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Abstract5

1. Environmental DNA (eDNA) surveys have become a popular tool for assessing the distribution of species.6

However, it is known that false positive and false negative observation error can occur at both stages of eDNA7

surveys, namely the field sampling stage and laboratory analysis stage.8

2. We present an RShiny app that implements the Griffin et al. (2019) statistical method, which accounts for false9
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positive and false negative errors in both stages of eDNA surveys. Following Griffin et al. (2019), we employ10

a Bayesian approach and perform efficient Bayesian variable selection to identify important predictors for the11

probability of species presence as well as the probabilities of observation error at either stage.12

3. We demonstrate the RShiny app using a data set on great crested newts collected by Natural England in 201813

and we identify water quality, pond area, fish presence, macrophyte cover, frequency of drying as important14

predictors for species presence at a site.15

4. The state-of-the-art statistical method that we have implemented is the only one that has specifically been16

developed for the purposes of modelling false negatives and false positives in eDNA data. Our RShiny app is17

user-friendly, requires no prior knowledge of R and fits the models very efficiently. Therefore, it should be part18

of the tool-kit of any researcher or practitioner who is collecting or analysing eDNA data.19

Keywords: Bayesian variable selection, multi-level occupancy model, PCR, environmental DNA.20

1 Introduction21

Environmental DNA (eDNA) is increasingly used within biodiversity assessments (McClenaghan et al., 2020). The22

method relies on the detection of DNA released from source organisms into aquatic or terrestrial environments. This23

DNA is extracted from a sample of the substrate, usually water or soil (Thomsen and Willerslev, 2015) (stage 1),24

and then analysed using qPCR (Thomsen et al., 2012), or metabarcoding (Valentini et al., 2016) (stage 2).25

We present an RShiny app for modelling single-species eDNA data by implementing the Bayesian model developed26

by Griffin et al. (2019). The model estimates site-specific probabilities of species presence while accounting for false27

positive and false negative observation error at both stages of eDNA surveys. The Griffin et al. (2019) model is an28

extension of the work by Guillera-Arroita et al. (2017) but in contrast to the latter, the Griffin et al. (2019) model29

does not require augmenting the eDNA data with other types of survey data. This is due to the specification of novel30

informative prior distributions that reflect our belief that the probability of a false positive observation is smaller31

than the probability of a true positive observation at either stage. Nevertheless, if opportunistic records of species32

presence exist for any of the sites, these can easily be accounted for within the model. Finally, Griffin et al. (2019)33

presented an MCMC algorithm that employs the Pólya-Gamma sampling scheme (Polson et al., 2013) and hence34

enables fast computation times and efficient Bayesian variable selection for all model parameters.35

We give an overview of the Griffin et al. (2019) method in section 2 and present our RShiny app in section 3. A36

case study on great crested newt data collected by Natural England is presented in section 4 and the paper concludes37

with a discussion in section 5.38

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.09.417600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417600
http://creativecommons.org/licenses/by/4.0/


2 Materials and Methods39

Griffin et al. (2019) presented a hierarchical Bayesian model that describes the different stages of eDNA surveys in40

terms of the probabilities of species presence and the probabilities of observation error. All of these probabilities41

can be functions of site-specific covariates, with dependencies modelled using logistic regressions. Subscript s is used42

to denote sites, s = 1, . . . , S, while subscript m is used to denote samples from sites, m = 1, . . . ,M . The list of43

parameters is given in Table 1 and a schematic representation of the model is provided in Figure 1.44

Table 1: Parameters of the Griffin et al. (2019) model. Note that θ01s = 1 − θ11s, θ00s = 1 − θ10s, p01s = 1 − p11s,
p00s = 1− p10s, and hence our RShiny app only reports results in terms of the probabilities of a positive (either true
or false) observation at either stage.

Name (probability of) Detailed explanation (probability that)
ψs species presence site s is occupied by the target species

Stage 1
θ11s stage 1 true positive observation a sample from occupied site s includes DNA of the target species
θ10s stage 1 false positive observation a sample from unoccupied site s includes DNA of the target species

Stage 2
p11s stage 2 true positive observation a qPCR on a sample (from site s)

that includes DNA of the target species is positive
p10s stage 2 false positive observation a qPCR on a sample (from site s)

that does not include DNA of the target species is positive

zs = 1

wsm = 1 wsm = 0

ks = 1
π

ysm K − ysm ysm K − ysm

θ11s θ01s

p11s p01s p10s p00s

zs = 0

wsm = 1 wsm = 0

ysm K − ysm ysm K − ysm

θ10s θ00s

p11s p01s p10s p00s

`
ψs 1 − ψs

Species presence

Stage 1

Stage 2

Figure 1: Schematic representation of the Griffin et al. (2019) model. Unobservable states are represented by ellipses
and data by rectangles. The parameters are defined in Table 1. The latent variable zs indicates whether site s is
occupied by the target species (1) or not (0) and the latent variable wsm indicates whether sample m from site s
includes DNA of the target species (1) or not (0). The part of the model that is presented in grey corresponds to
how opportunistic records of species presence are modelled. Specifically, parameter π indicates the probability that
an occupied site has an opportunistic record associated with it and indicator variable ks indicates whether site s is
known to be occupied (1) or not (0).

As explained in Griffin et al. (2019), the model is only locally identifiable, and this identifiability issue is overcome45

by introducing informative prior distributions that express our belief that a false positive observation is less likely46

than a corresponding true positive at each stage, so that the probabilities that θ11 < θ10 or p11 < p10 are small.47
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The MCMC algorithm presented in Griffin et al. (2019) employs the Pólya-Gamma sampling scheme (Polson48

et al., 2013), enabling fast computation for logistic regression models and efficient Bayesian variable selection, which49

is performed using an Add-Delete-Swap algorithm (Brown et al., 1998; Chipman et al., 2001). As the name of the50

algorithm suggests, at each MCMC iteration, we either propose to add a covariate that is not currently in the model,51

or to delete a covariate that is in the model, or to swap a covariate that is in the model with one that is not in the52

model at that iteration. This process gives rise to the posterior inclusion probabilities (PIPs), which indicate the53

proportion of iterations that each covariate was in the model for each parameter. PIPs can be used to understand54

how useful each of the covariates is as a predictor for the corresponding parameter and often a threshold of 0.5 is55

applied to identify the most important predictors (Ghosh, 2015).56

3 RShiny app57

The RShiny app is freely available and can be accessed via the RShiny server https://seak.shinyapps.io/eDNA/.58

However, we recommend that the app is downloaded via our dedicated website https://blogs.kent.ac.uk/edna/59

and run locally.60

The app includes a detailed help section that provides a step-by-step description on how to format the data,61

which need to be uploaded in a .csv file. Once the data have been uploaded, the user needs to specify the number62

of qPCR runs for each sample (this is assumed to be the same for all samples) and to select the parameters that are63

to be considered as functions of covariates, as shown in Figure 2. It is not necessary to consider covariates for any of64

the parameters, but the set of covariates uploaded will be considered as potential predictors for all parameters that65

have been specified in the settings window.66

Figure 2: Settings tab in the eDNA RShiny app
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Table 2: List of covariates considered as predictors for the probability of occupancy of great crested newts in the
case study. These are based on the Habitat Suitability Index proposed by Oldham et al. (2000).

Covariate Type Levels
Geographic Location Categorical 1 - Optimal; 2 - Marginal; 3 - Unsuitable

Frequency of pond drying Categorical 1 - Never; 2 - Rarely; 3 - Sometimes; 4 - Annually
Water Quality Categorical 1 - Bad; 2 - Poor; 3 - Moderate; 4 - Good

Waterfowl intensity Categorical 1 - Absent; 2 - Minor; 3 - Major
Fish intensity Categorical 1 - Absent; 2 - Possible; 3 - Minor; 4 - Major

Terrestrial Habitat Quality Categorical 1 - Bad; 2 - Poor; 3 - Moderate; 4 - Good
Percentage Pond Shading Numerical NA

Pond Area Numerical NA
Pond Density Numerical NA

Percentage Macrophyte cover Numerical NA

The settings window also allows users to change the number of iterations, including number of chains, burn-in67

and thinning, as well as the prior distribution parameters, although we would recommend that the prior settings are68

not changed unless the user has a good understanding of the model. Once the user clicks on Run, the app will begin69

model fitting and the iteration number will be shown in the bottom right corner.70

The results are available in the Results tab. These include posterior summaries for all model parameters, or71

corresponding coefficients of covariates for parameters that have been modelled as functions of covariates. All of the72

results and figures that are produced as part of the output can be downloaded.73

The diagnostics tab produces traceplots for all model parameters as well as effective sample sizes (ESS) obtained.74

A message will appear to indicate if any of the parameters have ESS lower than 500 so a closer inspection of the75

traceplots and ESS outputted would help identify the parameters that are not mixing well.76

4 Case study77

We consider a data set on great crested newts collected by Natural England in 2018. M = 1 water sample was collected78

from each of S = 2215 sites and K = 12 qPCR runs were performed for each water sample. We have considered six79

categorical covariates and four continuous covariates (listed in Table 2) for the probability of occupancy, while all80

other parameters have been modelled as constant. We have also accounted for confirmed species presences that were81

available for 120 sites (see Figure 1 for description on how opportunistic data of this type are modelled). We run82

1000 burn-in iterations and 2000 additional iterations with thinning set to 20. Fitting the model using the RShiny83

server took just under 2 hours, despite the large number of sites and considerable number of covariates considered.84

When run with fewer or no covariates the model fitting took only a few seconds to return results85

The app outputs posterior summaries of the site-specific probability of species presence, saved in a .csv file. For86

illustration purposes, we plot these summaries for a random sample of 50 sites in Figure 3 and provide the code for87

producing similar plots in the Help section of the app.88
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Figure 3: Posterior summaries of site-specific probabilities of occupancy for a random sample of 50 sites.

The PIPs for the probability of occupancy are provided by the app in a plot (see Figure 4). A high PIP indicates89

stronger support for a covariate as a predictor. In this case water quality, pond area, fish presence, percentage of90

macrophyte cover and frequency of pond drying all stand out as important predictors for the probability that a pond91

is occupied by great crested newts.92

Posterior summaries of the corresponding coefficients are given in Figure 5, showing that, even though geographic93

location and the percentage of pond that is shaded had PIPs above the 0.5 threshold, the 95% posterior credible94

intervals (PCIs) for the corresponding coefficients include 0. On the other hand, we can see that better water95

quality, lower pond area, lower levels of fish presence, higher levels of macrophytes and pond desiccation increase96

the probability of a pond being occupied by great crested newts. The predictors identified by the model and their97

corresponding effects are broadly consistent with current understanding of the preference of great crested newts98

for vegetated, fish-free and clean water ponds (Oldham et al., 2000). These results demonstrate that important99

predictors for the probability of species presence can be identified using eDNA data and our RShiny app.100

Posterior summaries of the probabilities related to observation error in both stages are given in Table 3. Stage 1 is101

related to higher probabilities of false observations, either positive or negative, compared to stage 2. The processes by102

which samples are collected mean that it is more likely for DNA to fail to be collected in the field, or contamination103

to be introduced at this stage, while lab protocols are more tightly controlled.104
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Figure 4: PIPs for the probability of occupancy. The horizontal line indicates the PIP=0.5 line.

Figure 5: Posterior summaries of the coefficients of covariates for the probability of occupancy.

Finally, the app outputs the posterior probability of species absence conditional on x = 0, . . . ,K positive qPCR105

replicates. For this example, the results are shown in the first row of Table 4 where we can see that the posterior106
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Table 3: Posterior summaries of the probabilities of a positive observation, true or false, in both stages of the survey.

Parameter Mean 95% PCI
θ11 0.867 (0.802, 0.922)
θ10 0.078 (0.004, 0.145)
p11 0.862 (0.851, 0.872)
p10 0.026 (0.023, 0.028)

Table 4: First row: Posterior probability of species absence conditional on x = 0, . . . ,K positive qPCR replicates.
Second row: Posterior probability of x positive qPCR replicated conditional on species presence.

0 1 2 3 4 5 6 7 8 9 10 11 12
1 - ψ(x) 0.9766 0.9766 0.9766 0.9765 0.9462 0.4213 0.3683 0.3681 0.3681 0.3681 0.3681 0.3681 0.3681
q(x) 0.0976 0.0308 0.0045 0.0004 0.0001 0.0003 0.0023 0.0123 0.0477 0.1319 0.2465 0.2798 0.1458

conditional probability of species absence is very close to 1 given four or fewer qPCR positives, but then it declines107

sharply and plateaus at around 37%. The second row of Table 4 shows the posterior probability of x, x = 0, . . . , 12,108

positive qPCR replicates conditional on species presence. This conditional distribution is clearly bimodal. Specifically,109

the posterior probability of zero qPCR positives given species presence is just under 10% and this probability decreases110

for x = 1, 2, 3, 4 before it starts to increase again reaching the second peak at x = 11 (28%). This bimodality is due111

to the observation error in stage 1: the first peak at 0 is a result of a stage 1 false negative observation, whereas the112

second peak is a result of a stage 1 true positive observation.113

It is important to note that when M = 1 the model is non-identifiable and hence the results obtained are not114

reliable, unless the probability of occupancy, ψ, or the probabilities of observation error in stage 1, θ11 and θ10,115

are modelled as functions of covariates. Incorporating covariates helps overcome the identifiability issues, while an116

alternative solution is to incorporate information on confirmed species presences at some of the sites. Similarly, when117

K = 1, the probabilities of observation error, either in stage 1 (θ11 and θ10) or in stage 2 (p11 and p10), need to be118

functions of covariates for the model to be identifiable.119

5 Discussion120

As eDNA surveys become increasingly used as monitoring tools, they have the potential to replace traditional121

survey methods that rely on direct observation of species, especially for difficult to detect species. Our RShiny app122

provides the necessary tool for researchers and practitioners to analyse their single-species eDNA data and obtain123

reliable estimates of site-specific probabilities of species presence while accounting for false positive and false negative124

observation error.125

Unlike previous R-packages for fitting multi-scale occupancy models that have been applied to eDNA data (Do-126
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razio and Erickson, 2018; Stratton et al., 2020), our implementation of the Griffin et al. (2019) model is novel in that127

it enables the estimation of false positive as well as false negative observation errors, both of which are known to128

be non-negligible in eDNA surveys. In addition, our RShiny app enables efficient Bayesian variable selection, which129

works well even when the number of predictors to be considered is large.130
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