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ABSTRACT

Motivation: The MS2-MCP (MS2 coat protein) live imaging system allows for visualisation of
transcription dynamics through the introduction of hairpin stem-loop sequences into a gene. A
fluorescent signal at the site of nascent transcription in the nucleus quantifies mRNA production.
Computational modelling can be used to infer the promoter states along with the kinetic parameters
governing transcription, such as promoter switching frequency and polymerase loading rate.
However, modelling of the fluorescent trace presents a challenge due its persistence; the observed
fluorescence at a given time point depends on both current and previous promoter states. A
memory-adjusted Hidden Markov Model (mHMM) was recently introduced to allow inference
of promoter activity from MS2-MCP data. However, the computational time for inference scales
exponentially with gene length and the mHMM is therefore not currently practical for application
to many eukaryotic genes.
Results: We present a scalable implementation of the mHMM for fast inference of promoter
activity and transcriptional kinetic parameters. This new method can model genes of arbitrary
length through the use of a time-adaptive truncated compound state space. The truncated state space
provides a good approximation to the full state space by retaining the most likely set of states at
each time during the forward pass of the algorithm. Testing on MS2-MCP fluorescent data collected
from early Drosophila melanogaster embryos indicates that the method provides accurate inference
of kinetic parameters within a computationally feasible timeframe. The inferred promoter traces
generated by the model can also be used to infer single-cell transcriptional parameters.
Availability: Python implementation available at https://github.com/ManchesterBioinference/burstInfer,
along with code to reproduce the examples presented here.

1 Introduction

Recent advances in in vivo live imaging technologies (Pichon et al., 2018) have created a pressing need for algorithms
capable of analysing large, complex biological datasets. Live imaging techniques, such as the MS2-MCP system, have

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 6, 2020. ; https://doi.org/10.1101/2020.12.04.412049doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412049
http://creativecommons.org/licenses/by/4.0/


BOWLES ET AL. - DECEMBER 4, 2020

been of particular interest to the developmental biology community due to the ability to visualise transcription at single-
cell resolution in vivo. As correct spatial and temporal control of gene expression is of fundamental importance during
both normal development and disease, the ability to analyse the rich datasets generated by live imaging approaches is
vital.

The MS2-MCP system allows for the quantification of transcription in real-time through the introduction of hairpin
structures into a gene of interest (Pichon et al., 2018). Following the entry of the promoter into an active state, elon-
gation of RNA Polymerase II (Pol II) along the gene body results in the production of nascent mRNA transcripts
containing hairpin stem-loops. Binding of the MCP fluorescent protein to this hairpin structure allows for detection
of the resulting fluorescent signal by fluorescence microscopy (Bertrand et al., 1998; Garcia et al., 2013; Lucas et al.,
2013). Quantification of this fluorescent signal results in a fluorescent time series, which acts as a proxy for tran-
scriptional output at each transcription site (Lucas et al., 2013; Garcia et al., 2013; Bertrand et al., 1998). The ability
to track the fluorescence of accumulated nascent mRNA at transcription foci (and therefore levels of transcriptional
activity) over time and at single-cell resolution opens up the possibility of investigating spatial and temporal tran-
scriptional dynamics in model organisms, in addition to the response of tissue culture cells to external stimuli (Pichon
et al., 2018). The use of the MS2-MCP system allows for the collection of temporal transcriptional data, an advan-
tage over the static ‘snapshots’ of transcription generated using techniques such as single molecule fluorescent in situ
hybridisation (smFISH) (Pichon et al., 2018).

Transcription is now understood to be a highly dynamic process, with many genes producing transcripts in discrete
pulses, or ‘bursts’, of transcriptional activity (Coulon et al., 2013; Raj et al., 2008; Chubb et al., 2006; Golding et al.,
2005);. Transcriptional bursting has been observed in organisms ranging from Drosophila to vertebrates and is impli-
cated in both normal development and disease (Raj et al., 2008; Eldar et al., 2010); bursting is of particular interest to
the gene regulation community, as many key developmental genes appear to exhibit bursting-like behaviour (Lenstra
et al., 2016). Mathematical modelling of transcriptional bursting may be described by a set of kinetic parameters
which report the frequency, amplitude and duration of transcriptional bursts (Zoller et al., 2018; Li et al., 2018; Dar
et al., 2012; Raj et al., 2006; Fukaya et al., 2016; Corrigan et al., 2016). Previous work on mathematical modelling of
transcriptional bursting has focused on inference of these transcriptional parameters through analysis of either static
smFISH snapshots (Mueller et al., 2013; Bahar Halpern et al., 2015; So et al., 2011; Gómez-Schiavon et al., 2017)
or MS2-MCP time series data (Corrigan et al., 2016; Garcia et al., 2013; Fukaya et al., 2016; Berrocal et al., 2018;
Lammers et al., 2020; Tantale et al., 2016; Bothma et al., 2014). The ability to infer these kinetic parameters opens up
the possibility of providing a deeper insight into the spatio-temporal regulation of bursting at single-cell resolution.

While MS2-MCP time series data allows for visualisation of nascent transcription at single-cell resolution in real-time,
inference of kinetic parameters from MS2-MCP data presents a number of unique challenges (Gregor et al., 2014).
Crucially, the presence of persistent fluorescence within the signal complicates inference of transcriptional kinetic
parameters (Corrigan et al., 2016; Lammers et al., 2020). Upon the promoter entering an active state, RNA Polymerase
(Pol II) commences elongation along the gene body, leading to a fluorescent signal through MCP-fluorescent protein
binding. When the promoter becomes inactive, the fluorescent signal does not immediately cease. Pol II molecules
are still in transit along the gene body and the incomplete mRNA transcripts are bound by MCP-fluorescent proteins.
Inference of kinetic parameters therefore requires an algorithm capable of taking this persistence into account.

Previous work (Lammers et al. (2020)) incorporated the persistence of the MS2 signal through implementing a
memory-adjusted hidden Markov model (mHMM), building on an earlier hidden Markov model for MS2-GCP pa-
rameter inference (Corrigan et al. (2016)). The transition probabilities and emission values of the model correspond
to the promoter switching frequencies and Pol II loading rate, respectively, which together are sufficient to describe
the bursting dynamics of the system. From an initial active or inactive state (π), the promoter switches between active
and inactive states according to the transition matrix, loading polymerase onto the gene while in the active state at a
rate determined by the model emission parameter (Figure 1A).

Persistence in the signal is dealt with through the inclusion of a window parameter, W , that models the dependence
of the recorded fluorescence on the previous W promoter states, each of which may take one of K (here 2) values.
The inclusion of the window parameter results in KW compound states to fully describe the system. This exponential
scaling becomes problematic when dealing with long genes, as the dependence of the window parameter on elongation
time (and therefore gene length) may lead to infeasible computational times.

In this paper we present a modified form of the mHMM, the Dynamic Memory-Adjusted Hidden Markov Model
(dmHMM), referred to as burstInfer, for fast inference of kinetic parameters from MS2-MCP data. The algorithm
represents a significant speed boost over the original mHMM technique when applied to long genes, removing the
exponential time-scaling of the technique with gene length. Results indicate that the use of a reduced compound state
space is sufficient to accurately infer kinetic parameters relative to the original model, while significantly reducing
computational time for longer genes, making inference of kinetic parameters for genes of all sizes feasible.
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Figure 1: The model structure and basic principle behind burstInfer. A: Dynamic memory-adjusted hidden Markov
model state diagram. At the beginning of the time sequence the promoter is in either the active or inactive state (π).
Over the course of the time series the promoter switches stochastically between the active and inactive states according
to the kon and koff burst parameters. While in the active state Pol II molecules are loaded onto the gene and mRNA
transcripts are produced at a rate determined by the model emission parameter. B: Example MS2 fluorescence time
series trace for a single nucleus in a Drosophila embryo showing nascent ush transcription. C: The promoter sequence
inferred by the model corresponding to the fluorescent trace in B. These promoter traces can be used to generate
single-cell parameters.

2 Methods

2.1 Model Formulation

Following insertion of the MS2 stem-loop sequences into the gene of interest, elongation of Pol II along the length
of the gene body results in the generation of a fluorescent time series signal. We intend to model the dynamics of
these recorded fluorescent signals, with the aim of extracting the kinetic parameters driving expression of the target
gene. Following the mHMM formulation derived by Lammers et al., whose model this paper extends, we denote
an individual fluorescent signal (corresponding to one transcription foci) as y = {y1, y2..., yT }, with T denoting the
number of time points within the individual trace (Figure 2). We assume that the promoter may be in one of K =
2 effective states, i.e. active or inactive. The promoter switches between hidden states z at time step t according to
the K × K transition matrix, A = p(zt|zt−1). Akl represents the probability of making the transition from hidden
promoter state k to hidden promoter state l during time step t. Transitions between hidden promoter states zt are
assumed to satisfy the Markov property, i.e. the hidden promoter state at a given time point depends only upon the
hidden promoter state at the previous time point (Lammers et al., 2020).

Each effective state zt is associated with a polymerase initiation rate, r(k), representing the number of Pol II molecules
loaded onto the gene in a given minute. The fluorescence data presented here are shown in terms of arbitrary units of
fluorescence. Quantification of the transcriptional output of cells using smFISH may be used to calibrate the signal
in terms of Pol II number instead (Garcia et al., 2013; Lammers et al., 2020; Hoppe et al., 2020). The maximum
fluorescence emission per time step t for each effective state is defined as v(k) = Fr(k), where F is a calibration
factor used to convert the units of arbitrary fluorescence to units of Pol II (Lammers et al., 2020).

The recorded fluorescence intensity at a given time point (Figure 1B) depends upon not only the fluorescence generated
during the previous time step, but also the cumulative fluorescence generated by Pol II in transit along the length of the
gene during previous time steps. To model this dependence upon previous time steps the concept of a sliding window,
W , is introduced into the model. This window, or memory, represents the dependence of the observation yt at time
point t on not only the hidden promoter state zt at the current time point but also the previous W hidden promoter
states (depicted in Figure 2). The value of W is gene-dependent and is calculated as W =

τelong

∆τ , where τelong is the
elongation time and ∆τ is the size of an individual time step, i.e. the time resolution of the data. Hidden promoter
states falling outside the previous W time points can be assumed not to contribute to the recorded fluorescence at time
point t, as Pol II initiated at that particular time point is no longer in transit along the gene.

To model this dependency of the observed fluorescence at time point t on the previous W hidden promoter states zt,
the concept of a compound state st = {zt, zt−1, ..., zt−W+1} is introduced. st, a 1 ×W vector, encodes the sequence
of W hidden promoter states up to and including the current hidden promoter state at time point t. At each given
time point the previous W − 1 promoter states are deterministically passed to the new compound state, becoming
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Figure 2: Diagram illustrating the dependence of the measured fluorescent signal at the present time, t, on both
the present promoter state and previous promoter states falling within the observation time window, W. This time-
dependence arises due to the persistence in the MS2 signal caused by Pol II still being in transit down the gene body
following the promoter becoming inactive. The example shown here is for window size W=3.

the 1 . . .W − 1 elements of the new compound state vector, with the W th compound state at time point t being
determined stochastically by the state transition matrix A. In the original mHMM model, each compound state takes
one of KW different values, as each of W hidden promoter states may take one of K values (Lammers et al., 2020).
This exponential scaling with window size W imposes a significant computational burden. How our model addresses
this is detailed in the following section. As in the original mHMM model, the emissions of the Hidden Markov Model
are described by a Gaussian distribution with mean µ and standard deviation σ. The initial hidden promoter states at
time t = 0 are given by a 1×K vector π. The joint distribution of compound states and observed fluorescence values
is given by:

p(y, s|θ) = p(s1|π)

T∏
t=1

p(yt|st, µ, σ)

T∏
t=2

p(st|st−1, A) (1)

Expectation Maximisation is used to infer the Hidden Markov Model parameters, θ̂ = {π̂, µ̂, Â, σ̂}. The use of an
approximate inference technique renders inference of the model parameters computationally tractable. However, the
exponential scaling of computation time with window size represents a significant problem for longer genes.

2.2 Dynamic State Space Truncation

In order to circumvent the exponential scaling of the algorithm with window size we propose a dynamic reduced state
space variant of the mHMM, which uses a truncated state space to avoid exponential scaling in computational time. We
illustrate the advantages of the dmHMM using a specific example implementation of the mHMM model with K = 2
promoter states and a window size of 19, as would be required to model the Drosophila melanogaster gene u-shaped
(ush), which is 16825 base pairs in length (isoform C). Nascent transcription was captured at 20s time resolution. This
results in a compound state which may take on KW = 219 = 524288 values. Repeated manipulation of the resulting
KW × t state matrix while performing expectation maximization requires a significant amount of computational time,
which cannot be improved significantly by increasing available computational power.

The required computational time may be reduced by observing that although 524288 possible compound state values
are required to fully specify the model, the majority of these compound states will have very low (often negligible) as-
sociated probability values, and can therefore be excluded from the model without impacting predictive performance.
For example, during portions of the fluorescence signal recorded during the initiation of a transcriptional burst, com-
pound states associated with inactive promoter states during the initial part of the compound state and active promoter
states during the latter part of the compound state would be much more likely than compound states with sequences
of promoter states associated with a very different observed fluorescence pattern, e.g. falling fluorescence levels or
sustained inactivity.

Truncation in the model is enforced through the use of an allowed memory, M , with M < Kw. M is selected so as
to reduce computational time without significantly impacting the performance of the algorithm. The use of M results
in a reduced promoter state space, Φt, replacing s and reducing the scaling of the forward algorithm with window size
from exponential to linear scaling. To select a set of M likely compound states at time t+ 1 the forward algorithm is
used to rank the 2M next possible states starting fromM at time t. The forward algorithm computes the probability of
the data up to the current time and being in each state, therefore the most likely states can be prioritized and the least
likely are removed from the model until M distinct compound states remain.
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Figure 3: Example illustrating state-space truncation carried out as part of the HMM forward algorithm, using example
data derived from the Drosophila ush gene. Each oblong bubble represents a compound promoter state at a particular
time point with the number on the left representing the binary representation of the promoter state and the number on
the right showing the log probability associated with each forward variable. The promoter starts at time t = 0 in either
the inactive (0000) or active (0001) state (the rightmost bit indicates the current state). At time t = 1 the promoter can
switch to either of two states from each of these two states, causing the state space to expand from 2 to 4 possible
compound states (i.e. inactive to inactive, inactive to active, active to inactive, active to active). At time t = 2 the
possible state space doubles again to 8 compound states. At this point truncation is carried out - the compound states
are ranked according to probability and the least likely states are eliminated. The number of eliminated/retained states
is determined by the window size - a window value of W = 2, giving a number of allowed states of 22 is shown here
so that elimination can be visualised. In practice the highest number of allowed states that is computationally feasible
is used instead. This process of truncation and elimination is carried out until the end of each trace contained in the
entire dataset. This truncated graph then becomes the state space for the entire model.

An example of model truncation using a single trace of ush MS2 data is shown in Figure 3, with an allowed memory
of 4 states specified for illustration purposes. Each box represents an individual state, with the leftmost number giving
the binary representation of the promoter state (1 for on and 0 for off) and the rightmost number giving the log forward
variable associated with each state. The state space expands during the forward algorithm until the allowed value of
M is reached at t = 1. Forward variables are calculated for each allowed transition (the previous promoter state with
either a 0 or 1 inserted at the rightmost bit) and are ranked. The least likely forward variables are eliminated (red
outline), with the most likely states becoming the new reduced state space (blue outline). The process is repeated until
the end of the trace (here t=3).

2.3 Inferring Single-cell Transcriptional Parameters

In addition to inferring ‘global’ model estimates for burst amplitude, frequency and duration for a given dataset, our
model can be used to infer single-cell transcriptional parameters, i.e. burst parameters for each individual cell within
the expression domain, rather than a global estimate for the entire expression domain or region of interest.

Training the model using the forward-backward algorithm yields estimates of αt(i) = p(y1, ..., yt, st = i|θ̂k), the
joint estimate of the observed fluorescence up to time t and the compound hidden promoter state at time t and βt(i) =

p(yt+1, ..., yT |st = i, θ̂k), the conditional probability of the observations from (t + 1) to the end of each trace, given
the current hidden promoter state. Combining these variables with the expression for the likelihood of the observed
fluorescence values given the model parameters, p(y|θ̂k), gives the following:
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Figure 4: Verifying the model fit to real and synthetic data and visualising the non-exponential relationship between
window size and running time. A: Plot of the relative error between the truncated and full model for 4 parameters as
a function of an increasing number of allowed states. As the number of allowed states, M is increased the truncated
model converges towards the full model. A Markov Process was used to generate synthetic MS2 data corresponding to
a window size of 11. 211 = 2048 compound states would be necessary to fully describe the data under the full model.
By using a reduced subset of only 128 states, the relative error between the full and truncated models is reduced to less
than 1%. Subfigure B: plot of the relative error between the truncated and full models for real Drosophila hnt data.
The number of compound states necessary to fully specify the hnt model is 512. hnt has been chosen as inference
using the full model is still possible for this relatively short gene. Subfigure C: running time for a single EM step in
seconds for both models. For shorter window sizes the original model is faster due to decreased overhead from not
having to calculate least likely states etc. For longer window sizes the exponential scaling of the original algorithm
becomes an issue.

p(st|y, θ̂k) =
αt(st)βt(st)

p(y|θ̂k)
(2)

where p(st|y, θ̂k) denotes the probability of the promoter being in an active or inactive state at a given time point
t, given the observed fluorescence and inferred model parameters. Taking the argmax of Equation (2) at each time
point gives a sequence of the most likely promoter states at each observed time step. As previously mentioned, the
Drosophila gene ush is used here as an example. MS2 stem-loops were inserted into the endogenous ush gene 5’UTR
region, allowing us to visualise transcription in the form of nascent MCP-GFP fluorescence (Figure 1B). The inferred
promoter trace calculated using Equation (2) corresponding to this time series is shown in Figure 1C.

In addition to providing a way of visualising the model fit, these inferred promoter traces may be used to calculate
single-cell transcriptional parameters, so that in addition to giving single maximum likelihood parameters estimates
for a given dataset, i.e. a kon, koff and emission term for the set of traces used to train the model, each cell in the
expression domain is assigned each of these parameters. An example of these parameters using Drosophila u-shaped
data from Hoppe et al., 2020 is shown in Figure 5 (details of the dataset used are given in Section 3.3).

The calculation of the transition parameters is achieved through a simple counting-based technique, where the number
of normalised on-to-off and off-to-on transitions is counted from the inferred promoter traces. These counts are used to
create transition matrices for each trace, which are then converted to transition rates (in a similar way to the calculation
of the global parameters). The single-cell emission term is a reduced form of the emission term from the global model
(see Lammers et al., 2020):

ν̂ = M−1b (3)

Mmn =
N∑
h=1

Th∑
t=1

Kw∑
i=1

〈sit(h)〉FinFim (4)

bm =
N∑
h=1

Th∑
t=1

Kw∑
i=1

〈sit(h)〉yt(h)Fim (5)

where the 〈sit(h)〉 term becomes a delta function due to the state probabilities already being known.
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3 Results

3.1 Comparison of Inferred Parameters

To demonstrate the ability of the truncated model to approximate the results obtained using the full hidden Markov
model, we created synthetic fluorescent traces for a gene of window size 11 and tested convergence between the
truncated and full models for this dataset (Figure 4A). The relative error between the full and truncated models falls
smoothly as the state space of allowed states is increased, with the relative error falling to less than 1% at M = 128
where the size of the full model here would be 211 = 2048 compound states.

To test the model on experimental MS2-MCP data where is it possible to fit the full model, both the full and truncated
models were trained on a dataset of MS2 fluorescent traces for the Drosophila melanogaster gene hindsight (hnt). The
hnt gene has length of 7441 base pairs between the MS2 probe and the end of the gene body, in conjunction with an
MS2 cassette length of 1290 base pairs, a window size of 9 was specified. The results of training the model using both
the full and truncated models can be seen in Figure 4B, a plot of relative error between the truncated and full (‘true’)
model parameters as a function of increasing number of allowed states. Each curve represents a separate parameter of
the model. The model was trained specifying 50 separate runs of expectation-maximisation for each value of M . The
convergence of the truncated model parameters to the full model parameters is apparent from the diagram.

3.2 Comparison of Computational Time

Next, we compared the scaling of computational time for a single step of the expectation maximisation algorithm for
the truncated model and the full, original model (Matlab implementation). The dataset used in the comparison is a set
of 50 MS2 fluorescence traces of the ush gene in a Drosophila embryo, where active transcription occurs during a 30
minute time window. A window size of 19 is required to model the fluorescence traces. The curve plotted in blue shows
the result of increasing the window size upon the computational time required for a single expectation-maximisation
step for the full model; the exponential scaling of the algorithm with window size is apparent. The computational time
for the truncated model (red, M = 128 compound states, 90s per step) is essentially de-coupled from window size /
gene length, allowing for application of the truncated model to a much wider set of window sizes (Figure 4(C)). For
short genes, the original version model is faster due to less computational overhead associated with truncation, e.g.
calculating and eliminating least likely states etc. The benefits of the truncated version of the model become apparent
at longer gene lengths, where exponentially increasing computation time makes inference impractical. A window size
of 30+ may be needed for both much longer Drosophila genes and vertebrate genes, making use of the full model
infeasible.

3.3 Application of the algorithm to real data

An example of using the model to infer single-cell parameters is shown in Figure 5, using example data from Hoppe
et al. (2020) (different embryo to that highlighted in the original paper). The aim of the paper was to use the parameters
inferred by burstInfer to investigate regulatory control of Bone Morphogenetic Protein (BMP) target genes in the early
Drosophila embryo, focussing on dorsal-ventral patterning of the early embryo. MS2 imaging was used to generate
movies of transcriptional activity of one of the BMP target genes studied in the paper, ush, during nuclear cycle 14.
The expression domain of ush forms a broad stripe down the anterior-posterior axis on the dorsal side of the embryo
(Ashe et al., 2000), which mirrors the expression levels of the BMP Decapentaplegic (Dpp) (Figure 5A) (Bier and De
Robertis, 2015; Deignan et al., 2016; Eldar et al., 2002; Umulis et al., 2010). Cells falling within the Dpp gradient
express Dpp target genes in a concentration-dependent manner - intermediate levels of signalling are sufficient to
activate ush, for example.

To investigate spatial regulation of Dpp target genes, MS2 movies were recorded in the embryo during nuclear cycle
14. Each embryo was divided into three separate regions corresponding to different signalling levels, determined by
either distance from the midline or through the use of a clustering-based approach. burstInfer was then trained on
each of these three regions, giving estimates of kon, koff and Pol II loading rate (emission) for each section of the
embryo. These regional parameters were then used to infer single-cell parameters (Figure 5B) and promoter traces
(Figure 5C) for each cell within the expression domain. Figure 5B shows heatmaps of mean expression and three
example single-cell parameters for ush - the region shown here represents a subset of the expression domain shown
in the cartoon in Figure 5A. Mean expression corresponds to the mean recorded fluorescence for each cell, with the
arbitrary fluorescence signals converted into number of Pol II. The single cell occupancy, kon and koff parameters
were calculated using burstInfer. From these heatmaps the strong similarity between mean expression and occupancy
is immediately apparent, along with the slightly weaker similarity between expression levels and kon (Figure 5B). In
order to quantify the dependency of expression levels on each of these three parameters (along with other derived
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Figure 5: Example inferred single-cell parameter using Drosophila ush data from Hoppe et al. (2020). A: The ex-
pression domain of the ush gene shown in the cartoon was divided into three separate regions, corresponding to high,
medium and low levels of expression, with the model trained separately on each of these three regions. The inferred
global parameters for each region were used to infer the most likely promoter path corresponding to each fluorescent
trace. B: Heatmaps of the measured mean expression level, along with the kon, koff and Occupancy ( kon

kon+koff
) pa-

rameters for each cell are shown. Analysis of single-cell parameters in this case revealed kon as the main determinant
of expression level. C: Example fluorescent traces and corresponding inferred promoter paths for each of the three
regions. See Hoppe et al. (2020) for further details.

parameters, such as burst duration and frequency), correlation analysis was carried out on the single-cell expression
data and inferred parameters.

This analysis revealed a very strong correlation between expression levels and occupancy, with effectively no corre-
lation between expression and koff (Hoppe et al., 2020). Pol II loading rate (the HMM emission parameter) was flat
across the expression domain Figure (5B). As occupancy depends upon both kon (which did exhibit strong correlation)
and koff , the results indicated that expression levels were regulated through modulation of kon, the promoter activation
rate. Representative single cell fluorescence and promoter traces for each region show that nuclei experiencing high
signalling produce more transcriptional bursts compared to other regions (Figure 5C). The single-cell parameters ex-
tracted from quantification of traces like these were used to create the heatmaps shown in Figure 5B. Code to re-create
these figures is included in the burstInfer GitHub repository.

4 Discussion

We have presented an algorithm for efficient inference of transcriptional kinetic parameters, with the aim of improving
upon an existing memory-adjusted Hidden Markov model (Lammers et al., 2020) by reducing the computational time
required for inference. We also provide methods for inferring the parameters of transcriptional dynamics in single
cells. The algorithm allows for the inference of burst amplitude, duration and frequency from MS2 data, which we
expect to be of interest to researchers working on transcriptional regulation. The MS2-MCP system has provided
researchers with high-quality data relating to transcriptional activity in individual cells, and has been used to provide
insight into the dynamics of transcription. However, the persistence present within the MS2 signal presents a challenge
when attempting to infer kinetic parameters using these particular datasets. Our algorithm allows efficient inference
of kinetic parameters for longer genes than is currently possible.
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A comparison of the running time for a single step of the expectation maximisation algorithm for both the full and
truncated models demonstrated the reduction in computational time while using the truncated model on the Drosophila
gene ush, which would require a window size of 19 for inference. The time taken for a single expectation-maximisation
step at window size 19 (42 minutes) would render inference using the full model for this particular gene computation-
ally infeasible, particularly if repeated likelihood computations, e.g. for statistical approaches such as bootstrapping or
MCMC sampling, are required. The truncated model, in comparison, does not scale significantly with gene length and
is instead primarily limited by a linear dependence on the size of the training dataset. This ability to model genes of
arbitrary length should allow the model to be applied to more complex organisms, with longer genes, than Drosophila.

A demonstration of applying the model to infer transcriptional parameters in Drosophila was outlined in (Hoppe et al.,
2020). In that study, burstInfer was used to investigate regulation of BMP target genes in the early embryo through
dividing embryos into regions corresponding to different BMP signalling levels then training the model on the MS2
datasets for each of these regions. The fitted model was used to generate transcriptional parameters in single cells,
allowing the investigation of spatial changes in bursting dynamics. We expect that the method would be well suited
for analysis of similar datasets in other systems.
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