
1 

 

A precautionary solution to estimation bias in shaping safe harvest boundaries 1 

 2 

Daisuke Goto1,*, Jennifer A. Devine1,4, Ibrahim Umar1, Simon H. Fischer2, José A. A. De 3 

Oliveira2, Daniel Howell1, Ernesto Jardim3,5, Iago Mosqueira3,6, and Kotaro Ono1. 4 

 5 

1Institute of Marine Research/Havforskningsinstituttet, Postboks 1870 Nordnes, 5817 Bergen, 6 

Norway  7 

2The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, 8 

Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK 9 

3European Commission, DG Joint Research Center, Directorate D – Sustainable Resources, Unit 10 

D.02 Water and Marine Resources, Via Enrico Fermi 2749 21027, Ispra, VA, Italy 11 

Present address: 12 

4National Institute of Water & Atmospheric Research, 217 Akersten Street, Nelson 7040, New 13 

Zealand 14 

5Marine Stewardship Council, Marine House, 1 Snow Hill, London, EC1A 2DH, UK 15 

6Wageningen Marine Research, PO Box 68, 1970AB, Ĳmuiden, The Netherlands 16 

*Corresponding author: daisuke.goto2@gmail.com 17 

18 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.413070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.05.413070
http://creativecommons.org/licenses/by/4.0/


2 

 

Abstract 19 

1. Imperfect knowledge of social–ecological systems can obscure predictability of resource 20 

fluctuation and, in turn, lead to erroneous risk assessments and delayed management actions. 21 

Systematic error in population status such as persistent overestimation of abundance is a 22 

pervasive conservation problem and has plagued assessments of commercial exploitation of 23 

marine species, threatening its sustainability.  24 

2. Using North Sea saithe (Pollachius virens)–a demersal (bottom-water) predatory fish–as a 25 

real-world case study, we illustrate a precautionary approach to diagnose robustness of harvest 26 

rules to persistent estimation bias (overestimated stock abundance and underestimated fishing 27 

mortality rate) and to develop alternative protective measures that minimize population depletion 28 

(quasi-extinction) risk by propagating known sources of uncertainty (process, observation, and 29 

implementation) through closed-loop simulation of resource–management feedback systems 30 

(management strategy evaluation, MSE).  31 

3. Analyses showed that the harvest rules set for saithe are robust to a moderate amount (10–32 

30%) of estimation bias. More severe bias sets overly optimistic catch limits and promotes 33 

overexploitation only in the short term; unacceptably high quasi-extinction risks, however, result 34 

primarily from progressively amplified amplitudes of catch fluctuation. Although these 35 

undesirable outcomes were, to some extent, mitigated by applying a policy tool to suppress catch 36 

fluctuation, this tool falls short of being an effective measure to achieve management goals. 37 

4. More consistent performance of management measures was achieved by developing and 38 

applying more precautionary harvest rules through MSE by explicitly accounting for bias. When 39 

bias became more severe, raising threshold abundance (by 8–24%) that triggers management 40 

actions and lowering target exploitation rate (by 6–29%) would not only safeguard against 41 
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overexploitation and depletion but also provide catch stability (less disruption in fishing 42 

operations).  43 

5. We show that the precautionary approach to risk management through MSE offers a powerful 44 

tool to set safe harvest boundaries when assessments are persistently biased. Given challenges in 45 

identifying the sources, we suggest bias be routinely evaluated through MSE, and alternative 46 

measures be developed to set catch limits when needed. By explicitly accounting for key sources 47 

of uncertainty in managing commercial exploitation, our proposed approach ensures effective 48 

conservation and sustainable exploitation of living marine resources even under profound 49 

uncertainty. 50 

Key words: environmental stochasticity, decision making, measurement error, risk analysis, 51 

extinction, management procedure, state-space models 52 

1. INTRODUCTION 53 

Managers and policymakers face trade-offs in sustainably managing extractive use of living 54 

marine resources while effectively conserving biodiversity under the precautionary principle 55 

(FAO 1996; Hilborn et al. 2001). Imperfect knowledge of social–ecological systems, however, 56 

impedes the decision making. Scientific uncertainty of current population status can obscure 57 

assessment of decline or extinction threats (Ripa & Lundberg 1996; Ovaskainen & Meerson 58 

2010). Lack of certainty in socioeconomic dynamics (promoting noncompliance and inertia) may 59 

also reduce the efficacy of management measures applied (Hilborn et al. 2001; Beddington et al. 60 

2007). We must, thus, account for key sources of uncertainty to accurately assess 61 

overexploitation risk (Regan et al. 2005) and recovery potential (Memarzadeh et al. 2019) and 62 

set conservation priorities if we were to achieve internationally agreed targets such as 63 

Sustainable Development Goal 14 (UN 2015) and Aichi Biodiversity Target 6 (CBD 2010). 64 
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In commercial capture fisheries, assessments of current population status provide a scientific 65 

basis for setting a threshold for safe harvest to prevent the decline of fish stocks by taking 66 

precautionary measures, where necessary. This approach may include the use of biological 67 

thresholds such as the population abundance that produces maximum sustainable yield (BMSY, 68 

Beddington et al. 2007). The harvest of wild populations is commonly managed by applying 69 

decision rules based on such predefined thresholds (reference points) to set a catch limit for the 70 

year (Beddington et al. 2007). Accurate population assessments, thus, contribute to successful 71 

implementation of management measures to sustain long-term commercial exploitation of 72 

marine animals (Hilborn et al. 2020). Scientific uncertainty in assessments (data and models), 73 

however, has posed a multitude of challenges (Patterson et al. 2001; Sethi 2010). If population 74 

abundance is overestimated, for example, resulting overly optimistic catch advice or rebuilding 75 

plans will deplete the population, thereby threatening the sustainability of fisheries that depend 76 

on it (Walters & Maguire 1996; Memarzadeh et al. 2019). Overestimated abundance and 77 

underestimated exploitation rate (resulting heightened extinction risk) have led to some historical 78 

collapses of oceanic predators (Walters & Maguire 1996; Charles 1998).  79 

Systematic errors in perceived population status have plagued assessments of exploited marine 80 

species (ICES 2020a) and likely contributed to overharvest and depletion including stocks that 81 

are considered well-managed (Brooks & Legault 2016; Wiedenmann & Jensen 2018). 82 

Inconsistency across assessments (such as persistent overestimation of abundance) detected 83 

retrospectively (known as “retrospective patterns”) has led to the rejection of assessments (Punt 84 

et al. 2020). Although past research has proposed solutions to the retrospective problems, 85 

applying these solutions remains a challenge because bias could originate from multiple sources 86 

(Mohn 1999; Hurtado-Ferro et al. 2015; Brooks & Legault 2016). Incomplete knowledge of the 87 
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causes behind retrospective patterns a priori may lead to incorrect application of the tools, 88 

inadvertently exacerbating the problems by amplifying overharvest and depletion risks (Mohn 89 

1999; Brooks & Legault 2016). Given serious ecological and socioeconomic implications for 90 

getting it wrong, we urgently need a procedure that provides practical guidance for explicitly 91 

evaluating robustness of management strategies and designing alternative protective measures to 92 

inform decision making to safely harvest marine resources under uncertainty (Brooks & Legault 93 

2016; Punt et al. 2020).  94 

Here, we illustrate how closed-loop simulation of resource–management systems (management 95 

strategy evaluation) can help prevent retrospective patterns from derailing effective management 96 

of exploited marine populations under known sources of uncertainty. Management strategy 97 

evaluation (MSE) is a flexible decision-support tool frequently used in fisheries (Butterworth & 98 

Punt 1999) and has increasingly been adopted for conservation planning of imperiled species in 99 

marine and terrestrial systems (Milner-Gulland et al. 2001; Bunnefeld et al. 2011). This tool is 100 

designed to evaluate the performance of candidate policy instruments through forward 101 

simulations of feedback (learning from implementation and new observation) between natural 102 

resources and management systems (Punt et al. 2016). MSE can also assess consequences of 103 

likely sources of bias in assessments (Szuwalski et al. 2017; Hordyk et al. 2019). Managing with 104 

persistent overestimates of population abundance may not only set overly optimistic catch limits 105 

(Hordyk et al. 2019) but also amplify the magnitude of catch fluctuation (Deroba 2014), an 106 

undesirable outcome for harvesters and seafood processors. In this study, we make use of the 107 

MSE framework for the North Sea population of saithe (Pollachius virens) (ICES 2019a), a 108 

demersal (bottom-water) predatory fish harvested commercially by more than a dozen European 109 

nations, as a real-world case study. We illustrate a 2-step simulation approach to diagnose 110 
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retrospective problems and to design robust harvest policies by explicitly accounting for process, 111 

observation, and implementation errors under scenarios of estimation bias (inaccuracy and 112 

inconsistency in perceived stock abundance and fishing pressure). Specifically, we ask: 1) How 113 

robust are current management procedures to biased assessments? and 2) How precautionary do 114 

management procedures need to be to avert mismanagement? 115 

2. METHODS AND MATERIALS 116 

2.1. Management strategy evaluation framework 117 

We simulated annual resource surveys and assessments to explore trade-offs in achieving 118 

conservation-oriented (minimizing risk) and harvest-oriented (maximizing yield and minimizing 119 

yield variance) goals through MSE. We used the MSE framework originally developed for 120 

commercially harvested demersal fish stocks in the North Sea through the International Council 121 

for the Exploration of the Sea (ICES 2019a) and has been adopted for other managed species in 122 

the North Atlantic including Atlantic mackerel (Scomber scombrus, ICES 2020b). The 123 

framework consists of submodels that simulate 1) true population and harvest dynamics at sea 124 

and observations through monitoring surveys (an operating model, OM), and 2) management 125 

processes (learning and decision), assessments based on observations from the surveys and 126 

subsequent decision making (a management procedure, MP) (Fig. 1a). We conditioned the OM 127 

on the latest (2018) assessment for North Sea saithe (ICES statistical areas: Subareas 4 and 6 and 128 

Division 3a, Fig. 1c and ICES 2018), which represents the best available information on the past 129 

(1967–2017) population and harvest dynamics, and projected 21-year (2018–2038) forecasts. We 130 

ran all simulations in R (version 3.60, R Development Core Team 2019) using the mse R 131 

package (https://github.com/flr/mse) (ICES 2019a), part of the Fisheries Library in R (FLR, Kell 132 

et. al 2007).  133 
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2.2. Saithe population dynamics 134 

To simulate future saithe population dynamics, we used an age-structured population model 135 

that accounts for environmental stochasticity. The data sources, survey methods, and model 136 

structure have been extensively documented in ICES (2016) and ICES (2019b). Briefly, we 137 

parameterized the model with 51-year estimates of age-specific masses (g) and maturity rates 138 

(proportion of adults), and natural mortality rates (non-fishing such as starvation and diseases) 139 

assumed at a value of 0.2 year-1 for all ages and years. Then, we fitted the population model to 140 

time series data of commercial catch (age-aggregated biomass of German, French, and 141 

Norwegian trawlers in 2000–2017, t) and age-specific (ages 3–8) abundance indices 142 

(International bottom trawl surveys in the third quarter, IBTS-Q3, in 1992–2017) (ICES 2018). 143 

Modeled fish enter the population as 3-year-olds (recruits). We simulated density-dependent 144 

regulation of recruitment with a segmented regression (ICES 2019a) relating adult biomass to the 145 

number of recruits. Adult biomass (spawning stock biomass, SSB, t) is the product of age-146 

specific numbers, masses, and maturity rates. We parameterized the spawner–recruit model by 147 

fitting it to the 1998–2017 data. To account for environmental stochasticity in density-148 

dependency of recruitment, we first used a kernel density function to smooth the resulting 149 

distribution of residuals from the fitted regression. Then, we resampled residuals (with 150 

replacement) from the distribution and applied to model outputs to generate recruits every 151 

simulation year (Appendix S1a,b); this process was repeated independently for each replicate. 152 

Preliminary analyses showed little evidence of temporal autocorrelation in recruitment 153 

(Appendix S1c).  154 

We simulated the population dynamics of 4-year-olds and older as 155 

log��,y = log�� – 1,y – 1 − �� – 1,y – 1 − �� – 1,y – 1 + ηa,y                                  (1a) 156 
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log NA,y = log(NA−1,y−1e
−F

A−1,y−1 
−M

A−1,y−1 + NA,y−1e
−F

A,y−1
−M

A,y−1) + ηA,y                 (1b) 157 

logFa,y = logFa−1,y−1+ ξa,y                                                        (1c) 158 

where ��,y, Fa,y , and Ma,y, are a-year-old numbers, fishing mortality rates, and natural mortality 159 

rates in year y, and η and ξ  are normally distributed variables, reflecting measurement errors 160 

(Nielsen & Berg 2014). Historical surveys indicate that 10-year-olds and older are relatively 161 

uncommon, and we simulated them as a dynamic aggregate pool (�A, FA, and MA). To account 162 

for process uncertainty (year-to-year variability in survival rate), we generated 1000 realizations 163 

of stochastic populations using the variance-covariance matrix of estimable parameters (age-164 

specific numbers and fishing mortality rates) taken from the 2018 assessment (Appendix S2a, 165 

ICES 2019b). We derived a set of mean age-specific masses, maturity rates, and fishing gear 166 

selectivity by randomly selecting a year (with replacement) from the 2008–2017 data; this 167 

process was repeated independently for each replicate every simulation year to account for 168 

environmental stochasticity.  169 

2.3. Monitoring and catch surveys 170 

We simulated future annual monitoring of the population and harvest (which are subject to 171 

error and bias) by adding observation error to simulated-true survey indices and age-specific 172 

catch computed from the population OM. In forecasting, we assumed the model is fixed (life-173 

history parameters such as maturity rates are time-invariant). We simulated deviances to the 174 

observed survey index (IBTS-Q3) using the variance-covariance matrix for the survey index to 175 

account for observation error correlated between ages (Appendix S3a). Survey observations (I) 176 

are generated as: 177 

                                                            (2a) 178 

                                                                         (2b) 179 
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where Na,y and Z a,y are a-year-old numbers and total (F + M) mortality rates in year y from the 180 

population OM; qa are a-year-old survey catchabilities for the survey; t is the timing of the 181 

annual survey (0.575 for IBTS-Q3). εa,y represents multivariate normally distributed errors with 182 

mean zero and standard deviation Σ defined by the variance-covariance matrix between ages 183 

within years (ICES 2019b). Observation error is included on age-specific abundance indices as 184 

multiplicative lognormal error (Appendix S2b). 185 

We simulated uncertainty in reported catch by computing a commercial catch index (or 186 

exploitable biomass index) generated from the population OM (Appendix S3b) as: 187 

                                              (3a) 188 

                                                            (3b) 189 

                                                           (3c) 190 

where Na,y and Za,y are as above; q is the catchability of the commercial catch index;  are a-191 

year-old catch masses in year y; 0.5 indicates projection to mid-year; S is the relative F for a-192 

year-olds in year y; and εy is a normally distributed error with mean zero and standard deviation 193 

 in year y (Appendix S2c). 194 

2.4. Management procedure 195 

The MP simulates decision making by managers based on perceived current stock status and 196 

model-based harvest rules (Fig. 1a); the current status is assessed annually by fitting an 197 

estimation model (EM) to the time series (past plus most recent) data passed on from the 198 

observation model (survey and catch indices) before provision of catch advice in May. In this 199 

study, we used the State-space Assessment Model (Nielsen & Berg 2014) as an EM and harvest 200 

rules set for saithe (ICES 2019a); model settings and forecast assumptions are fully described in 201 

ICES (2019b). Under the harvest rules, the following year’s catch limit is the product of target 202 
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exploitation rate (Ftarget) and stock abundance (t) when the estimated SSB in the current 203 

assessment year (terminal year) remains above a fixed threshold (Btrigger) (Fig. 1b). These 2 204 

parameters of the decision model are designed to prevent overharvesting by accounting for 205 

uncertainty in population and harvest dynamics (Rindorf et al. 2016). When the SSB falls below 206 

Btrigger, exploitation rate is adjusted to Ftarget scaled to the proportion of SSB relative to Btrigger 207 

(Fig. 1b), thereby allowing the population to rebuild (adaptive harvesting).  208 

2.5. Population and management measure performances 209 

We computed conservation-oriented (median SSB and risk) and harvest-oriented (median 210 

catch and interannual catch variability, ICV) metrics from 1000 realizations of annual 211 

assessments to evaluate performance of the harvest rules applied. We chose the number of 212 

replicates based on the stability of risk (ICES 2019a). Risk is defined as the maximum annual 213 

probability of SSB falling below a limit threshold, Blim (probability of quasi-extinction, Fig. 1b), 214 

consistent with previous analyses (ICES 2019c). Blim is a spawner abundance below which 215 

reproductive capacity of the population is expected to decline (Rindorf et al. 2016). We 216 

computed the risk based on the proportion of 1000 simulations with annual estimates of SSB < 217 

Blim. We estimated Blim using the Eqsim R package (https://github.com/ices-tools-prod/msy); Blim 218 

is set to 107,297 t for saithe (Fig. 1b, ICES 2019a). We computed ICV (a percentage change in 219 

catch limits) as 220 

                                                     (4) 221 

where Cy+1 and Cy are projected catches in year y+1 and y (respectively).  222 

We computed Mohn’s ρ, which indicates the degree of inconsistency (bias) between 223 

subsequent assessments (“retrospective pattern”, Mohn 1999), and relative error (proportional 224 

deviation between the population OM and EM) for SSB and fishing mortality rate (mean F, 225 
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which is computed from age-specific fishing mortality rates of 4- to 7- year-olds) to evaluate the 226 

performance of annual assessments. We computed ρ as mean relative bias with a 5-year moving 227 

window (“peel”) for the forecasting period in 2027–2038 as; 228 

                                                         (5) 229 

where  is an estimate of SSB or mean F in the terminal year from the EM, T, with the last i 230 

years of data removed (“peeled”), and   is the estimate for year T-i, with all data included 231 

(Brooks & Legault 2016).  232 

2.6. Estimation bias scenarios 233 

To evaluate how managing with persistent estimation bias degrades performance of harvest 234 

rules and, in turn, potential to achieve management goals, we simulated scenarios of bias in 235 

perceived spawner abundance and fishing mortality rate in annual assessments. Although bias 236 

can emerge in both directions (over- and under-estimation), they have asymmetric implications 237 

for conservation and harvest decision making by managers. In this study, we analyzed 11 238 

scenarios that can cause severe conservation issues for exploited species, SSB overestimation 239 

and mean F underestimation. Specifically, we added a positive bias (+0%/baseline, +10%, 240 

+20%, +30, +40%, and +50% per year) to age-specific numbers or a negative bias (–241 

0%/baseline, –10%, –20%, –30, –40%, and –50% per year) to age-specific fishing mortality rates 242 

in the terminal year of annual assessments.  243 

We considered three harvest rules evaluated for saithe in previous analyses (Fig. 1b, ICES 244 

2019c); 2 rules (HCR-A+D and HCR-A1+D) with harvest policies of interannual catch quota 245 

flexibility and suppressing short-term catch fluctuation (hereafter stability constraint) and 1 rule 246 

without (HCR-A). For simplicity, we introduced interannual catch quota flexibility (also known 247 
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as “banking and borrowing”, ICES 2019a) by simulating a scenario of over- and under-248 

harvesting by a fixed proportion (10%) in alternate years (for example, 10% of catch quota in 249 

year 1 is transferred to catch quota in year 2, and so on). In effect, this scenario can act like 250 

implementation error. Stability constraints are designed to suppress year-to-year variability in 251 

projected catch to ≤ 25% upward and to ≤ 20% downward (moderate) under HCR-A+D, or to ≤ 252 

15% in both directions (strict) under HCR-A1+D. By running these scenarios, we evaluated how 253 

effective the policy tool designed to provide stable and predictable catch forecasts is when the 254 

assessments are biased. For consistency, we used the same decision model parameter values as in 255 

ICES (2019a) in all analyses (HCR-A: Btrigger = 250,000 t and Ftarget = 0.35; HCR-A+D: Btrigger = 256 

230,000 t and Ftarget = 0.37; HCR-A1+D: Btrigger = 230,000 t and Ftarget = 0.36, Fig. 1b, ICES 257 

2019a). We analyzed all scenarios based on the performance metrics (median SSB, risk, median 258 

catch, and ICV) from 1000 realizations of short-term (years 1–5) and long-term (years 11–20) 259 

projections. 260 

2.7. Developing robust management measures 261 

To evaluate how precautionary the harvest rules need to be to minimize disruption in catch 262 

advice provisioning when the assessment is biased, we explored alternative rules by optimizing 263 

the 2 parameters of the decision model (Btrigger and Ftarget) to project catch limits under the same 264 

bias scenarios (overestimated SSB or underestimated mean F by 10–50%) through MSE. 265 

Because this is a computationally intensive procedure, we explored select candidate 266 

combinations (192 per scenario or 1920 unique runs in total) using HCR-A to illustrate our 267 

proposed approach. We conducted a restricted grid search in parameter space of Btrigger (210,000 268 

to 320,000 t with 10,000 t increments) and Ftarget (0.24 to 0.39 with 0.01 increments). We 269 

computed median catch limits and risk from 1000 realizations of 21-year simulations. For 270 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.413070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.05.413070
http://creativecommons.org/licenses/by/4.0/


13 

 

consistency, we used the same precautionary criterion for optimizing the parameter sets by 271 

maximizing median catch limits while maintaining long-term risk ≤ 0.05 (ICES 2019c).  272 

3. RESULTS 273 

3.1. Estimation errors under the baseline scenario 274 

Analyses on the baseline scenario forecasts showed that process and observation errors 275 

introduced minor inaccuracy (relative error = ~–0.02%) and inconsistency (Mohn’s ρ = ~–0.002) 276 

in annual estimates of SSB and mean F with the EM under all the harvest rules (Table 1). 277 

Implementation error with stability constraints amplified inconsistency but did not influence 278 

inaccuracy except for mean F under the strict constraint in which the EM failed to detect an 279 

increase (Table 1). Mean ρ for SSB or mean F did not correlate strongly with relative errors 280 

(correlation coefficient r = ~0.01 and ~0.008, respectively) under any of the harvest rules.  281 

3.2. Performance of harvest rules with biased estimates 282 

Overall, all harvest rules were more robust to bias in estimated mean F than SSB. An 283 

increasing amount (10% to 50%) of bias in the estimates was projected to increase median catch, 284 

reduce SSB, and, in turn, increase risk in the short term (Fig. 2). Without accounting for 285 

implementation error or constraining year-to-year catch variability (HCR-A), bias in SSB 286 

estimates led to as much as 18% more catch, 14% less SSB, and nearly 3.0x higher risk than bias 287 

in mean F estimates (Fig. 2a). Although mean ICV moderately increased with bias in SSB 288 

estimates, the distribution was highly skewed; by contrast, ICV declined with increasing bias in 289 

mean F estimates (Fig. 2a).  290 

When accounting for implementation error and applying stability constraints (HCR-A+D and 291 

HCR-A1+D), similar short-term patterns emerged, except that catch increased less with biased 292 

SSB estimates (Fig. 2b,c). By contrast, ICV increased much more with biased estimates of SSB 293 
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and mean F (up to 3.8x and 44.0x, respectively), further increasing risk (up to 1.6x and 2.8x, 294 

respectively), under the moderate constraint than under no constraint (Fig. 2b). Under the strict 295 

constraint, the distribution of ICV became less skewed, and mean ICV became less responsive to 296 

increasing bias, lowering risk by as much as ~15% (Fig. 2c). 297 

In the long-term, although median catch became less responsive (declined by less than 5%) to 298 

increasing bias in estimated SSB and mean F, ICV became more variable (as much as ~1.4x the 299 

short term), reducing SSB and, in turn, increasing risk 12.9- and 8.9- fold under HCR-A 300 

(respectively, Fig. 3a). To quantify more precisely how robust the harvest rule is to bias, we ran 301 

additional simulations with 1% increments (+10% to +20% for SSB and –20% to –30% for mean 302 

F). The harvest rule was not precautionary when more than +18% bias in SSB estimates and –303 

24% bias in mean F estimates were introduced (Appendix S4).  304 

With implementation error and stability constraints, long-term relative responses of median 305 

catch and SSB to increasing bias in SSB and mean F estimates were similar to those under HCR-306 

A, but ICV and risk increased less (Fig. 3b,c). Although absolute values of ICV and risk were 307 

higher under HCR-A+D and HCR-A1+D owing to implementation error, stability constraints 308 

reduced relative changes in ICV and risk (by as much as 26% and 59%, respectively) with 309 

increasing bias (especially in mean F estimates, Fig. 3b,c).  310 

3.3. Alternative management measures  311 

The proportion of the select grid search area evaluated through MSE that remained 312 

precautionary (safe harvest margin) progressively shrank as more bias in SSB and mean F 313 

estimates was introduced (from 84% to 29% and from 90% to 37%, respectively, Fig. 4a,b and 314 

Table 2). Within the safe harvest margin, the harvest rule was projected to produce higher (by 315 

6.7–25%) short-term catches and maintain similar (<3% deviation from the baseline) long-term 316 
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catches under all bias scenarios (Table 2). With overestimated stock abundances, the fishery 317 

produced highest catch limits at lower (by 0.02–0.10) Ftarget and higher (by 10,000–60,000 t) 318 

Btrigger (Table 2 and Fig. 4a). However, short- and long-term SSB and short-term ICV 319 

progressively declined with biased estimates (Table 2). Similarly, with underestimated mean F, 320 

the fishery produced higher catches and reduced short-term ICV with lower SSB at lower Ftarget 321 

and Btrigger (by 0.02–0.06 and 20,000 t, respectively, Table 2 and Fig. 4b). 322 

4. DISCUSSION 323 

We showed that a precautionary approach applied through MSE offers a powerful decision-324 

support tool to explicitly evaluate how robust harvest rules are to estimation bias and, when 325 

necessary, to develop alternative (reliable) measures for sustainable harvest of marine 326 

populations by simulating the entire commercial fishery system. For North Sea saithe, the current 327 

harvest rule is robust to a moderate amount (10–30%) of bias in assessments despite process, 328 

observation, and implementation uncertainties. More severe bias sets overly optimistic catch 329 

limits only in the short term; unacceptably high risks of missing management targets (quasi-330 

extinction), however, result primarily from progressively amplified fluctuation in catch limits 331 

over time. A harvest policy tool to suppress catch fluctuation can, to some extent, mitigate these 332 

undesirable effects. More consistent, cost-effective performance–lower risk with less disruption 333 

in fishing operations (more stable catch limits)–can be achieved by developing and applying 334 

more precautionary harvest rules with lower target exploitation rate and higher threshold 335 

abundance. By explicitly accounting for key sources of uncertainty in managing commercial 336 

exploitation, this approach can provide decision makers a means to balance common trade-offs–337 

achieving socioeconomic goals while conserving living marine resources. 338 
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How robust management measures are to estimation errors would depend on life history, 339 

fishing operations, and current status of a given species or population (Wiedenmann & Jensen 340 

2018). For depleted populations with a high growth rate, for example, even a modest amount of 341 

bias may incur ecological and socioeconomic damages under multiple sources of uncertainty. 342 

North Sea saithe is currently (2018) in good condition (~37% above MSY Btrigger, ICES 2019b); 343 

our MSE-guided analyses showed that the current harvest rule is robust up to 18% 344 

overestimation of spawner abundance and 24% underestimation of fishing pressure (when 345 

accounting for process and observation errors), which are roughly in agreement with the rule of 346 

thumb based on Mohn’s ρ proposed by Hurtado-Ferro et al. (2015). Past work, however, 347 

suggests that this metric may not be consistently sensitive to retrospective patterns (Hurtado-348 

Ferro et al. 2015; Brooks & Legault 2016; Wiedenmann & Jensen 2018). Our analyses also 349 

showed that Mohn’s ρ does not reflect the magnitude of relative error (simulated-true versus 350 

perceived) in assessments, leaving certain ambiguity in its use.  351 

Our simulations further revealed that managing harvest with severely biased assessments can 352 

increase the risk of quasi-extinction, but the causes of heightened risk vary over time. The risk 353 

initially increases as the population becomes depleted owing primarily to overly optimistic 354 

projections of catch limits. Although median catch limits eventually stabilize, year-to-year catch 355 

variance continues to rise (by as much as 74%) over time as the estimates of stock abundance 356 

and fishing pressure become progressively more biased, and thus, the risk remains elevated.  357 

Ignorance of retrospective patterns can have time-varying consequences for managers and 358 

stakeholders; decision making misguided by erroneous assessments would produce higher yield 359 

(and thus revenues) in the short term but ultimately would amplify catch fluctuation and 360 

probabilities of depletion and quasi-extinction (and, in turn, fishery closure) in the long term. 361 
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Trade-offs between short-term gains and long-term losses are common dilemmas in managing 362 

natural resources (Carpenter et al. 2015). Although in-depth analyses on management measures 363 

to achieve a balance between conservation and socioeconomic targets are beyond the scope of 364 

this study, our findings reemphasize that alternative protective measures need to be explicitly 365 

assessed before implementation when providing a scientific basis to inform defensible decision 366 

making. 367 

Large year-to-year fluctuation in catch forecasts is disfavored by fishing communities 368 

(Carpenter et al. 2015); thus, measures to suppress the fluctuation is commonly applied in 369 

industrial exploitation. In our saithe example, this policy tool falls short of being an effective 370 

measure to achieve conservation- and harvest-oriented goals under severe uncertainty. Although 371 

suppressing short-term catch fluctuation can attenuate catch variance inflated by underestimated 372 

fishing pressure (but not overestimated stock abundance), quasi-extinction risk remains 373 

unacceptably high under most of the bias scenarios tested. Thus, this strategy may not be 374 

sufficiently sensitive to rapid population declines under severe bias in assessments and unlikely 375 

prompts reductions in catch effectively. 376 

Our analyses suggest that retrospective problems could go unnoticed for a long time as 377 

persistent overestimation of abundance can mask overharvesting and depletion, thereby delaying 378 

management responses (asynchronized resource–fishery dynamics, Fryxell et al. 2010). 379 

Although a certain lag in management responses is unavoidable, severe retrospective patterns 380 

can contribute to management inertia. Once population abundance reaches to a lower threshold 381 

(Blim, for example), the population may even become unresponsive to any measure for recovery 382 

(Allee effect, Kuparinen et al. 2014). Our analyses showed that this undesirable state can be 383 

avoided by developing and applying alternative–more precautionary–harvest rules to set catch 384 
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limits. For saithe, when retrospective patterns become severe, lowering target exploitation rate 385 

and raising threshold abundance (that trigger management actions) would not only minimize 386 

probabilities of quasi-extinction and fishery closure but also maintain catch stability, thereby 387 

minimizing disruption in fishing operations. Thus, this approach would support cost-effective 388 

decision making to safeguard against ecologically and socioeconomically undesirable outcomes 389 

of managing risks under systematic uncertainty.  390 

We showed that MSE offers a precautionary solution to retrospective problems in assessments 391 

and management of exploited populations. MSE can not only act as a diagnostic tool to evaluate 392 

the robustness of management measures by explicitly accounting for long-term consequences but 393 

also provide an adaptive, transparent approach to develop alternative protective measures when 394 

the perception deviates too far from the reality. Given ubiquity of estimation errors and 395 

challenges in identifying the sources (Hurtado-Ferro et al. 2015; Brooks & Legault 2016; 396 

Szuwalski et al. 2017), we suggest retrospective patterns be routinely evaluated through MSE as 397 

an additional source of uncertainty, and alternative measures be developed to set catch limits 398 

when the uncertainty becomes too severe.  399 

Our proposed approach also has limitations. Analyses showed that our ability to safely harvest 400 

marine resources would become progressively limited (less margin of error in setting the 401 

precautionary harvest rules or “safe operating space”, Anderies et al. 2019) as the magnitude of 402 

retrospective patterns increases. Thus, continued efforts to develop methods to identify root 403 

causes of the uncertainty (such as temporal variability in life-history traits, Hurtado-Ferro et al. 404 

2015; Szuwalski et al. 2017) are needed.  405 

Demand for wild-capture fisheries, which provide food, nutrition, and job security, will 406 

continue to rise with growing human populations in the coming decades (Costello et al. 2020). 407 
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Furthermore, changing ocean conditions are projected to increase environmental stochasticity, 408 

amplifying marine population and harvest fluctuation (Brooks & Legault 2016). Higher 409 

environmental stochasticity may also promote autocorrelation in population fluctuation (Ripa & 410 

Lundberg 1996; Gamelon et al. 2019) and amplify the magnitude of scientific uncertainty 411 

(thereby further shrinking safe harvest margins). These anticipated issues underscore greater 412 

needs for taking precautionary measures in shaping resilient management policies to safeguard 413 

shared living resources in the face of rising uncertainty. 414 
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Tables 

Table 1. Summary statistics of performance metrics from North Sea saithe management strategy evaluation under the baseline 

scenario of three harvest rules evaluated in this study (HCR-A, HCR-A+D, and HCR-A1+D). 

  OMa EMa relative error Mohn's ρ 
harvest rule median SD 5th 95th median SD 5th 95th median Sd 5th 95th median SD 5th 95th 
SSBa 

                HCR-A 277556 104612 150732 482385 267070 101053 152967 474471 -0.022 0.278 -0.359 0.507 0.007 0.043 -0.066 0.074 
HCR-A+D 216907 104455 81966 419176 221793 100485 80162 411952 -0.010 0.467 -0.467 0.844 0.008 0.047 -0.072 0.076 
HCR-A1+D 265121 100132 142147 460374 256608 96271 144700 454235 -0.017 0.293 -0.358 0.538 0.008 0.041 -0.065 0.069 
mean Fa 

                HCR-A 0.339 0.143 0.155 0.604 0.340 0.130 0.173 0.574 -0.019 0.551 -0.476 1.062 -0.010 0.081 -0.123 0.143 
HCR-A+D 0.339 0.143 0.155 0.604 0.340 0.130 0.173 0.574 -0.019 0.551 -0.476 1.062 -0.012 0.080 -0.123 0.138 
HCR-A1+D 0.348 0.162 0.152 0.658 0.340 0.145 0.171 0.619 -0.020 0.821 -0.550 1.432 -0.013 0.076 -0.116 0.137 

aSSB, mean F, OM, and EM indicate spawning stock biomass, mean fishing mortality rates of 4- to 7- year-olds, the population operating 
model, and the estimation model, respectively. 
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Table 2. Optimized parameters (Ftarget and Btrigger)
a of the harvest rule set for North Sea saithe 

(HCR-A) and performance metricsb from management strategy evaluation under scenarios of 

varying levels of assessment bias.  

   
short-term long-term   

scenario
c
 Ftarget Btrigger catch IAV SSB risk

d
 catch IAV SSB risk

d
 SHM

e
 

base 0.35 250000 92464 20.4 251973 2.0 116700 17.7 292067 1.5  - 
10% N 0.33 250000 101786 13.3 238194 3.2 116288 17.8 279135 2.5 84.4 
20% N 0.31 270000 103545 12.5 235356 3.3 116154 18.7 274958 3.0 65.6 
30% N 0.27 310000 93047 20.0 252123 2.2 115984 18.0 293711 2.2 53.1 
40% N 0.26 310000 101131 13.8 240643 2.9 115863 18.4 282929 2.5 37.5 
50% N 0.25 310000 104943 12.2 234525 3.3 115730 19.1 274228 2.8 29.2 
10% F 0.35 230000 103441 12.3 234493 3.3 116897 17.5 272497 2.9 89.6 
20% F 0.33 230000 102882 12.6 235089 3.3 117221 16.9 273309 3.0 76.0 
30% F 0.32 230000 104840 11.7 230922 3.6 117677 17.1 267727 3.6 62.5 
40% F 0.30 230000 103894 11.9 232210 3.5 118376 16.5 269327 3.5 51.0 
50% F 0.29 230000 105721 11.1 227980 4.1 118942 17.0 262836 4.2 36.5 

aThe model parameters were optimized at the highest median catch while risk remains ≤ 5%.  
bThe performance was evaluated with short-term (years 1–5) and long-term (years 11–20) median catch 
(t), interannual catch variability (%, IAV), median spawning stock biomass (SSB, t), and risk (%).  
cScenarios simulate overestimation of abundance (N) and underestimation of fishing mortality 
rate (F).  
dRisk is the maximum probability of SSB falling below Blim (107,297 t) over a given period.  
cSafe harvest margin (SHM) indicates the proportion of the grid-search area with the harvest rules that 
remain precautionary (Fig. 4).
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Figures legends 

Figure 1. Management strategy evaluation (MSE) framework and historical population and 

harvest dynamics of North Sea saithe. (a) schematic of the MSE framework (FLR/a4a, redrawn 

from E. Jardim, https://github.com/ejardim) adopted for evaluation of saithe management 

strategies. (b) three harvest control rules (HCR-A, HCR-A+D, and HCR- A1+D) evaluated in 

this study. (c) reconstructed saithe population and harvest dynamics taken from the 2018 

assessment. In b, blue dashed (horizontal and vertical) lines indicate the harvest rule parameters 

(reference points) set for saithe (Ftarget and Btrigger, respectively). 

Figure 2. Short-term (years 1–5) performance of management strategies (a) HCR-A, (b) HCR-

A+D, and (c) HCR-A1+D for North Sea saithe under scenarios (11) of varying levels of 

estimation bias (overestimation of stock abundance and underestimation of fishing mortality 

rate). The performance was evaluated with median catch (t), interannual catch variability (ICV, 

%), median spawner abundance (SSB, t), and risk. Risk is the maximum probability of SSB 

falling below Blim (107,297 t). Violin plots indicate frequency distributions of performance 

metrics. Horizontal lines (from bottom to top) within the box plots indicates the 25th, 50th, and 

75th percentiles; whiskers extend to the largest and smallest values within 1.5x the inter-quartile 

range (IQR) from the box edges; and black circles indicate the outliers. Red horizontal lines 

indicate median values from the baseline scenario (SSB, catch, and ICV) or the precautionary 

threshold (risk = 0.05). 

Figure 3. Long-term (years 11–20) performance of management strategies (a) HCR-A, (b) HCR-

A+D, and (c) HCR-A1+D for North Sea saithe under scenarios (11) of varying levels of 

estimation bias (overestimation of stock abundance and underestimation of fishing mortality 

rate). See Fig. 2 for more details. 
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Figure 4. Grid search for combination of the decision model (harvest rule, HCR-A) parameters 

(Ftarget and Btrigger) for North Sea saithe under scenarios (11) of varying levels of estimation bias 

(overestimation of stock abundance and underestimation of fishing mortality rate). Heat maps 

indicate median catch for only combinations that meet the precautionary criterion (risk ≤ 5%) in 

the long term (years 11–20). Black rectangles indicate combinations of the model parameters 

with the highest median catch. 
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Figures 
Figure 1. 
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Figure 2.
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Figure 3. 
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Figure 4. 
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