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Abstract 
Neoantigens are novel peptide sequences resulting from somatic mutations in tumors that upon 
loading onto major histocompatibility complex (MHC) molecules allow recognition by T cells. 
Accurate neoantigen identification is thus critical for designing cancer vaccines and predicting 
response to immunotherapies. Neoantigen identification and prioritization relies on correctly 
predicting whether the presenting peptide sequence can successfully induce an immune 
response. As the majority of somatic mutations are SNVs, changes between wildtype and 
mutant peptide are subtle and require cautious interpretation. An important yet potentially 
underappreciated variable in neoantigen-prediction pipelines is the mutation position within the 
peptide relative to its anchor positions for the patient’s specific HLA alleles. While a subset of 
peptide positions is presented to the T-cell receptor for recognition, others are responsible for 
anchoring to the MHC, making these positional considerations critical for predicting T-cell 
responses. We computationally predicted high probability anchor positions for different peptide 
lengths for over 300 common HLA alleles and identified unique anchoring patterns among them. 
Analysis of 923 tumor samples shows that 7-41% of neoantigen candidates are potentially 
misclassified and can be rescued using allele-specific knowledge of anchor positions. 
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Introduction 
Neoantigens are short peptide sequences resulting from somatic mutations specifically found in 
tumor cell populations. They can be loaded onto major histocompatibility complex (MHC) class I 
or II molecules to allow recognition by cytotoxic or helper T cells. Upon recognition, T cells are 
then able to signal cell death for an anti-tumor response. Multiple studies have shown the 
efficacy of neoantigen based immunotherapy treatments for cancer1–3 and numerous clinical 
trials are underway. Accurate neoantigen prediction and prioritization is critical for the design of 
personalized vaccines4 and several bioinformatic pipelines have been developed in an attempt 
to aid this process5–8.  
  The effectiveness of a neoantigen-based vaccine relies in part on whether the 
neoantigen sequences presented to T cells have previously been exposed to the immune 
system and would be subject to central tolerance (where immune response to antigens is limited 
as a result of clonal deletion of autoreactive B cells and T cells). While a variety of mutation 
types are being explored as neoantigen sources9–13, the vast majority of somatic mutations 
found in tumors are single nucleotide variants (SNVs). Amino acid sequence changes between 
the wildtype (WT) and mutant (MT) peptides are subtle and mutant peptides remain similar to 
native sequences of the host. Additionally, only a subset of positions on the loaded peptide 
sequence are potentially presented to the T-cell receptor for recognition, and another subset of 
positions are responsible for anchoring to the MHC, making these positional considerations 
critical for predicting T-cell responses (Figure 1). Thus, subtle amino acid changes must be 
interpreted cautiously. Multiple factors should be considered when prioritizing neoantigens, 
including mutation location, anchor position, predicted MT and WT binding affinities, and WT/MT 
fold change, also known as agretopicity14. Examples of four different scenarios involving these 
factors are illustrated in Figure 1 where hypothetical wildtype peptides are presented on the left 
and mutant peptides on the right. The first scenario shows the cases where the WT is a poor 
binder and the MT peptide, a strong binder, contains a mutation at an anchor location. Here, the 
mutation results in a tighter binding of the MHC and allows for better presentation and potential 
for recognition by the TCR. As the WT does not bind (or is a poor binder), this neoantigen 
remains a good candidate since the sequence presented to the TCR is novel. The second and 
third scenarios both have strong binding WT and MT peptides. In the second scenario, the 
mutation of the peptide is located at a non-anchor location, creating a difference in the 
sequence participating in TCR recognition compared to the WT sequence. In this case, although 
the WT is a strong binder, the neoantigen remains a good candidate that should not be subject 
to central tolerance. However, as shown in scenario three, there are neoantigen candidates 
where the mutation is located at the anchor position and both peptides are strong binders. 
Although anchor positions can themselves influence TCR recognition15, a mutation at a strong 
anchor location generally implies that both WT and MT peptides will present the same residues 
for TCR recognition. As the WT peptide is a strong binder, the MT neoantigen, while also a 
strong binder, will likely be subject to central tolerance and should not be considered for 
prioritization. The last scenario is similar to the first scenario where the WT is a poor binder. 
However, in this case, the mutation is located at a non-anchor position, likely resulting in a  
different set of residues presented to the TCR and thus making the neoantigen a good 
candidate. Recent studies on neoantigens for both mouse and human models confirmed the 
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importance of anchor location when predicting the overall immunogenicity of a given 
peptide16,17.  
  Failing to account for these positional considerations may result in susceptibility to 
central tolerance and potentially induce auto-immunity. Despite this, the mutation’s position 
within the peptide relative to its anchor positions for the patient’s human leukocyte antigen 
(HLA) alleles, is currently overlooked by neoantigen predicting pipelines. Many recently 
published neoantigen studies have used simple filtering strategies with either only binding 
affinity filters3,18 (e.g. MT peptide IC50 < 500 nM) or with an additional agretopicity filter19–21, all 
without specifying whether they account for anchor and mutation locations during their selection 
process. Researchers have previously discussed how anchor locations can affect our 
interpretation of other factors considered in neoantigen prioritization (e.g. MT, WT binding 
affinities)22. However, a systematic method for determining anchor locations for the wide range 
of HLA alleles present in the population and application of these to evaluate MT/WT peptide 
pairs arising in tumors has not been reported. As a result, many neoantigen studies have either 
failed to adequately consider this crucial factor or have used conventional assumptions to guide 
their neoantigen identification process. 
  Here, we provide a computational workflow for predicting anchor locations for a wide 
range of HLA alleles using a reference dataset generated from clinical and The Cancer Genome 
Atlas (TCGA) patient samples. Analysis of results showed clusters of different anchor trends 
among the HLA alleles analyzed and a subset of these HLA anchor results were orthogonally 
validated using protein crystallography structures. Using additional TCGA samples, we further 
evaluated how prioritization results may change when provided with additional anchor 
information, emulating steps in the neoantigen selection process by an immunotherapy tumor 
board, tasked with prioritizing vaccine candidates. By incorporating our results into neoantigen 
prediction pipelines, we hope to formalize and streamline the identification process for relevant 
clinical studies. 
 
Results 
 
Computational and quantitative prediction of HLA-specific anchor positions. In order to 
predict anchor locations for a wide range of HLA alleles, we assembled a reference HLA-
peptide dataset of strong binding peptides with a median predicted IC50 of less than 500 nM 
across 8 MHC class I algorithms (NetMHC23, NetMHCpan24, MHCnuggets25, MHCflurry26, 
SMM27, Pickpocket28, SMMPMBEC29, NetMHCcons30). These peptides were obtained from 
TCGA and supplemented with additional patient datasets from our own neoantigen study 
cohorts including lymphoma, glioblastoma, breast cancer, and melanoma (Methods). A total of 
609,807 peptides were identified with the majority being 9-mers and 10-mers (Supplemental 
Figure 1). It should be noted that such peptides need not be generated from cancer patient data 
but must simply meet the criteria of being a strong binder for an HLA allele of interest. However, 
since our focus in this study is on cancer neoantigens and the comparison between wildtype 
and mutant versions of potentially immunogenic peptides we chose to select peptides from 
among those actually observed in tumors. 

For each HLA allele of which data was obtained, peptides were separated by their 
respective lengths, ranging from 8 to 11 (Figure 2). These peptides were then mutated in silico 
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at all possible positions to all possible amino acids. Predicted binding affinities for each 
individual peptide were then obtained using the same set of algorithms as previously described. 
These binding affinities were compared to the median binding affinity of the original strong 
binding peptide sequence. This comparison enables us to evaluate how mutations occurring at 
each individual position change the predicted binding interaction between the strong binding 
peptide and the MHC molecule. A significant change observed at a particular location indicates 
a higher probability of the amino acid at the position acting as an anchor. On the other hand, 
little to no change in binding affinities when a position is mutated would indicate a lower 
probability of the position acting as an anchor. An overall score per position was obtained by 
summing across all peptides analyzed for an individual HLA allele (Figure 2; Methods). 
 
Prediction results show distinct patterns of HLA anchor locations. We generated anchor 
prediction scores for the 328 HLA alleles with a sufficient number of strong binding peptides in 
our reference dataset (Supplemental Table 1). These HLA alleles include 95 HLA-A alleles 
(representing 99.2% observed in the population), 175 HLA-B alleles (representing 97.9% of the 
population) and 58 HLA-C alleles (representing 98.5% of the population)31(Methods). Results 
were separated based on peptide lengths (8-11) and the anchor prediction scores across all 
HLA alleles were visualized using hierarchical clustering with average linkage (Figure 3; 
Supplemental Figure 3). We observed different anchor patterns across HLA alleles, varying in 
both the number of anchor positions as well as the location. These anchor position patterns 
could be roughly clustered into at least 6 distinct groups.  

Previously, anchor locations have generally been assumed to be at the second and 
terminal position of the peptide with equal weighting (with the exception of HLA-B*08:01)32. Our 
9-mer clustering results confirm that the majority of HLA alleles predicted show positions 2 and 
9 as likely anchor locations. However, three distinct cluster groups can be further identified 
within the larger group. The 2S-9W cluster represents HLA alleles with a strong anchor 
predicted at position 2 and a weak anchor predicted at position 9 (2S-9W; Figure 3). The 2W-
9S cluster shows those with a strong anchor predicted at position 9 and a weak anchor 
predicted at position 2 (2W-9S; Figure 3). Additionally, we observe a smaller cluster of HLA 
alleles with moderate anchor predictions for both positions (2M-9M; Figure 3) and another 
cluster with strong anchor predictions for only position 9 (9S; Figure 3). We also discovered 
other patterns differing from the previous anchor assumptions of 2 and 9. In particular, we 
observed a clustered group of HLA-C alleles that have a moderate anchor at 3 and 9 
accompanied by a weaker signal at 2 (2W-3M-9M; Figure 3). A smaller group of HLA-B alleles 
also show an additional anchor at position 5 (2W-3W-5W-9M; Figure 3). Our results indicate 
that a conventional anchor assumption putting equal weights on positions 2 and 9 does not 
capture the significant heterogeneity in anchor usage between different HLA alleles. These 
anchor considerations can affect neoantigen prioritization decisions and HLA allele-specific 
anchor predictions should allow ranking of neoantigens with greater accuracy. 
 
Protein structural analysis confirms predicted anchor results. To validate our anchor 
predictions, we collected X-ray crystallography structures for MHC molecules with bound 
peptides (Supplemental Table 2). The 166 protein structures collected corresponded to 33 
HLA alleles with the majority of them containing 9-mer peptides (8-mers: 6, 9-mers: 110, 10-
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mers: 39, 11-mers: 11). These structures were analyzed using two methods: 1) measuring the 
physical distance between the peptide and the MHC binding groove and 2) calculating the 
solvent-accessible surface area (SASA) of the peptide residues (Figure 4a,b; Methods). These 
methods were selected to validate predicted anchor positions based on the assumptions that if 
a certain peptide position is designated as an anchor then it is 1) more likely to be closer to the 
HLA molecule and 2) more secluded from solvent surrounding the peptide-MHC complex 
compared to non-anchor positions. This is because non-anchor peptide residues should be 
accessible to the TCR for recognition, thus in the peptide-MHC structures collected where a 
TCR is not present, peptide surface area available to the surrounding solvent roughly mimics 
the area that would be accessible by the TCR. HLA-A*02:01, shown as an example, was found 
to have the greatest number of qualifying structures, with 47 of them containing a 9-mer peptide 
(Figure 4c). These x-ray crystallography structures each capture a snapshot of a dynamic 
protein structure in constant movement. By overlaying the distance and SASA scores across all 
47 complexes respectively, we observe that positions 2 and 9 are the ones most consistently 
close to the HLA molecule while also being secluded from the solvent. This observation 
corresponds well with our prediction of strong anchors at both positions 2 and 9 for HLA-
A*02:01 and a 9-mer peptide. 

To evaluate how the distance and SASA metric correlates with our prediction results 
across different HLA alleles, we calculated spearman correlations between our prediction 
scores and distance/SASA results for each peptide position. The distribution of these 
correlations was compared to that of a randomized dataset where positions of the peptide were 
randomly shuffled (Figure 4d; Supplemental Table 3; Methods). Two sample t-tests showed 
the distributions were significantly different from the randomized dataset with statistical values of 
-9.9795 (p value = 1.3757e-18) and -14.7322 (p value = 8.7472e-30) for distance and SASA 
respectively. Results show that 91.95% of our prediction scores are inversely correlated with the 
distance metric and 100% of them are inversely correlated with the SASA scores. Furthermore, 
we analyzed 61 protein structures that contained both the peptide-MHC complex and an 
additional binding TCR molecule. The distance between the TCR and the peptide showed high 
correlation with our prediction scores (Supplemental Figure 4). Two-sample t-tests showed 
significant differences between the randomized dataset and both the HLA-peptide distance (p = 
8.8023e-08) and the TCR-peptide distance (p=2.4915e-13). These results together strongly 
suggest that our anchor prediction workflow is returning valid results. 
 
Neoantigen prioritization results are influenced by accounting for anchor locations. 
Current pipelines fail to take into account HLA allele-dependent effects on anchor locations and 
immunotherapy tumor boards lack specific tools and databases to make use of such 
information. While the decision of whether a neoantigen should be prioritized over others 
involves many aspects not discussed here (including variant allele frequencies, gene 
expression, and manufacturability considerations to name a few), we used a straightforward 
approach to evaluate the effects of introducing improved anchor information on neoantigen 
prioritization. Depending on the MT and WT binding affinity, agretopicity, mutation position, and 
anchor location(s), various scenarios can arise when you have a strong binding MT peptide, 
leading to different choices when prioritizing neoantigens (Figure 5a). If the mutation is not at 
an anchor location, regardless of the WT peptide binding affinity, the MT peptide should be 
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prioritized. In this case, the sequence for TCR recognition contains a mutation and will not be 
subject to central tolerance (Figure 5a; scenario 1,2). Additionally, if the WT peptide is a weak 
binder, the MT peptide should be accepted regardless of whether the mutation is at an anchor 
location since both the MT and WT sequences have not previously been exposed to the 
immune system and therefore not subject to tolerance (Figure 5a; scenario 4). However, if the 
WT binds strongly, regardless of agretopicity, and the mutation is at an anchor location, then 
this neoantigen will likely be subject to central tolerance and should be rejected from 
prioritization (Figure 5a; scenario 3). These scenarios are considered when performing the 
anchor position impact analysis. 

Our cohort impact analysis involved an additional set of TCGA patient samples where 
neoantigens were predicted for 923 selected patient-HLA allele pairings. Two different methods 
were utilized when selecting patient-HLA paired samples: 1) balanced HLA allele distribution 
and 2) population-based selection (Methods). The former method intends to reflect the 
distribution of HLA alleles in a representative population of patients (TCGA) and the latter 
method attempts to give a more balanced view of the impact across all HLA alleles without overt 
bias for the most common alleles.  All potential neoantigens were filtered according to three 
different criteria: A) mutant IC50 < 500 nM and agretopicity > 1 (no anchor filter), B) 
supplementing this with a conventional anchor assumption (conventional filter), or C) using our 
computationally predicted anchor locations (allele-specific filter). Peptide results from method 1 
showed that under the no anchor filter 57.9% of neoantigens are accepted compared to 92.3% 
under the conventional filter and 93.2% under the allele-specific filter, showing an overall net 
gain in the number of peptides when taking anchor considerations into account. When 
comparing filtered data sets under different criteria, over 41.0% of neoantigens are potentially 
misclassified using the no anchor filter, and approximately 7.6% of candidates are potentially 
misclassified between the conventional filter and the allele-specific filter (Figure 5b). Method 2 
produced similar results where under the no anchor filter 62.4% of neoantigens are accepted 
compared to 92.3% under the conventional filter and 93.7% under the allele-specific filter. 
Method 2 results show that over 36.3% of neoantigens are potentially misclassified using the no 
anchor filter, and approximately 7.2% of candidates are potentially misclassified between the 
conventional filter and the allele-specific filter (Figure 5c). These misclassifications include the 
inclusion of peptides that are likely to be subject to tolerance (and could lead to false positives) 
and exclusion of peptides that could be strong candidates (false negatives). By comparing 
peptides prioritized using the allele-specific anchor filter and those from the no anchor/ 
conventional anchor filters, we highlighted the potential sources for false positive and false 
negatives (Figure 5b,c). Examples of each scenario were pulled from our dataset to show how 
peptides passed or failed individual filters (Figure 5d). 

We additionally performed a patient-level impact analysis using 100 randomly selected 
TCGA samples, and predicted neoantigens each with their full set of class I HLA alleles (up to 
6) (Methods; Supplementary Table 5; Supplementary Figure 5a,b). The neoantigen 
candidates were prioritized using the same set of criterion applied in the previous cohort 
analysis. We observed a significant impact on neoantigen prioritization results depending on the 
chosen filtering criteria. Specifically between the no anchor filter and the allele-specific filter, 
99% of the patients analyzed had at least one neoantigen decision changed with a median of 11 
peptides per patient with altered decisions. Similarly, between the no anchor filter and the 
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conventional filter, 98% of the patients analyzed had at least one decision changed (median: 11 
peptides) and between the conventional filter and the allele-specific filter, 65% of the patients 
had at least one decision changed (median: 1 peptide) (Supplementary Figure 5c,d,e). These 
results show the widespread effect of anchor considerations on patient-level prioritization 
results.  
 
Discussion 
 
We developed a computational workflow for predicting probabilities of anchor positions for a 
wide range of the most common HLA alleles. Our results show that anchor positions vary 
substantially between different HLAs. A subset of our prediction results were confirmed by 
analyzing available crystallography structures of peptide-MHC complexes. The underlying 
quantitative scores from our anchor prediction workflow are available for incorporation into 
neoantigen prediction workflows and we believe this will improve their performance in predicting 
immunogenic tumor specific peptides. It is important to note that for simplicity reasons our 
illustrations have depicted peptide residues as either anchoring or potentially participating in 
TCR recognition. However, previous research has shown that heteroclitic peptides can alter 
TCR binding and T-cell recognition15. Hence, anchor residues and TCR recognition sites should 
not be considered mutually exclusive and should ideally be interpreted quantitatively where the 
anchor scores provided reflect the probability of a peptide position participating in binding.  

Using an independent pool of TCGA samples, previously excluded from the 
computational prediction process, we show that consideration of anchor prediction results can 
have a significant impact on neoantigen prioritization results. However, it is important to note 
that the choices of whether to accept or reject a prioritization decision were based on hard 
cutoffs. In most neoantigen characterization workflows, numerous other aspects are taken into 
account to arrive at an overall prioritization decision, which may further increase differences 
between filtering strategies. These results not only impact the selection process of neoantigens 
for personalized cancer vaccines, but also change the way neoantigen load estimation is 
currently defined. Neoantigen load estimation is commonly defined as the number of peptides 
whose binding affinity passes a certain threshold. However, this threshold, meant to limit to the 
approximate number of strong binding neoantigens, should also take into account the mutation 
position, HLA specific anchor locations, and agretopicity for more precise estimation. Our 
anchor impact analysis demonstrates the effect of this alteration on estimation results. 
Moreover, our analysis results show that there is a net gain of neoantigen candidates when 
taking anchor considerations into account compared to the commonly used agretopicity filters. 
This becomes important in the context of neoantigen prioritization, particularly when the 
minimum number of peptide vaccine candidates cannot be met for patients due to low tumor 
mutational burden.  
         As previously stated, the neoantigen selection process requires careful consideration of 
numerous aspects, which have been discussed extensively4. In general, neoantigen-based 
vaccines act by stimulating the patient’s immune system for the production of activated cytotoxic 
T cells. However, compared to viral antigens where the protein sequence is entirely foreign, 
neoantigens, particularly those developed from SNVs, have merely subtle differences from the 
individual’s wildtype proteome. Thus, the need for a WT versus MT peptide comparison, while 
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considering anchor locations, is an aspect specific to tumor neoantigens that previous other 
vaccine development pipelines disregarded. Though neoantigens derived from in-frame or 
frameshift indels diverge more from the WT sequence and are generally less influenced by our 
findings, cases where such mutations are located towards the beginning or end of a neoantigen 
may still cause anchor disruption in an allele-specific manner. Additionally, more work should be 
done to characterize the similarity of neoantigen candidates and the patient’s wildtype proteome 
for an overall accurate prioritization process. 

Recently, the Tumor Neoantigen Selection Alliance (TESLA), a group of 25 teams that 
independently predicted and ranked neoantigens from a common data set, published their 
findings on features important for neoantigen prediction17. They made the unexpected 
observation that among the 37 positively validated neoantigen candidates, none of the peptides 
had a mutation at position 2, a common anchor position for a range of HLA alleles, despite a 
high number of prioritized neoantigens with a position 2 mutation. While this is an interesting 
finding, it would be premature to exclude such neoantigen candidates with position 2 mutations 
in future prioritization schemes without additional research. However it does suggest several 
hypotheses that are relevant to this work and require further analysis. One explanation for the 
lack of position 2 candidates could be that neoantigens with the mutant residue at a strong 
anchor position have a disadvantage over those present at TCR sites as they require their WT 
counterpart to be a poor binder and the threshold for determining sufficiently weak binding of the 
WT peptide is unclear. Thus highlighting the importance of considering allele-specific anchors in 
prioritization algorithms as we propose here. Other explanations for why a large number of false 
positives with a mutation at position 2 exist might include: 1) filters implemented by the TESLA 
participants that were based only on agretopicity rather than additional considerations of anchor 
locations and WT binding affinities, 2) bias among neoantigen predictions for specific HLA 
alleles (the TESLA finding corresponds to data from only 6 individuals) and 3) statistical 
randomness given limited neoantigen pool. Overall, these studies highlight the importance of 
anchor positions and further investigation is required to address questions raised by this 
observation.  
         In addition to the limitations of being applicable to a subset of neoantigens derived from 
SNVs and certain indels, our work also needs to be expanded to a wider range of HLA alleles. A 
larger HLA-peptide reference dataset could be achieved through a wide-scale prediction of 
strong binders for rare HLA alleles by mutating the wildtype proteome. Furthermore, while x-ray 
crystallography structures show support for our anchor location predictions, experimental 
validation with neoantigens designed to induce T-cell activation is needed to explicitly showcase 
the importance of our results in clinical settings. Although numerous clinical trials using 
neoantigen-based vaccines are underway, results published show a low accuracy for current 
neoantigen prediction pipelines33. By accounting for additional positional information, we hope to 
significantly reduce the number of false positive candidates and rescue false negative 
neoantigens to increase prediction accuracy. A prioritization strategy utilizing anchor results will 
be incorporated into the visual reporting of our neoantigen identification pipeline pVACseq5. 
Furthermore, machine learning algorithms have been widely applied in the context of 
neoantigen binding predictions. However, machine learning models trained on experimentally 
validated data with T-cell activation results are lacking and identifying features for these models 
is an active area of research. Anchor location probabilities may serve as an additional feature in 
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machine learning model training on clinical data. These results and tools will help streamline the 
prioritization of candidates for neoantigen vaccines by immunotherapy tumor boards that 
currently play a central role in the vetting of candidates and may aid in the design of more 
effective cancer vaccines. 
 
Methods 

Input data for identifying strong binding reference peptides for anchor site prediction 

We assembled peptide data from various sources where binding prediction data were available 
through clinical collaborations and supplemented these with TCGA datasets where necessary to 
achieve better representation of less common HLA alleles. Datasets from clinical collaborations 
that were incorporated include 7 triple-negative breast cancer samples, 54 lymphoma samples, 
20 glioblastoma samples, and 6 melanoma samples. Additionally, we mined data from 9,216 
TCGA samples to optimize the number of strong binding peptides matched to each HLA allele 
by adding 10 samples for insufficient (<10 strong binding peptides) and 15 samples for 
previously unseen HLA alleles. Of these, 1,356 TCGA samples were used to generate 
reference HLA-peptide combinations to be used for downstream simulations. High quality 
variants included from TCGA samples were obtained from the Genomic Data Commons and 
selected according to their filter status (pass only) and required to be called by at least 2 out of 4 
variant callers as previously described34. Peptide lengths considered ranged from 8- to 11-mers. 
In total, these datasets corresponded to 1,443 tumor samples, representing 328 matching HLA 
alleles, with 737 of these having more than 10 strong binding peptides, and a grand total of 
609,807 strong binding peptides for use in the following analyses (Supplemental Figure 1; 
Supplemental Table 4). 

Computational prediction of anchor site positions for 328 HLA alleles 

Peptides collected from input datasets were first filtered for strong binders using a binding 
affinity cutoff of 500 nM. These were used to build a reference dataset consisting of peptides 
predicted to be strong binders to individual HLA alleles. We first performed a saturation analysis 
to determine the appropriate number of random peptides needed to obtain a robust estimate of 
the likely anchor site locations of each HLA allele. This was done using peptides collected for 
HLA-A*02:01, where over 1,500 peptides were obtained for each peptide length. Random 
sampling with a subset size of 10 peptides showed consistently high correlation (> 0.95) with 
the largest subset size used where all 1000 peptides were incorporated (Supplemental Figure 
2). Thus in downstream analysis, for each unique HLA and peptide length combination, 10 
peptides were randomly selected from the database. For each of the 10 starting peptides at 
each position n, we obtained a score that reflects how much a mutation at this position will affect 
the overall binding affinity:  

(abs(Y(n,1)-X)+..+ abs(Y(n,20)-X)) 
where X is the binding affinity of the unmutated peptide, and Y(i,j) is the binding affinity of the 
peptide mutated at position i to amino acid number j (total of 20 possible amino acids to mutate 
to). All binding affinities were calculated using pVACbind from pVACtools (version 1.5.0)5 in 
which the following algorithms were selected: NetMHC23, NetMHCpan24, MHCnuggets25, 
MHCflurry26, SMM27, Pickpocket28, SMMPMBEC29, NetMHCcons30. The median binding affinity 
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across all 8 of these algorithms was used both to nominate strong binder peptides for the 
reference dataset, and to assess the impact of in silico mutation at each position of these 
peptides.  
 
Each position was assigned a score based on how binding was influenced by mutations. These 
scores were used to calculate the relative contribution of each position to the overall binding 
affinity of the peptide. Positions that together account for 80% of the overall binding affinity 
change were assigned as anchor locations for further impact analysis.  

Input data for orthogonal evaluation of predicted anchor sites 

To evaluate our anchor predictions, we collected 166 protein structures (pdb format) of peptide-
MHC complexes and 61 peptide-MHC-TCR complexes from the Protein Data Bank35 by 
querying for structures containing macromolecules matching class I HLAs. Structures were 
additionally reviewed to ensure valid peptide length (8-11) and those with TCRs attached were 
separated into a different list for downstream analysis to allow accurate solvent-accessible 
surface area (SASA) calculations. The HLA-peptide structures corresponded to 33 HLA alleles 
with peptides of varying lengths (8 to 11mer), while the HLA-peptide-TCR structures 
corresponded to 12 HLA alleles. A complete list of PDB ids selected for this analysis can be 
found in Supplemental Table 2.  

Orthogonal validation of predicted anchor sites by analysis of pMHC structures  

The structures of peptide-MHC molecules collected were analyzed to infer potential anchor 
locations/residues. All PDB structures were analyzed in python using the MDTraj package36.   
For each position of a peptide bound to an HLA, we utilized two different metrics: 1) minimum 
distance of non-backbone atoms to all HLA associated atoms and 2) estimated SASA of the 
residue. In method 1, we calculated the distances between each atom of each residue and all 
HLA associated atoms. Non-backbone atoms were ordered by their distance to the closest HLA-
associated atom and the top 50% were used to calculate an average distance representing an 
entire residue (with the exception of glycine where all atoms were considered). In method 2, we 
directly calculated the SASA of each residue (shrake_rupley function in MDTraj), which was 
used to infer the likelihood of being able to be recognized by the T-cell receptor.  
 
For an overall evaluation of how well our anchor predictions correlated with these metrics 
(distance and SASA), spearman correlations were determined. For example, for a 9-mer 
peptide, a spearman correlation was calculated for the 9 anchor prediction scores from the in 
silico mutation exercise compared to the 9 distance or SASA estimates obtained from the 
structure analysis. Out of 166 peptide-MHC structures collected, correlation values for 87 were 
plotted by randomly selecting at most 5 structures per HLA-length combination (Supplemental 
Table 3). For comparison, we also randomly shuffled distance and SASA scores across all 
positions of individual peptides and calculated correlation scores against this randomized 
dataset. The different sets of correlation values were then fit to Gaussian distributions (Figure 
4d). Two sample t-tests were performed to evaluate the differences among distributions.  
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Additional analysis was performed on the 61 peptide-MHC-TCR structures collected. After 
randomly selecting at most 5 structures per HLA-length combination, spearman correlations 
derived from 31 structures were plotted. Correlations were calculated for 1) distance from 
peptide to HLA versus anchor prediction scores and 2) distance from peptide to TCR versus 
anchor prediction scores. Once again, the HLA-peptide distances were randomly shuffled and 
used as comparison and two sample t-tests were performed to evaluate the differences among 
distributions. 

Input data for evaluating the impact of anchor site considerations 

To evaluate how anchor site considerations might influence neoantigen prioritization decisions, 
we considered two different methods when selecting input data: 1) balanced HLA allele 
distribution and 2) population-based selection. For method 1, we randomly sampled up to 10 
corresponding TCGA samples for each HLA allele with sufficient data (at least 3 out of 4 lengths 
have 10 or more matching peptides). In method 2, we randomly selected TCGA-HLA 
combinations from our database matching the total number of samples in method 1. For each 
method, 923 TCGA-HLA combinations were chosen from a total of 9,216 TCGA samples 
excluding the 1,356 used for the anchor site prediction data set described above. The 923 
TCGA-HLA combinations corresponded to 863 and 853 TCGA patients for methods 1 and 2 
respectively (Supplemental Table 5). To further evaluate impact of anchor considerations on a 
patient-specific level, an additional 100 TCGA patients were selected from the original 1,356 
TCGA patient samples where we had neoantigen predictions for the patient’s full set of HLA 
alleles (Supplemental Table 5).  

Evaluating the impact of anchor site consideration on neoantigen prioritization  

To analyze the importance of positional information on prioritization of neoantigens, TCGA 
patient samples were used as input and run through pVACtools (version 1.5.2) using the 
following options: -e 8,9,10,11, --iedb-retries 50, --downstream-sequence-length 500, --
minimum-fold-change 0, --trna-cov 0, --tdna-vaf 0, --trna-vaf 0, --pass-only. The neoantigen 
candidates were then filtered and prioritized according to different criteria: A) Basic Filter: 
mutant peptide IC50 < 500 nM and agretopicity > 1, B) Decision based on a conventional 
anchor assumption that anchors are located at position 2 and the C-terminal position, C) 
Decision based on computationally predicted allele-specific anchor locations. Filtered lists were 
then compared for overlap and differences. For our cohort analysis, all neoantigen candidates 
were considered with no additional filtering. For our patient-level analysis, neoantigen 
candidates were processed additionally using the top_score_filter (“pVACseq top_score_filter” 
command of pVACtools) to generate top neoantigen candidates for individual variants. These 
top candidates were compiled and the same filters A, B, and C were used to determine 
prioritization decisions. The percentage differences between filters were calculated based on 
decisions for all top candidates for each individual patient.  

HLA coverage and population frequency 

Global HLA allele frequencies were generated using data from the Allele Frequency Net 
Database31. The database contains HLA genotype data for Class I alleles across 197 distinct 
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populations. Two populations in the database (“Chile Santiago” and “Russia Karelia”) did not 
have ambiguity-resolved HLA genotype data and were excluded from this analysis. Global HLA 
allele frequencies were calculated by (1) aggregating all 195 sample populations, (2) summing 
HLA allele counts over all sample populations, and (3) dividing HLA allele counts over total 
counts of the HLA gene across all populations. It should be noted that the HLA frequencies 
calculated do not reflect true global HLA frequencies since true population/region sizes were not 
considered. To calculate the percentage of population that our 328 HLA alleles affect, Class I 
alleles were split into respective subclasses of HLA-A, HLA-B and HLA-C. Global frequencies 
were summed in each subclass to obtain the percentage of population potentially affected by 
our HLA allele anchor results. 
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Main Figures 

 
Figure 1: Anchor and mutation position scenarios at the MHC-peptide-TCR interface 
Illustration of MHC-peptide-TCR interface using an example structure with anchors at position 2, 
5 and 9. At the contact interface between the peptide-loaded MHC and the recognizing T-cell 
receptor, certain positions are responsible for anchoring the peptide to the MHC molecule 
and/or potentially being recognized by the TCR. The position of tumor specific (“mutant”) amino 
acids relative to anchor positions, and predicted binding affinity of mutant and wild type peptides 
produce four distinct scenarios for interpreting candidate neoantigens. Example TCR 
recognition sites are shown in blue while MHC anchor locations are shown in green. The 
peptide residues are shown in orange while the mutant residue is marked with red. A yellow 
force field with varying density is used to illustrate binding strength between peptide and the 
MHC molecule. Three different cases of TCR recognition level are depicted including: self-
recognizing TCR absent due to negative selection, weak-recognizing TCR due to weak MHC 
binding of presented peptide, and strong-recognition of TCR triggering downstream activation of 
cytotoxic T-cells.  
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Figure 2: Overview of simulation workflow for anchor prediction 
Schematic of our computational workflow to simulate the effect of mutation position on binding 
affinities of the peptides. HLA and peptide pairings are selected from a reference dataset of 
putative strong binders. All possible amino acid changes are applied to all possible positions 
and impact on binding affinity is assessed. An overall peptide anchor score is calculated for 
each position for all HLA-peptide length combinations. Higher scores indicate greater likelihood 
that a particular position in the peptide acts as an anchor residue for a given HLA.  
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Figure 3: Hierarchical clustering of anchor prediction scores across all 9-mer peptides  
Anchor prediction scores clustered using hierarchical clustering with average linkage for all 318 
HLA alleles for which 9-mer peptide data were collected. For the heatmap, the x-axis represents 
the 9 peptide positions and the y-axis represents 318 HLA alleles. Example HLA clusters have 
been highlighted with various color bands and the score trends for individual HLA alleles are 
plotted for each. In the cluster line plots on the left, the x-axis shows the peptide positions while 
the y-axis corresponds to the anchor score, normalized across all peptide positions. Different 
annotations have been given to help summarize the trends observed in individual clusters, 
where numbers represent positions and letters represent its strength as a potential anchor in 
comparison to other anchors (S: strong, M: moderate, W: weak). The median scores for each 
cluster are presented with a dashed line. 
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Figure 4: Orthogonal validation using protein crystallography structures 
Orthogonal validation of predicted anchor scores utilizing X-ray crystallography structures. a, 
Schematic of analysis workflow for each HLA-peptide structure collected. For the distance 
metric, backbone atoms were excluded with the exception of glycine. b, Structural example of 
HLA-B*08:01 bound to peptide FLRGRAYGL (PDB ID: 3X13). c, Example results of 47 
structures collected for HLA-A*02:01 with 9-mer peptides. Top panel corresponds to distance 
measurements for each position while the bottom panel corresponds to SASA measurements. d, 
Distribution of spearman correlations calculated between distance and prediction scores (top) 
and SASA and prediction scores (bottom). Blue line represents each respective correlation 
distribution while the green line shows the distribution of spearman correlation values obtained 
from randomly shuffled peptide positions.  
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.08.416271doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.416271
http://creativecommons.org/licenses/by/4.0/


 
Figure 5: Impact of anchor position information on neoantigen prioritization decisions 
a, Illustration of different scenarios that could be encountered when prioritizing neoantigens. 
Each circle represents a peptide residue with mutated residues marked in red. Anchor locations 
of the MHC are marked in green while TCR recognition sites are in blue. Predicted binding 
affinities of the MT/WT peptides are indicated using a yellow density field where higher density 
represents strong binding, and lower density represents weak binding. Three different scenarios 
of T-cell recognition are depicted. b, Upset plot showing number of intersecting peptides based 
on those prioritized with no anchor filter (binding affinity < 500nM and agretopicity > 1), 
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conventional filter (filtering based on conventional anchor assumptions) or allele-specific filter 
(filtering based on computationally predicted anchor locations). Samples included for analysis 
were chosen such that HLA alleles were balanced appropriately. Peptides characterized 
differently between no anchor/conventional filter and allele-specific filter were categorized into 
false negatives (green circle) and false positives (red circle) with the assumption that the allele-
specific filter produced more accurate results. c, Upset plot showing number of intersecting 
peptides based on those prioritized with no anchor filter, conventional filter or allele-specific filter. 
In contrast to the previous panel, samples included for this analysis were chosen by randomly 
sampling a large pool of TCGA samples. d, Examples of false positive and false negative 
peptides from each of the four subsets as marked in panel c. Matching HLA allele, peptide 
sequence, mutation position (red), median WT/MT IC50 values and fold changes are shown 
accordingly. Two sets of anchor locations are depicted for each scenario using semi-circles: 
conventional anchors are marked with light blue and allele-specific anchors are marked with 
dark blue. Positions where the two sets of anchors overlap are marked with split coloring of the 
semi-circle.  
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