immune-associated	diseases.			594 

2. GSE11359028	–	Consists	of	32	CD8	T	cell	RNA-seq	profiles	 from	peripheral	blood,	595 

colorectal	tumor	samples,	and	lung	tumor	samples.		596 

3. GSE6465531	-	Consists	of	56	RNA-seq	profiles	of	6	immune	cell	types	and	peripheral	597 

blood	from	two	vaccinated	donors.		598 

4. GSE5198432	–	Consists	of	24	RNA-seq	profiles	of	5	immune	cell	types	and	total	white	599 

blood	cells	from	healthy	donors		600 

5. GSE11573633	–	Consists	of	42	RNA-seq	profiles	of	12	immune	cell	types	from	healthy	601 

donors.		602 

6. GSE11849034	–	HCT116	profiles	(unknown	tumor	content	in	Sim3)	603 
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Data	and	code	availability	604 

All	 data	 and	 codes	 are	 available	 in	 the	605 

https://github.com/LiuzLab/paper_deconvBenchmark	under	MIT	license.		606 
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