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Abstract1

1. Land use change leads to shifts in species ranges and declines in biodiversity2

across the world. By mapping likely future land use under projections of socio-3

economic change, these ecological changes can be predicted to inform conservation4

decision-making.5

2. We present a land use modelling approach that enables ecologists to map changes6

in land use under various socio-economic scenarios at fine spatial resolutions. Its7

predictions can be used as a direct input to virtually all existing spatially-explicit8

ecological models.9

3. The most commonly used land use modelling approaches provide binary predic-10

tions of land use. However, continuous representations of land use have been11

shown to improve ecological models. Our approach maps the fractional cover of12

land use within each grid cell, providing higher information content than discrete13

classes at the same spatial resolution.14

4. When parametrized using data from 1990, the method accurately reproduced15

land use patterns observed in the Amazon from 1990 until 2018. Predictions were16

accurate in terms of the fractional amounts allocated across the landscape and the17

correct identification of areas with declines and increases in different land uses. A18

small case study showcases the successful application of our model to reproduce19

patterns of agricultural expansion and habitat decline.20

5. The model source code is provided as an open-source R package, making this new,21

open method available to ecologists to bridge the gap between socio-economic,22

land use and biodiversity modelling.23
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mial regression26

Introduction27

Land use change is a key driver of global environmental change, causing global declines28

in biodiversity, species extinctions and resulting in the deterioration of ecosystem ser-29

vices (Foley, 2005; IPBES, 2019).30

Land use change is driven by bio-physical and socio-economic processes (Lambin et al.,31

2011). Climate change will likely result in global shifts and declines of land suitable32

for agricultural production, with projected depletion of land reserves in the first half of33

the 21st century (Lambin et al., 2011). Most socio-economic scenarios of future change34

describe future increases in food production and international trade of goods (O’Neill35

et al., 2014, 2017). Even under lowest impact scenarios, also known as ‘shared socio-36

economic pathways’ (SSPs), in which land use is strongly regulated, deforestation rates37

are reduced, diets are more plant-based and climate change mitigation starts early, crop38

and livestock production are still likely to be higher and occupy a larger land area than39

they do today.40

Despite mounting evidence of adverse environmental impacts of historic and current41

land use change, work concerned with understanding future biodiversity change tends to42

focus on climate change (Titeux et al., 2016; Struebig et al., 2015), or other aggregated43

effects of socio-economic change, such as forest loss (Margono et al., 2014) and urban44

expansion (Seto et al., 2012). Consequently, future predictions of biodiversity change45

will benefit from explicit accounting of the drivers and effects of land use change at the46

level of individual types of use. Detailed, large-scale mappings of future land use will47
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provide invaluable insights for researchers and policy makers, particularly in terms of48

conservation planning and preventing future biodiversity loss.49

Different conceptual approaches have found application in investigations of past, present50

and future land use change. van Schrojenstein Lantman et al. (2011) identify four51

theoretical core principles for modelling land use change. Predictions can be made based52

on the continuation of historical developments, where past patterns are extrapolated53

into future conditions, the suitability of land, where land use changes are predicted54

based on proximity to markets, biophysical conditions and other environmental drivers,55

neighbourhood interactions, where neighbouring land uses affect local changes and actor56

interactions, where land use changes explicitly emerge from the decision-making of57

individual actors, or groups of actors.58

These principals appear in many existing models. For example, artificial neural net-59

works and markov chain models learn and infer patterns from historic time series of60

land use change (Tayyebi and Pijanowski, 2014; Pijanowski et al., 2002). To allow61

for spatially-explicit assessments, markov chain models have been frequently combined62

with cellular automata (CA-Markov models, see Hyandye and Martz, 2017; Aburas63

et al., 2017; van Schrojenstein Lantman et al., 2011). In cellular automata the transi-64

tion probability of a cell to another land use depends on its current state and the state65

of neighbouring cells, both of which are the result of historic changes (van Schrojen-66

stein Lantman et al., 2011). Cellular automata have been used successfully to simulate67

strongly auto-correlated changes, such urban sprawl (Verburg et al., 2004b; Fang et al.,68

2005; Shafizadeh Moghadam and Helbich, 2013; Sun et al., 2007).69

Some existing modelling approaches apply regression analysis and other techniques to70

identify associations between various environmental conditions and observed land-use71

patterns (Meiyappan et al., 2014; van Schrojenstein Lantman et al., 2011; Lambin et al.,72
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2000; Verburg et al., 2004b). Some of the most prominent examples include the Con-73

version of Land Use and its Effects (CLUE) model series, which have found application74

in the prediction of spatially-explicit patterns of land use at national and continental75

scales (Veldkamp and Fresco, 1996b; Verburg and Overmars, 2009; Verburg et al., 1999,76

2002; Kapitza et al., 2020). Exogenously determined future changes in area demands77

for different land uses, often predicted by an economic model (Aguiar et al., 2016),78

may be downscaled by establishing statistical relationships between observed land use79

and a set of socio-economic and bio-physical drivers of land use and land use change.80

Predicted land use suitability surfaces inform local competition for different land uses81

(Verburg et al., 2002; Meiyappan et al., 2014). Models can be further parametrized by82

including transition rules at local (cell) and landscape levels and constraints on overall83

turn-over through time. More simplistic models based on statistical analysis use an84

ordered allocation algorithm, in which competition between land uses is handled by85

ordering allocations in terms of perceived socio-economic value (Fuchs et al., 2013).86

Modelling approaches based on statistical analysis are useful in particular because of87

their transparency and scalability from regional to continental levels. For example,88

Veldkamp and Fresco (1996a) show that relationships between land use and biophys-89

ical and human driving factors in Costa Rica act differently at different scales, high-90

lighting the importance of the model’s capability to parametetrize relationships in close91

consideration of the study area.92

Most land use models apply statistical analyses of discrete land use classes using binary93

logistic regression to model the cell-wise probabilities of occurrence for each land use,94

independent of the probabilities of other land uses. The resulting probability of land95

use occurrence at a site produced by separate models is an incomplete representation96

of the underlying structure of land use probability, because it omits that occurrence97
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probabilities are dependent between land use types, and that the probabilities of all98

discrete classes must sum to one. For example, when a site has very high probability99

for urban land use, this implies relatively low probabilities for primary natural habitat,100

which separate, independent logistic regressions do not fully capture.101

One step toward explicitely modelling competition between land uses is to apply multi-102

nomial regression, thus allowing for the prediction of conditional binary probabilities103

of multiple classes (Noszczyk, 2019). However, the classifier would still allocate the104

land use with the highest probability at a site. For many ecological considerations it105

is desirable to know individual probabilities of land use occurrence for each land use106

type in order to characterize the underlying continuous fractions occupied by different107

land use types within a classified site. A few model examples are capable of predicting108

continuous fractions of land use at very coarse resolutions (see Hasegawa et al., 2017;109

Meiyappan et al., 2014), but documented approaches are not yet available in a usable110

package suited to regional-continental scale.111

Increasingly, categorical data sets are available at spatial resolutions of finer than 1km2.112

Three prominent examples include the CORINE Land Cover inventory (Bossard et al.,113

2000), which contains several time steps between 1990 and 2019 at 100m resolution for114

the European continent, global land cover mappings produced for the year 2010 through115

Copernicus Land Monitoring Service (European Union, 2019) at the same resolution,116

as well as global mappings of land cover in annual time steps between 1992 and 2018,117

produced under the European Space Agency’s (ESA) Climate Change Initiative Land118

Cover (CCI-LC) project (ESA, 2019), available at 300m resolution.119

However, the spatial variables that represent drivers of land use and biodiversity change120

are often not available over large spatial extents at fine resolutions above 1km2 (Den-121

doncker et al., 2006), though this situation is changing. Global mapping and climatic122
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projections based on Global Circulation Models (Hijmans et al., 2005) and other drivers,123

such as soil properties (Global Soil Data Task Group, 2000), are all now mapped at124

1km2 or better. Infrastructure such as roads (Center for International Earth Science125

Information Network - CIESIN - Columbia, 2013) and built-up areas (FAO, 1997) is typ-126

ically represented by geographic features, but can be converted to raster representation127

at fine resolutions.128

Lowering the resolution of available land use data sets to fit the resolution of continental-129

or global-scale environmental covariates has the advantage of higher computational130

efficiency when simulating changes. Assigning a single category of land use on each131

larger pixel effectively eliminates sub-pixel information on land use (Seo et al., 2016),132

so this approach is not desirable. In order to retain information, it is preferable to133

calculate the fractions of land use covering each new cell, producing continuous fields134

of information and retaining information at sub-pixel level (Seo et al., 2016).135

Mapped representations of land use fractions have high utility in down-stream ecolog-136

ical modelling applications because they preserve information on spatial heterogeneity137

within classes, thus providing a much more refined landscape representation. For ex-138

ample, many wide-ranging species may persist in landscapes if a certain proportion of139

the landscape is comprised of old forest. It has been shown that continuous fields of140

land use allow better estimation of biomass and biomass change (Xian et al., 2015) and141

are better able to explain variation in home range sizes (Bevanda et al., 2014) than142

categorical land use data. Continental-scale biodiversity assessments have shown that143

patterns are associated with high spatial-resolution fractional land use measures such144

as the regional aggregation of land use types, land cover diversity and land use covari-145

ates including land use intensity (Mouchet et al., 2015) and actual evapo-transpiration146

(Mouchet et al., 2015; Whittaker et al., 2006). Creating mappings of some of these co-147
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variates requires fine-scale mappings of fractional land use as principal input (Plutzar148

et al., 2016). The intensification of agriculture and forest harvesting are crucial fac-149

tors shaping biodiversity (Levers et al., 2014, 2016) that require inputs of crop type150

and vegetation composition within each spatial unit. These ecological considerations151

of the utility of fractional land cover and land use representations are underpinned by152

recent advancements in algorithms to produce high resolution mappings of fractional153

land cover from satellite data (Allred et al., 2020; Hill and Guerschman, 2020).154

Here, we innovate a land use modelling approach that allows ecologists to incorporate155

fractional land use change into ecological modelling. An advantage of our approach156

compared to existing fractional land use modelling approaches is its ease of of imple-157

mentation for ecologists trained in R (R Development Core Team, 2008) and its high158

scalability to high resolutions and large spatial extents with minimal parametrization159

requirements. The source code for our method is freely available as a small open160

source R package hosted on GitHub (https://github.com/kapitzas/flutes). As161

such, our approach contributes a new open method toward bridging the gap between162

socio-economic, land use and biodiversity modelling.163

We provides a mathematical description of the developed fractional land use model164

and evaluate our model according to its ability to correctly estimate the direction and165

intensity of observed land use changes using a case study in the Brazilian Amazon.166

Materials and methods167

Model description168

The model consists of two main components (Fig. 1). First, statistical analysis is used169

to determine how the suitability of the landscape for different land uses relates to a set170
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of environmental drivers of land use change, producing a suitability surface for each171

land use class (Fig. 1a). Second, fractional changes in additional land use demands172

are allocated iteratively in the landscape, scaling with the land use suitability surfaces173

(Fig. 1b). We utilize a cellular automaton to introduce cell-level allocation decisions174

that constrain the location and direction of land use changes according to three rules:175

Rule 1: Future land use supply meets additional demand176

Projections of land use demands may be provided through external models, such as177

Computational General Equilibrium (CGE) models (i.e. GTAP, Aguiar et al. (2016)),178

or through the analysis and extrapolation of historic patterns (Moulds et al., 2015).179

The model allocates additional demand by adding cell-level supply 𝑑𝑖,𝑘,𝑡+1 in cell 𝑖,180

land use 𝑘 and time step 𝑡 + 1 to fractions 𝑞𝑖,𝑘,𝑡 (Fig. 1b). The first model objective181

can be formulated:182

𝑁
∑
𝑖=1

𝑞𝑖,𝑘,𝑡+1 =
𝑁

∑
𝑖=1

(𝑞𝑖,𝑘,𝑡 + 𝑑𝑖,𝑘,𝑡+1)

𝑁
∑
𝑖=1

𝑑𝑖,𝑘,𝑡+1 = 𝐷𝑘,𝑡+1

𝐷𝑘,𝑡+1 is the additional landscape-wide supply and is at equilibrium with additional183

demand after the algorithm converges.184

Rule 2: Cell-level fractions must sum to 1185

The second model condition requires that supply 𝑑𝑖,𝑘,𝑡+1 is allocated across cells in such186

a way that ∑𝐾
𝑘=1 𝑞𝑖,𝑘,𝑡+1 = 1 (Fig. 1b).187
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Rule 3: Allocations are determined by land use suitability188

The third model condition requires cell-level supply 𝑑𝑖,𝑘,𝑡+1 to be distributed in such a189

way that the allocated amounts in each cell scale with a predicted probability surface 𝑠,190

by modelling 𝑞𝑖,𝑘,𝑡=0 ≈ 𝑠𝑖,𝑘 = 𝑓𝑘(Xi), where 𝑋𝑖 is a set of demographic and bio-physical191

drivers related to land use. 𝑓𝑘 is a multinomial, multi-response model (Fig. 1a). The192

parameter estimation of this model is based on the first time step and predicted to the193

conditions of subsequent time steps.194

The land use status in a cell’s neighbourhood has been shown to play an important195

role in determining a cell’s land use (Dendoncker et al., 2007; Mustafa et al., 2018; van196

Vliet et al., 2013; Verburg et al., 2004a). Our suitability model applies neighbourhood197

interactions by calculating autocovariates (Verburg et al., 2004a) and including these in198

the multinomial regression of the land use suitability model. Following Verburg et al.199

(2004a), our autocovariates measure the amount of clustering of land uses in the cell200

neighbourhood when compared to the entire landscape. We calculate autocovariates201

as enrichment factors 𝐹𝑑,𝑖,𝑘,𝑡 = ∑𝑖∈𝑑(𝑞𝑖,𝑘,𝑡)/𝑁𝑑
∑𝑁

𝑖=1(𝑞𝑖,𝑘,𝑡)/𝑁 . The numerator is the average fraction202

of land use 𝑘 in the neighbourhood 𝑑 of each central cell 𝑖 and the denominator is203

the average fraction of land use 𝑘 in the entire landscape 𝑁 . Here, we only included204

neighbourhood characteristics in the 3𝑥3 neighbourhood around each central cell, but205

other neighbourhoods are possible (Verburg et al., 2004a). When predicting suitability206

at each time step, the autocovariates are recalculated based on the assigned fractions207

from the previous timestep.208

The response here is represented by fractional land use and not discrete classes normally209

required in multinomial regression. Therefore, we assume that underlying the land use210

fractions for each cell is a vector of counts 𝑐𝑖,𝑘,𝑡 that sums to a total number of counts211

𝐶 in each cell (e.g. 𝐶 = 1𝑒6). We derive these counts through 𝑐𝑖,𝑘,𝑡 ≈ 𝑞𝑖,𝑘,𝑡 ∗ 𝐶. In212
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integer representation, the data are approximately proportional to the original fractions.213

When fitting the suitability model, parameter uncertainty depends on the assumption214

of 𝐶. 𝐶 should be chosen to represent the degree of numerical precision in the observed215

fractions. I.e. if there are only 2 decimal places, setting 𝐶 = 100 results in counts that216

represent all of the information contained in the original fractions. Accordingly, the217

multinomial logit model takes the form218

𝑠𝑖,𝑘,𝑡 = 𝑃(𝑌𝑖 = 𝑘) = 𝑒𝛽𝑘∗𝑋𝑖,𝑡+𝛾𝑑,𝑘∗𝐹𝑑,𝑖,𝑘,𝑡

∑𝑘
𝑘=1 𝑒𝛽𝑘∗𝑋𝑖,𝑡+𝛾𝑑,𝑘∗𝐹𝑑,𝑖,𝑘,𝑡

where 𝑘 is the reference land use class, 𝛽𝑘 the estimated parameters in each class219

for covariates 𝑋𝑖,𝑡 and 𝛾𝑑,𝑘 the estimated parameters for autocovariates 𝐹𝑑,𝑖,𝑘,𝑡. We220

estimated parameters using R’s ‘nnet’ package (Venables and Ripley, 2002). Predicted221

fractions satisfy ∑𝐾
𝑘=1 𝑠𝑖,𝑘,𝑡 = 1.222

All software development and model validation was conducted in R (version 4.0.1) (R223

Development Core Team, 2008).224
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Figure 1: Conceptual diagram of land use modelling approach. a) Land use suitability model. Ob-
served fractions of land use are first converted to integer counts through multinomial draws and their
relationship with environmental drivers and neighbourhood covariates (derived from previous time
step’s land-use distribution) is assessed. b) Allocation algorithm. First it is estimated by how much
each cell has to change to achieve the modelled ideal distribution of land uses. Change factors are then
converted to relative suitabilities that serve to distribute land use supply required to satisfy the addi-
tional demand in the landscape. Multinomial draws assure that each cell’s land use class probabilities
sum to 1. The resulting difference of the current supply and the total additional demand is recalcu-
lated to support allocation in the next iteration. The cycle repeats until the difference between the
current supply and total additional demand is very close to zero, meaning that all additional demand
has been allocated. At this point, the integer counts representing the land use fractions on each cell
are converted back to fractional representation

Data225

We developed and tested our model using land use and environmental data from the226

Amazon basin. We downloaded and cropped 7 time steps (1992, 1997, 2003, 2008, 2013,227

2015 and 2018) of the global land cover mapping provided through the European Space228

Agency’s Climate Change Initiative Land Cover (CCI-LC) project (ESA, 2019). These229

data are available at a grid resolution of 300m. We combined the recorded 31 land cover230

classes to 9 new classes of land use we deemed crucial to identify processes leading to231

agricultural expansion and declines in habitat (Table 1). We aggregated the resolution232

to 10km2, calculating fractions of land use from the cell counts of each land use class on233
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the original map present in each new cell. Fractional land use in 𝐾 classes is mapped234

over 𝑁 raster cells, with fractions 𝑞𝑖,𝑘,𝑡 in cell 𝑖 in each land use class 𝑘 always satisfying235

0 ⩽ 𝑞𝑖,𝑘,𝑡 ⩽ 1 and ∑𝐾
𝑘=1 𝑞𝑖,𝑘,𝑡 = 1.236

Table 1: Mapping of original land use classes to new classes applied in this study

New class Abbr. CCI-LC class Description
1 Cropland Cro 10, 11, 12, 20, 30 Rainfed and irrigated cropland, mosaic cropland with

>50% cropland and natural vegetation (tree, shrub,
grass)

2 Cropland
mosaic

CrM 40 Mosaic cropland with <50% cropland and natural vege-
tation (tree, shrub, grass)

3 Forest For 50, 60-62, 70, 80, 90,
100, 160, 170

Forest, closed to open, with >15% canopy cover, Mosaic
tree/shrub (>50%) / herbacious cover, Flooded tree
cover

4 Grassland Gra 110, 130 Grassland and mosaic herbacious cover (>50%) /
tree/shrub

5 Shrubland Shr 180 Flooded shrub or herbacious cover
6 Wetland Wet 190 Settlement, Urban land uses
7 Urban Urb 120 Closed to open and open shrubland
8 Other Oth 140, 150, 151-153,

200-202, 220
Lichen/mosses, sparse trees/shrubs/herbaceous vegeta-
tion, bare areas, snow/ice

9 Inland wa-
ter

Wat 210 Natural and artificial inland water bodies

We downloaded a set of spatially explicit climate, topographic soil and human covariates237

(Table 2 for a full list of covariates), derived neighbourhood covariates from observed238

land use in the first time step and estimated observed demand change by calculating239

the landscape-wide mean fraction for each land use class in each observed time step.240

All explanatory covariates were standardized to have mean 0 and standard deviation 1.241

We removed covariates from correlated pairs (Spearman’s rank correlation coefficient242

> 0.7), always retaining the covariate with the smaller average correlation with all243

other covariates in order to maximise the amount of independent information in the244

final data set used for fitting.245
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Table 2: List of covariates that were included in land use suitability model

Type Covariate name Source
climate Annual mean temperature Fick and Hijmans (2017)

Mean diurnal range
Isothermality
Temperature seasonality
Max. temperature of warmest month
Min. temperature of coldest month
Temperature annual range
Mean temperature of wettest quarter
Mean temperature of driest quarter
Mean temperature of warmest quarter
Mean temperature of coldest quarter
Annual precipitation
Precipitation of wettest week
Precipitation of driest week
Precipitation of driest month
Precipitation of wettest quarter
Precipitation of driest quarter
Precipitation of warmest quarter
Precipitation of coldest quarter

topographic Roughness Hijmans et al. (2005)
Slope
Elevation
Distance to coast Wessel and Smith (1996)
Distance to lake

soil Nitrogen Content Global Soil Data Task Group (2000)
Available Water Content
Carbon Density
Bulk Density

human Distance to built-up areas FAO (1997)
Distance to highways CIESIN (2013)
Distance to private roads
Distance to trails
Protected areas IUCN and UNEP-WCMC (2014)
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Model constraints246

Analysing time series data, we determined that only very small percentages of cells247

change from being devoid of a particular land use to containing that land use within248

one time step (Table 3). Therefore, we added a constraint that land use increases249

are more likely to be applied to cells where the land use is already present. The250

constraint parameter was the percentage of cells in which a non-existent land use was251

newly established between time steps. For example, setting the constraint to 100%252

would allow increases of a land use in all cells that did not contain that land use in the253

previous time step.254

We parametrized the constraint by determining the time series mean of the according255

percentages between all time steps for each class (Table 3). For example, throughout256

the simulation, we allowed Cro increases in 1.35% of the cells in which Cro was not257

present in the preceding time step (Table 3). From cells currently zero in a land use,258

we selected the ones for increases that had the highest predicted land use suitability for259

that land use.260

We masked category I and II protected areas established up until 1992 from land use261

changes as has been shown previously (see Fig. 2 for a map of protected areas) (Verburg262

et al., 2002; IUCN and UNEP-WCMC, 2014; Kapitza et al., 2020).263

Validating the intensity and direction of predicted changes264

First, we examined the accuracy of the multinomial suitability model and how it is265

affected by spatial resolution and the included covariates. To account for spatial au-266

tocorrelation in the environmental covariates and land use time series, we conducted267

spatial-blocks cross-validation (Valavi et al., 2019) by separating the landscape into 9268

equal-sized spatial blocks. We fitted models using data from 8 of the 9 blocks and269
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Table 3: Share of cells (%) containing a land use
that were completely void of that land use in preced-
ing time step. Values derived from observed time
series.

Land use 1996 2001 2006 2011 2016 2018 mean
Cro 1.75 1.66 4.49 0.08 0.06 0.07 1.35
CrM 2.39 2.37 7.24 0.05 0.03 0.05 2.02
For 0 0 0 0 0 0 0
Gra 0.40 0.62 0.94 0.15 0.04 0.04 0.37
Shr 0.62 0.90 1.44 0.15 0.07 0.06 0.54
Wet 0.62 0.68 2.60 0.26 0.13 0.11 0.73
Urb 0.36 0.61 1.12 0.16 0.28 0.02 0.43
Oth 0.02 0.06 0.12 0.05 0.02 0.01 0.05
Wat 0.81 0.35 1.19 0.02 0.01 0.01 0.40

predicted the model to the withheld block, until predictions were made for the en-270

tire study area. We cross-validated suitability models at 1km2 and 10km2, including271

1) only environmental covariates, 2) only neighbourhood covariates and 3) both co-272

variate types combined. We conducted correlation analysis and removed highly corre-273

lated covariates from pairs, always keeping the covariate with the lower average cor-274

relation with all other covariates in order to maximise the amount of independent275

information retained in the covariate set. For each of the three models we measured276

predictive performance by estimating cell-level Suitability Root Mean Squared Error277

(RMSEsuit) between the suitability surfaces 𝑠𝑚,𝑖,𝑘,𝑡 and the observed fractions 𝑜𝑖,𝑘,𝑡,278

following 𝑅𝑀𝑆𝐸𝑠𝑢𝑖𝑡,𝑚,𝑖,𝑡 = √ 1
𝐾 ∑𝐾

𝑘=1(𝑜𝑖,𝑘,𝑡 − 𝑠𝑚,𝑖,𝑘,𝑡)2 for each suitability model 𝑚.279

Second, to validate the intensity of changes predicted by the allocation algorithm, we280

assessed the accuracy of predictions of cell-level fractions under a null model, a naive281

model, a semi-naive model and a fully parametrised model throughout the observed282

time series. 1) Under the null model, we assumed no change of land use through time.283

The null model served as reference to measure the improvements provided by each284

additional model component. 2) Under the naive model we only allocated additional285

demands, but scaled cell-level allocations with the average supply observed across the286
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entire landscape. This model assumes that suitability is not informative about where287

a change will happen and that allocations are equally likely to be anywhere in the288

landscape. 3) Under the semi-naive model, cell-level allocations were additionally scaled289

with the predicted suitability surfaces 𝑠𝑖,𝑘,𝑡 (as illustrated in 1). 4) Under the full model,290

allocations were scaled with suitability surfaces 𝑠𝑖,𝑘,𝑡 and all constraints (constraining291

most increases to cells where land use type already exists and masking protected areas292

from changes) were applied.293

We calculated RMSEalloc under each allocation model 𝑤 to estimate how well294

the different model components simulated each cell-level vector of land use295

fractions 𝑞𝑚,𝑖,𝑘,𝑡 compared to the respective observed vectors 𝑜𝑖,𝑘,𝑡, following296

𝑅𝑀𝑆𝐸𝑎𝑙𝑙𝑜𝑐,𝑤,𝑖,𝑡 = √ 1
𝐾 ∑𝐾

𝑘=1(𝑜𝑖,𝑘,𝑡 − 𝑞𝑤,𝑖,𝑘,𝑡)2.297

Due to the squared term, RMSE cannot inform on whether the models correctly iden-298

tified the direction of change. Therefore, we estimated and validated the direction of299

cell-level changes (decreases, no change, increases) separately. We mapped these tran-300

sitions for each class between the time steps of the observed time series and the time301

steps of the time series simulated under each model. We calculated overall difference302

of each pair of corresponding maps to obtain an interpretable measure of similarity of303

predicted and observed direction of changes (Pontius and Millones, 2011; Pontius and304

Santacruz, 2014). Achieving high accuracy in these first two model goals would suggest305

that simulated patterns of land use change closely resemble observed patterns.306

Case study: agricultural expansion in the Amazon Basin307

The Amazon catchment is largest river basin in the world and occupies over one third308

of the South American land mass (Fig. 2a). As the world’s most diverse tropical forest309

area, the basin hosts at least 10% of the world’s known species (Da Silva et al., 2005).310
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The Amazon biome is threatened by a multitude of interacting factors. Ecosystem311

services, such as water supply, carbon storage and provision of species habitat are312

directly threatened by the effects of climate change and the increasing pressure on land,313

with projected severe reductions in water yields, carbon content and species habitat,314

which is particularly affected by changes in natural vegetation cover (Prüssmann et al.,315

2016). The primary uses for cleared forest land are pasture for cattle farming and316

industrial soy cropping (Nepstad et al., 2014; FAO, 2015). Between 1992 and 2018, the317

biome has seen significant increases in land required for cropping and pasture, as well318

as significant decreases in forest cover (Fig. 2b).319

(a)

3.2 %

4.01 %

90.73 %

7.47 %

4.59 %

85.57 %

Cropping

Pasture

Forest

−6 −3 0 3 6
Change [%]

(b)

Figure 2: Overview of the study area. a) Location of the amazon catchment in South America (grey-
shaded area), including IUCN protected areas (categories I and II) which were used to constrain land
use changes (black shaded areas). b) Changes in selected land uses, derived from observed land use
maps. Pasture includes Gra and Shr, Cropping includes Cro and CrM and forest includes For. Land
use classes are specified in Table 1 below

Using a broad reclassification of the predicted and observed land use classes into crop-320

land, pasture and habitat, we were able to specifically validate our model’s ability to321

predict agricultural expansion and habitat declines as aggregated threats to ecosystems322

and biodiversity. We assessed the accuracy of our predictions of cropland expansion323
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with simultaneous declines in classes containing natural habitats (For, Wet and Oth).324

We categorized the observed and predicted maps into 1) areas with no cropland in-325

crease, 2) areas where cropland increase led to mostly forest declines (net replacement326

of forest), and 3) areas where cropland increase led to mostly declines in other natural327

habitat classes (net replacement of other habitat). Similarly, we assessed the accu-328

racy of our predictions of pasture expansion on natural habitats by categorizing the329

landscape into 1) areas with no pasture increase, 2) areas where pasture increase led330

to mostly forest declines, and 3) areas where pasture increase led to mostly declines331

in other natural habitat classes. We assessed the difference between the respective332

observed and predicted maps by disaggregating overall difference into allocation and333

quantity difference components. This allowed us to further investigate whether predic-334

tion inaccuracies were due to error in the sum of allocated cells (quantity difference),335

or to errors in spatial location, discounting quantity difference (allocation difference)336

(Pontius and Millones, 2011).337

Results338

Predicting land use change intensity339

Results of the cross-validation of the suitability model component show that including340

neighbourhood covariates resulted in substantial predictive performance improvements341

across spatial blocks (Fig. 3c) at both resolutions; models using neighbourhood co-342

variates alone were approximately as good as the model using the full covariate set.343

Including only environmental variables resulted in less accurate predictions at both344

resolutions, with predictions under the fine resolution comparatively worse than under345

the coarse resolution.346
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Under all tested models (naive, semi-naive, full), the accuracy of cell-level allocations347

improved with the intensity of observed changes (Fig. 3a). This implies that our model348

makes good predictions under scenarios with high expected overall changes. It is not349

surprising that large changes are easier to predict than small ones.350

Where observed changes were large (Fig. 3a, bottom two panels), including land use351

suitability and constraints (full model) resulted in substantial increases of predictive352

performance. In these areas, the null model’s assumption of no spatial variation in353

reallocation of land use introduced very high bias, which our constraints were able to354

reduce.355

When observed changes were small (Fig. 3a, top two panels), the null model made356

near perfect predictions. Given how close the null model already was to the truth, im-357

provements by allocating demand (naive model) and accounting for land use suitability358

(semi-naive model) were difficult to achieve; in the smallest change category (Fig. 3a,359

top left panel), the naive and semi-naive predictions were in fact slightly worse than360

the null. In these areas the largest observed changes were below 0.5%, making the361

assumption of no change under the null model highly plausible. Under the full model,362

the applied constraint limited the areas that could be flagged for increases. Accord-363

ingly, where observed changes were small, this model made better predictions than the364

semi-naive and naive models, in which this constraint was not applied.365

Predicting the direction of land use changes366

The worst predictions of cell-level direction of change were made by the naive and367

semi-naive models and the best predictions under the full model (Fig. 3b), with over-368

all difference consistently less than 25%. Predictions became more accurate the more369

model components were applied. Under the full model we achieved the highest predic-370

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.415992doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415992
http://creativecommons.org/licenses/by-nc-nd/4.0/


tion accuracy. Overall, the semi-naive model performed slightly better than the naive371

model, demonstrating the utility of scaling allocations with land use suitability surfaces.372

However, both naive and semi-naive predictions of change were generally less accurate373

than those under the full model. For areas with very small changes predictions tended374

to be worse than those under the null model. This was due to the large number of cells375

falling into the smallest category of observed change (≈ 60% of cells when measured376

across the entire time series); in such areas, assuming the null model was more accurate377

than making naive and semi-informed allocations. In areas with intermediate levels of378

change (0.5%-30%), predictions under the different models were very similar, but the379

range of estimated RMSE was higher under the full model (indicated by wider error380

bars). This suggests that the full model outperformed the semi-naive and naive models381

in some areas, but fell comparatively short in others. This may be due to a larger382

number of cells at this level of observed change incorrectly prevented from increasing383

in land uses by the applied model constraints, while similarly a larger number of cells384

was correctly allowed to increase by the model.385
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Figure 3: Validation of predicted land use change intensity and direction of change and cross-validation
of suitability model. a) The difference between RMSE for each model (naive, semi-naive, full) and
RMSE of the null model. The null model assumes that land use is static through time, the naive
model assumes completely random allocations, the semi-naive model assumes that allocations are
scaled with land use suitability and the full model assumes that allocations are both scaled with land
use suitability and subject to model constraints (no changes in areas under high protection status
and no land use increases in areas completely devoid of that land use). All RMSE were calculated at
cell-level, using the predicted and observed vectors of land use fractions in each cell. Plotted are means
and standard deviations across cells. Positive values indicate better fits under the null model, negative
values indicate better fit under more highly parametrised models. Data on validation outcomes are
grouped by the magnitude of the largest observed proportional change in any land use within a cell. In
general, the larger the observed change in land use, the better the parameterized models did compared
with the null model. b) The proportional disagreement between predictions of the direction of change
(no change, decrease, increase) for each land use and the observed direction of change at each time
step. Smaller values indicate lower overall difference and higher similarity between corresponding
maps. c) Difference between cross-validated RMSE estimated for suitability models containing only
environmental covariates and only neighbourhood covariates and models containing both covariate
types combined. Positive values indicate a poorer fit than the model containing both covariate types.
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Predicting agricultural expansion and habitat declines386

Our model achieved high accuracy when predicting cropland and pasture expansion387

on forest and other land use types containing natural habitats. The estimated overall388

difference between observed and predicted mappings was consistently around 9% when389

measuring the impacts of cropland expansion (Fig. 4a) and 16-18% when measuring390

the impacts of pasture expansion (Fig. 4b).391

Comparing the spatial configuration of cropland expansion (Fig. 4c) and pasture ex-392

pansion (Fig. 4d) into natural habitats in the last validation time step, the number of393

cells falling into each category was very similar in both cases, but the spatial arrange-394

ment differed, illustrating the different relative contributions of quantity and allocation395

difference. The model overestimated cropland expansion and net forest loss in the396

central-north, east and south of the catchment, while small observed areas in the cen-397

ter of the catchment were slightly underpredicted. Cropland expansion leading to net398

losses in non-forest habitats were barely visible in both the observed and predicted399

maps. Pasture expansion leading to net forest loss was slightly underestimated in the400

north and east of the catchment, and slightly overestimated in the center-south. Pasture401

expansion leading to net losses in other habitat types was very small.402
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Figure 4: Validation of predictions of aggregated agricultural expansion and natural habitat decline
in the Amazon basin. a,b) Quantity and allocation difference of observed and predicted mappings of
agricultural expansion (a) and natural habitat decline (b), by time step. The overall difference is the
sum of quantity and allocation difference. c) Maps of observed (left) and predicted (right) cropland
expansion and habitat declines between 1992 and 2018. d) Map of observed (left) and predicted (right)
pasture expansion and habitat declines. Quantity and allocation difference on these maps correspond
to the respective last bars in panels a and b.

Discussion403

We have presented a new land use model to predict land use fractions, thus retaining404

information at sub-pixel level. The model is able to accurately allocate fractions of405

land use through time, especially under scenarios of more extreme land use change. We406

explicitly accounted for competition between land use types and land use suitability in407

response to environmental drivers by means of a multinomial logistic model and could408

show that this aspect brings substantial improvements to predictions, when compared409

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.415992doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415992
http://creativecommons.org/licenses/by-nc-nd/4.0/


the assumption that land use does not change at all (null model).410

In scenarios where demand changes are expected to be high, our model allocates supply411

to match aggregated demand, changing the total area allocated to different land uses412

and also allowing land uses to be established in new areas. In scenarios with small413

expected demand changes, land use changes, including the establishment of land uses414

in new areas, remain small.415

The initial land use distribution is likely to have resulted from long time periods of416

optimizing behaviour. For this reason, our model assumes that the land use distribution417

does not change to match predicted land use suitability alone. For example, if the418

modelled cropland suitability in an area is 0.8, but the observed cropland fraction419

is 0.2, there would only be a local increase in cropland if the aggregated demand for420

cropland at the study area level increased. The much lower realised fraction of cropland421

in that area when compared to the predicted suitability for cropland captures processes422

that are not captured by the suitability model.423

Similar to CLUE, our constraint on turn-over accounted for conversion effort. Here,424

data from the observed validation time series allowed us to extract a raw estimate425

of the constraint parameter to tune our model. We estimated the parameter using426

long-term observed means, which we assume to be similarly informative as extensive427

literature review, inquiring expert opinion, or analyzing data from time series preceding428

the predicted time span, thus preventing overfitting.429

We could show that our model is very easily adaptable to specific ecological study430

contexts. When validating our model’s performance in the context of agricultural ex-431

pansion on natural habitat, we divided the difference between predicted and observed432

maps of agricultural expansion and habitat decline into the two components quantity433

and allocation difference. We were able to determine that the main sources of difference434
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between predicted and observed maps were spatial misallocations that increased with435

increasing time horizon. However, allocation difference was still very low, suggesting436

that our model can be a useful tool to predict the overall pressure and spatial config-437

uration of land use change impacts that are driven by different types of agricultural438

expansion into different habitat types.439

Validating the suitability model component of our model approach, we found that440

neighbourhood covariates explained much of the suitability patterns across the land-441

scape. This is a common effect of including flexible spatial correlation terms in models442

with other spatially-varying covariates (spatial confounding) (Hodges and Reich, 2010).443

The models describe the spatial pattern with the spatial correlation term, but this effect444

does not imply causation and other drivers included in the model may still drive changes445

in the response, particularly over long time periods. Here, similar to what was shown by446

Dendoncker et al. (2007), including neighbourhood covariates lead to the most highly447

fitted models. Allowing spatial autocorrelation to drive patterns seems a sensible choice448

for predictions in this case study because the model only predicts three decades. How-449

ever, for longer time spans, spatial autocorrelation probably becomes less important450

and continental-scale environmental driving factors acting homogeneously across the451

whole landscape may dominate patterns in reality. When making such longer-term pre-452

dictions, this could be captured by fitting the suitability model with several time steps453

of data, thus assuring that land use suitability is less reliant on the present land use454

state, but more weight is given to long-term and large-scale environmental processes.455

The results of our validation also strongly indicate that in case of our model, adding456

constraints (decision rules) in terms of where and how land use changes are allowed to457

occur, are responsible for the majority of increases in predictive performance. While458

we provide initial steps in parametrising these constraints, more specific knowledge of459
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bottom-up processes that drive land use stasis and change across the landscape could460

further consolidate the accuracy of our model. For example, this could be achieved461

by including data on the expected behaviour of economic agents who seek to max-462

imise returns on their productive land. One example includes the Land Use Trade-offs463

(LUTO) model (Bryan et al., 2014; Connor et al., 2015), which includes pixel-wise464

optimisation of cost and return of alternative land uses. However, such models are465

difficult to parametrise in data-scarce regions and require significant computational466

power. Bottom-up processes, such as price feedbacks, also tend to act at very fine spa-467

tial resolutions, but have little effect when seen at a continental scale, where scenario468

uncertainty and global processes dominate predictions (Connor et al., 2015). Depend-469

ing on scale, including very fine-scale dynamics of agent behaviour may simply not pay470

off, or it might be more appropriate to merely downscale them to the study area extent471

(Van Asselen and Verburg, 2013; Connor et al., 2015).472

In order to allow scaling our model to global applications, we only used drivers that473

were available at global scales. However, improvements to the land use suitability474

model can be achieved by including more proximate drivers of land use change, such475

as market accessibility (Meiyappan et al., 2014; Verburg et al., 2011), by fitting the476

land use suitability model for individual subsets of the study area to improve local477

fit, or by creating more land use classes for which particular biophysical constraints478

are known. Including location-dependent drivers and models and raising the resolution479

may substantially improve the accuracy of land use suitability maps, increasing the480

contribution of this model component to overall prediction accuracy.481

Our approach provides a validated method to spatially downscale future changes in482

land demands, and we highlight options to further improve its applicability in ecologi-483

cal studies. We hope that by providing open source code we can encourage ecologists to484
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include land use change in predictive studies and make further steps toward consolidat-485

ing quantitative methodological links between socio-economic and ecological systems.486
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