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Abstract 

Background 

The SARS-CoV-2 pandemic is among the most dangerous infectious diseases that 

have emerged in recent history. Human CoV strains discovered during previous 

SARS outbreaks have been hypothesized to pass from bats to humans using 

intermediate hosts, e.g. civets for SARS-CoV and camels for MERS-CoV. The 

discovery of an intermediate host of SARS-CoV-2 and the identification of 

specific mechanism of its emergence in humans are topics of primary 

evolutionary importance. In this study we investigate the evolutionary patterns of 

11 main genes of SARS-CoV-2. Previous studies suggested that the genome of 

SARS-CoV-2 is highly similar to the horseshoe bat coronavirus RaTG13 for most 

of the genes and to some Malayan pangolin coronavirus (CoV) strains for the 

receptor binding (RB) domain of the spike protein. 

Results 

We provide a detailed list of statistically significant horizontal gene transfer and 

recombination events (both intergenic and intragenic) inferred for each of 11 main 
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genes of the SARS-Cov-2 genome. Our analysis reveals that two continuous 

regions of genes S and N of SARS-CoV-2 may result from intragenic 

recombination between RaTG13 and Guangdong (GD) Pangolin CoVs. 

Statistically significant gene transfer-recombination events between RaTG13 and 

GD Pangolin CoV have been identified in region [1215-1425] of gene S and 

region [534-727] of gene N. Moreover, some significant recombination events 

between the ancestors of SARS-CoV-2, RaTG13, GD Pangolin CoV and bat CoV 

ZC45-ZXC21 coronaviruses have been identified in genes ORF1ab, S, ORF3a, 

ORF7a, ORF8 and N. Furthermore, topology-based clustering of gene trees 

inferred for 25 CoV organisms revealed a three-way evolution of coronavirus 

genes, with gene phylogenies of ORF1ab, S and N forming the first cluster, gene 

phylogenies of ORF3a, E, M, ORF6, ORF7a, ORF7b and ORF8 forming the 

second cluster, and phylogeny of gene ORF10 forming the third cluster. 

Conclusions 

The results of our horizontal gene transfer and recombination analysis suggest 

that SARS-Cov-2 could not only be a chimera resulting from recombination of 

the bat RaTG13 and Guangdong pangolin coronaviruses but also a close relative 

of the bat CoV ZC45 and ZXC21 strains. They also indicate that a GD pangolin 

may be an intermediate host of SARS-CoV-2. 

 

Keywords: evolution of SARS-CoV-2, gene evolution, horizontal gene transfer, 

recombination, phylogenetic network, consensus tree 

 

Background 

The recent outbreak of a serious pneumonia disease caused by the SARS-CoV-2 

(i.e. COVID-19) pathogen has highlighted the danger of coronavirus spread 

between different zoonotic sources. Some important transfers of genetic 

information across species have been observed during the first SARS outbreak, 
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involving species from various wet markets in China (Xu et al. 2004). Several 

recent studies have suggested that the only close relative of SARS-CoV-2 is the 

RaTG13 CoV found in Rhinolophus affinis (horseshoe bats) (Guo et al. 2020; 

Zhou et al. 2020). Thus, these bats could be considered as the main natural 

reservoir of the SARS-CoV and SARS-CoV-2 viruses. However, recent analyses 

of the SARS-CoV-2 genome conducted by Lu et al. (2020) and Lam et al. (2020) 

have indicated its high resemblance in certain regions with different coronavirus 

genomes of Malayan pangolins (Manis javanica). Zhang et al. (2020) have 

reported that the SARS-CoV-2 genome is 91.02% identical to that of a 

Guangdong (GD) Pangolin CoV (virus found in dead Malayan pangolins in the 

Guangdong province of China; Liu et al. 2019). While at the whole-genome level 

RaTG13 remains the closest to SARS-CoV-2 coronavirus organism overall (these 

CoVs share 96% of whole genome identity), the receptor binding (RB) domain of 

the spike (S) protein of SARS-CoV-2 is much more similar to the RB domain of 

the GD Pangolin CoV than to that of RaTG13 (Lam et al. 2020; Zhang et al. 

2020). Five key amino acid residues taking part in the interaction with human 

angiotensin-converting enzyme 2 (ACE2) are completely identical in SARS-CoV-

2 and GD Pangolin CoV. However, these amino acids are different in the RB 

domain of RaTG13 and the Guangxi (GX) Pangolin CoV (virus found in Malayan 

pangolins in the Guangxi province of China). Three possible evolutionary 

hypotheses could be advanced to explain this paradigm. According to the first 

one, these mutations may have occurred as a consequence of the phenomenon of 

parallel evolution, when distinct CoV organisms have undergone similar 

mutations, and thus have developed similar traits, in response to common 

evolutionary pressure. For example, it is possible that SARS-CoV-2 had acquired 

the RB domain mutations during adaptation to passage in cell culture, as has been 

observed for SARS-CoV (Andersen et al. 2020). The second reasonable 

hypothesis is divergent evolution favoring amino acid substitutions in the 
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RaTG13 lineage, independent of recombination. Thus, GD Pangolin CoV and 

SARS-CoV-2 similarity could be the consequence of shared ancestry. According 

to the third hypothesis, two or more close relatives of SARS-CoV-2 may have 

been affected by some recombination events within a host species. Such a 

recombination could result in gene exchange between the CoV genomes. During 

this recombination, some whole genes of the donor CoV genome could be 

incorporated into the recipient CoV genome either directly (when the orthologous 

genes are absent in the recipient) or by supplanting in it the existing orthologous 

genes. This constitutes the complete gene transfer model that accounts for the 

phenomenon of intergenic recombination (Boc et al. 2010). Moreover, the 

recombination process could lead to the formation of mosaic genes through 

intragenic recombination of the orthologous genes of the donor and recipient 

CoVs. The term mosaic comes from the pattern of interspersed blocks of 

sequences with different evolutionary histories. This constitutes the partial gene 

transfer model that accounts for the phenomenon of intragenic recombination 

(Boc and Makarenkov 2011). These models of reticulate evolution have been 

widely studied in the literature since the beginning of this century (Legendre 

2000; Makarenkov and Legendre 2000; Koonin et al. 2001; Legendre and 

Makarenkov 2002; Mirkin et al. 2003; Makarenkov and Legendre 2004; 

Makarenkov et al. 2004; Bruen et al. 2006; Jin et al. 2006; Huson and Bryant 

2006; Jin et al. 2007; Glazko et al. 2007; Huson et al. 2010; Glazko et al. 2007; 

Arenas 2013; Bapteste et al. 2013; Corel et al. 2016). 

In this paper, we provide arguments supporting the third hypothesis of the SARS-

CoV-2 origin, according to which the SARS-CoV-2 genome is a chimera of the 

RaTG13 and GD Pangolin coronaviruses. Such a conclusion is in agreement with 

the recent results of Xiao et al. (2020) and Li et al. (2020). Some authors, 

however, present evidence that there was not recombination between ancestors of 

GD Pangolin CoV and RaTG13, suggesting that the similarity pattern between 
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their genomes is rather the result of recombination into RaTG13 from some 

unknown CoV strains (Boni et al. 2020).  

In their study investigating the origins of SARS, Stavrinides and Guttman (2004) 

highlighted that the SARS-CoV genome is a mosaic of some mammalian and 

avian virus genomes. These authors also pointed out that recombination between 

the ancestor viruses of SARS may have happened in the host-determining gene S. 

However, the work of Stavrinides and Guttman mainly addresses the deep 

evolutionary origins of the entire SARS CoV clade and has been criticized by 

some expert in the field (Weiss and Navas-Martin 2005). Hu et al. (2017) have 

more recently conducted evolutionary analysis of 11 bat CoV (i.e. SARSr-CoV) 

genomes discovered in horseshoe bats in the Yunnan province of China and found 

that they share high sequence similarity to SARS-CoV in the hypervariable N-

terminal domain and the RB domain of gene S, as well as in some regions of 

genes ORF3 and ORF8. Hu et al. also reported that their recombination analysis 

provided evidence of frequent recombination events within genes S and ORF8 

between these bat CoVs and suggested that the direct progenitor of SARS-CoV 

may have originated from multiple recombination events between the precursors 

of different bat CoVs.  

Human CoV strains discovered during previous SARS outbreaks have been often 

hypothesized to pass from bats to humans using intermediate hosts (e.g. civets for 

SARS-CoV and camels for MERS-CoV) (Graham and Baric 2010), suggesting 

that SARS-CoV-2 may have also been transmitted to humans this way. It is worth 

noting, however, that some other studies from scientists in the field, such as Ralph 

Baric, Zheng-Li Shi and Peter Dazsak, have showed the potential for direct 

infection of humans from bat strains. They include both serological studies in 

rural China near the caves where these bat viruses circulate as well as in vitro/cell 

culture studies indicating the ability of bat isolates to infect human cells directly 

(Zhengli 2020). Nevertheless, the discovery of such an intermediate host of 

.CC-BY 4.0 International licensedisplay the preprint in perpetuity. It is made available under a
holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to 

The copyrightthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.410233doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410233
http://creativecommons.org/licenses/by/4.0/


 

6 

SARS-CoV-2, if it existed, is key, as it could shed light on the evolution of this 

dangerous virus.  

At the same time, it is also crucial to retrace the evolution of all genes of the 

SARS-CoV-2 genome, doing it on a gene-by-gene basis. Evolutionary patterns of 

various genes of SARS-CoV-2 could be quite different as some of them could be 

affected by specific horizontal gene transfer and recombination events. These 

events could witness that the SARS-CoV-2 genome is a mosaic genome obtained 

via recombination of various virus strains. Our findings suggest that the SARS-

CoV-2 genome may be in fact formed via recombination of genomes close to the 

RaTG13 and GD Pangolin CoV genomes, and be a close relative of bat CoV 

ZC45 and ZXC21. 

Results 

In this section, we present a detailed analysis of putative gene transfer and 

recombination events that were detected in each of 11 genes of SARS-CoV-2 as 

well as in the RB domain of the spike protein.  

SimPlot similarity analysis 

Our SimPlot analysis (Fig. 1a) conducted with 25 CoV genomes (see the Methods 

section for a detailed data description) shows that the Wuhan SARS-CoV-2 and 

RaTG13 genomes share 96.14% of whole-genome identity, while the Wuhan 

SARS-CoV-2 and GD Pangolin genomes are 90.34% identical. The RaTG13 and 

GD Pangolin CoV genomes are by far the closest ones to the SARS-CoV-2 

genome. For example, only 85.43% of whole-genome identity is shared between 

the Wuhan SARS-CoV-2 and GX Pangolin CoV genomes. Given such a close 

resemblance between SARS-CoV-2 and RaTG13, bat is a likely reservoir of 

origin for SARS-CoV-2, as was the case during previous CoV outbreaks.  
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Then, we performed a detailed similarity analysis at the level of individual genes 

to compare the Wuhan SARS-CoV-2 gene sequences with the RaTG13, GD 

Pangolin CoV group sequences and Bat CoVZ group sequences (Fig. 2). Our 

gene-by-gene analysis revealed some regions where SARS-CoV-2 was more 

similar to GD Pangolin CoV than to RaTG13. These regions have been found in 

genes S (at the RB domain level), ORF3a, M, ORF7a and N, suggesting that some 

recombination events between GD Pangolin CoV and RaTG13 may have 

occurred not only in gene S (as it has been reported in previous studied; see Lam 

et al. 2020 and Zhang et al. 2020), but in four other genes of these CoV genomes. 

We also found that in some continuous gene regions, specifically in genes 

ORF1ab, ORF3a, M and N, the SARS-CoV-2 gene sequences are much more 

similar to those of the bat CoV ZC45 and ZXC21 viruses than to those of the GD 

Pangolin CoVs, and sometimes even of RaTG13 (Fig. 2).  

Φ-test recombination analysis 

We conducted gene-by-gene Φ-test recombination analysis (Bruen et al. 2006) to 

further investigate eventual recent recombination events which may have 

occurred between orthologous gene sequences of the Wuhan SARS-CoV-2, 

RaTG13, GD Pangolin 1 CoV, GD Pangolin P2S CoV, bat CoV ZC45 and bat 

CoV ZXC21 viruses. The Φ-test was carried out with different sliding window 

sizes, varying from 50 to 400 (with a step of 50), and the window progress step of 

1 as the window size can affect the test outcome. The results presented in Table 1 

are reported for the window size corresponding to the smallest p-value found for a 

given gene. The p-values lower than or equal to the 0.05 threshold were 

considered as significant. They indicate the presence of recombination in the gene 

under study. 

According to the Φ-test (see Table 1), statistically significant recombination 

events involving these six coronaviruses have been detected in genes ORF1ab, S, 
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ORF3a, ORF7a, ORF8, N and in the whole genome sequences. It is worth noting 

that recombination events in genes ORF1ab, S and ORF3a were detected with 

high confidence, with p-values of 0.0023, 0.0086 and 0.0000113, respectively. 

Horizontal gene transfer and recombination analyses 

In addition to the SimPlot similarity and the Φ-test recombination analyses, we 

also inferred the whole genome phylogeny (Fig. 1b) and all individual gene trees 

for the main 11 CoV genes (Figs. 3a-k) as well as for the RB domain of the spike 

protein (Fig. 3l and Fig. 4a) using the RAxML method (Stamatakis 2006) with 

bootstrapping, and then conducted a detailed horizontal gene transfer-

recombination analysis (Fig. 3) using the HGT-Detection program available on 

the T-Rex web server (Boc et al. 2012). It is worth noting that the presentation of 

the whole genome tree could be a bit confusing in our context, as the central 

premise of this work is that the evolution of coronavirus organisms is driven by 

the gene transfer and recombination mechanisms, but it remains necessary and 

serves as a support tree topology to represent the available species groups (Fig. 

1b) as well as the detected gene transfer and recombination events (Figs. 3 and 4). 

The HGT-Detection program allows one to infer all possible horizontal gene 

transfer events for a given group of species by reconciling the species tree (i.e. 

whole genome tree in our case) with different gene phylogenies built for whole 

individual genes or some of their regions (Denamur et al. 2000; Boc and 

Makarenkov 2011). The bootstrap support of the inferred gene transfers was also 

assessed by HGT-Detection. It is worth noting that the bootstrap support of 

horizontal gene transfer events (HGT) is usually lower than that of the related 

branches of the species and gene phylogenies. For example, in order to get an 

HGT bootstrap support of 100%, gene transfer from cluster C1 to cluster C2 in 

the species tree must be present in all gene transfer scenarios inferred from all 

replicated multiple sequence alignments (MSAs) used in bootstrapping, and 
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clusters C1 and C2 must be neighbor clusters in all gene trees inferred from 

replicated MSAs (Boc et al. 2010). 

Importantly, each detected horizontal gene transfer event can be interpreted in 

three ways: (1) It can represent a unique complete or partial HGT event involving 

distant species, as discussed above; (2) it can represent the phenomenon of 

parallel evolution, which the involved species might have undergone; and (3) it 

can also represent the situation where a new species (i.e. a gene transfer recipient) 

was created by recombination of the donor species genome with the genome of a 

recipient neighbor in the species phylogeny (this was potentially the case of the 

gene transfers from GD Pangolin CoV to SARS-CoV-2, which is a neighbor of 

RaTG13 in the species phylogeny, found for genes S and N; see our gene-by-gene 

analysis below). 

We will now discuss the evolution of the main 11 CoV genes as well as that of the 

RB domain of the spike protein with emphasis on the specific horizontal gene 

transfer and recombination events detected for each of them. 

Evolution of gene ORF1ab 

Gene ORF1ab occupies more than two thirds of coronavirus genomes. It encodes 

the replicase polyprotein, being translated from ORF1a (11826 to 13425 nt) and 

ORF1b (7983 to 8157 nt) (Woo et al. 2010), and plays an important role in virus 

pathogenesis (Graham et al. 2008). 

The bootstrap support of the branches of the ORF1ab gene phylogeny is commonly 

very high, except for the branch connecting the clusters of GD and GX Pangolin 

CoVs (Fig. 3a). For this gene, we found a horizontal gene transfer-recombination 

event between the ancestors of the clusters of the Bat CoVZ organisms and the 

cluster including the RaTG13 and SARS-CoV-2 viruses. This event concerns a half 

of this long gene, occurring in gene region [1-11630] with bootstrap support of 

61.5% (as this transfer does not affect the whole gene sequence, it is called a partial 
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HGT). A transfer of the whole ORF1ab gene (i.e. a complete HGT) from the bat 

RF1 CoV to bat BtCoV 279 2005 has been detected with bootstrap score of 84.6%. 

The transfer between the cluster of the bat BTKY72 and BM48 31 BGR 2008 

coronaviruses and the cluster involving SARS-CoV-2, RaTG13 and GD Pangolin 

CoVs has been detected on gene region [16326-17626] with bootstrap support of 

61.5%. Finally, a deep phylogeny transfer from CoV organisms from the bottom 

part of the tree (i.e. SARS-like 2003-2013 viruses) to the cluster of GX Pangolins 

CoVs has been found in a relatively short region [1249-1421] with a high bootstrap 

score of 97.9%. 

Evolution of gene S 

Gene S is among the most important coronavirus genes since it regulates the ability 

of the virus to overcome species barriers and allows interspecies transmission from 

animals to humans (Zhang et al. 2006). S proteins are responsible for the “spikes” 

present on the surface of coronaviruses, giving this virus family a specific crown-

like appearance. These proteins are type I membrane glycoproteins with signal 

peptides used for receptor binding (Woo et al. 2010). They play a crucial role in 

viral attachment, fusion and entry, being a target for development of antibodies, 

entry inhibitors and vaccines (Tai et al. 2020). 

As shown on the SimPlot diagram (Fig. 1a and Fig. 2), this gene has the most 

variable sequences among all genes of coronavirus genomes. The bootstrap scores 

of internal branches of the phylogeny of gene S are all very high (Fig. 3b). For this 

gene, a partial gene transfer was found in region [1-881] between the Bat CoVZ 

group and the cluster of GD Pangolin CoVs with bootstrap support of 64.4%. 

Another partial transfer from GD Pangolin CoVs to SARS-CoV-2 was found on 

the interval [1215-1425] with bootstrap score of 59.7%. This transfer corresponds 

to the RB domain. Partial transfers were detected from RaTG13 to GX Pangolin 

CoVs in regions [1311-1361] and [1511-1561] with an average bootstrap score of 
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61.5%. Finally, another partial transfer was found between the bat CoVZ group and 

the cluster including BtCoV 273 2005, Rf1, HKU3-12, HKU3-6 and BtCoV 279 

2005. 

Evolution of gene ORF3a 

The protein 3a is unique to SARS-CoV and SARS-CoV-2. It is essential for disease 

pathogenesis. In SARS-related CoVs, it forms a transmembrane homotetramer 

complex with ion channel function and modulates virus release (Lu et al. 2006). 

The sequences of ORF3a are as highly variable, almost as those of gene S. The 

bootstrap scores of the ORF3a gene tree (Fig. 3c) are usually high, except for that 

of the branch connecting the cluster of GD Pangolin CoVs and the cluster of 

RatTG13 and SARS-CoV-2 (71%), and the branch connecting clusters of some old 

CoVs at the bottom part of the tree.  

For this gene, a full gene transfer was found between the cluster of SARS-CoV-2, 

RaTG13 and GD Pangolin CoVs, and the group of Bat CoVZ viruses, with 

statistical significance of 80.8%. A partial gene transfer was detected between the 

lower part of the tree (i.e. SARS-like 2003-2013 viruses), excluding bat viruses 

from Kenya and Bulgaria (i.e. BtKY72 and BM48 31 BGR 2008), and the GX 

Pangolin CoVs in region [251-371] with bootstrap support of 61.5%. The 

remaining identified transfers were a deep phylogeny transfer and two transfers 

between CoVs from the previous SARS outbreak. 

Evolution of gene E 

This gene is among the shortest in the SARS-CoV-2 genome. The protein E is a 

small transmembrane protein associated with the envelope of coronaviruses. It is 

well conserved among all CoVs (Fig. 3d). Gene E is usually not a good target for 

phylogenetic analysis because of its short sequence length (Woo et al. 2010). The 

bootstrap scores of its gene phylogeny (Fig. 3d) are mostly mediocre. A single gene 
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transfer-recombination event has been found for this gene. It affects region [71-

171] and involves CoVs from the previous SARS outbreak. 

Evolution of gene M 

This gene is particularly important since it is responsible for assembly of new virus 

particles (Kandeel et al. 2020). Bootstrap scores of the gene tree are on average 

much lower than those of genes ORF1ab, S and ORF3a (Fig. 3e).  

Here, we detected two partial gene transfers involving the viruses of the Bat CoVZ 

group and affecting: (1) the SARS-CoV-2 and RaTG13 CoVs in region [251-461] 

with bootstrap support of 53.9%, and (2) the GD Pangolin CoVs in region [569-

669] with bootstrap support of 50%. Moreover, a complete gene transfer from 

Rs367 to the cluster of Rf1 and BtCoV 273 2005 was found for this gene with 

bootstrap score of 92.3%. 

Evolution of gene ORF6 

Gene ORF6 impacts the expression of transgenes (Mortiboys et al. 2015). The gene 

phylogeny of ORF6 (Fig. 3f) has multiple internal branches with low bootstrap 

support. For this gene, we found a complete gene transfer between the Bat CoVZ 

group and the cluster including SARS-CoV-2 and RaTG13 with bootstrap support 

of 69.2%. Furthermore, a partial gene transfer between HKU3-12 CoV and the 

SARS-CoV cluster in region [111-185] with bootstrap score of 67.7% was also 

found for this gene. 

Evolution of genes ORF7a and ORF7b 

The proteins encoded by coronavirus genes ORF7a and 7b have been 

demonstrated to have proapoptotic activity when expressed from cDNA 

(Schaecher et al. 2007). The phylogenies of these short genes are very unresolved 

(Figs. 3g and 3h). A gene transfer-recombination event found for ORF7b involves 

CoVs from the lower part of the tree, excluding CoVs of Kenyan and Bulgarian 
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bats, and the GX Pangolin CoVs. It occurred in region [21-131] with bootstrap 

score of 53.8%. Interestingly, a transfer affecting the bat CoVs related to the 

previous SARS outbreak was found in both of these genes. 

Evolution of gene ORF8 

It has been recently shown that the SARS-CoV-2 viral protein encoded from gene 

ORF8 shares the least homology with SARS-CoV among all the viral proteins, 

and that it can directly interact with MHC-I molecules, significantly 

downregulating their surface expression on various cell types (Zhang et al. 2020). 

The gene phylogeny of ORF8 has several internal branches with low bootstrap 

scores (Fig. 3i). It has been established that ORF8 protein of SARS-CoV has been 

acquired through recombination from SARS-related coronaviruses from greater 

horseshoe bats (Lau et al. 2015). A complete gene transfer was found for this 

gene between the cluster of SARS-CoV-2, RaTG13 and GX Pangolin CoVs and 

the bat CoVZ group with bootstrap support of 84.6%. The other detected transfers 

concerned the viruses of the SARS-CoV group. 

Evolution of gene N 

The nucleocapsid protein (N) is one of the most important structural components 

of SARS-related coronaviruses. The primary function of this protein is to 

encapsulate the viral genome. It is involved in the formation of the 

ribonucleoprotein through interaction with the viral RNA (Kandeel et al. 2020). 

Several studies report that the protein N interferes with different cellular pathways, 

thus being a crucial regulatory component of the virus as well (Surjit et al. 2008). 

The phylogeny of gene N (Fig. 3j) is usually well resolved, except for two clusters 

in the SARS-CoV part of the tree with bootstrap scores of 64% and 45%. Our 

SimPlot analysis showed that the SARS-CoV-2 gene sequence of gene N is almost 

as similar to the RatTG13 gene sequence as it is to the GD Pangolin gene sequence. 
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Precisely, for gene N, the Wuhan SARS-CoV-2 and RatTG13 viruses share 96.9% 

of the whole-gene identity, while the Wuhan SARS-CoV-2 and GD Pangolin CoV 

gene sequences are 96.19% identical. 

Three statistically significant gene transfer-recombination events have been 

detected for this gene. The most interesting of them is the partial gene transfer from 

the cluster of GD Pangolin CoVs towards the cluster of SARS-CoV-2 found in 

region [534-727] with bootstrap support of 58.6%. Another partial transfer, 

between RaTG13 and GD Pangolin CoVs, was detected in region [756-864] with 

bootstrap support of 53.8%. Finally, a partial transfer between the cluster 

containing the BtCoV 273 2005 and Rf1 viruses and the cluster of HKU CoVs was 

found in region [551-721] with bootstrap score of 61.0%. 

Evolution of gene ORF10 

The protein ORF10 of SARS-CoV-2 includes 38-amino acids and its function is 

unknown (Yoshimoto 2020). The phylogeny of this short gene is not well resolved 

(Fig. 3k) with several internal branches having bootstrap support under 50%. The 

only complete gene transfer-recombination event detected for this gene affects the 

Bat CoVZ virus group and the cluster of SARS-CoV-2, RatTG13 and GD Pangolin 

CoVs. Its bootstrap score is 79.5%. 

Evolution of the RB domain 

We carried out an independent analysis of the main evolutionary events 

characterizing the RB domain of the spike protein because of its major evolutionary 

importance. The S protein mediates the entry of the virus into the cells of the host 

species by binding to a host receptor through the RB domain located in its S1 

subunit, and then merging the viral and host membranes in the S2 subunit. As 

SARS-CoV, SARS-CoV-2 also recognizes ACE2 as its host receptor binding to the 

S protein of the virus. Thus, the RB domain of the SARS-CoV-2 S protein is the 
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most important target for the development of virus attachment inhibitors and 

vaccines (Tai et al. 2020).  

We first studied the evolution of the RB domain for the 25 original organisms that 

are strongly phylogenetically related to SARS-CoV and SARS-CoV-2. The RB 

domain amino acid phylogeny (Fig. 3l) commonly exhibits high bootstrap scores 

of its internal branches, except for the root branch of the cluster of GD Pangolin 

CoVs (56%), the branch separating RatTG13 from the cluster of SARS-CoV-2 and 

GD Pangolin CoVs (57%), and the branch separating the cluster of GX Pangolin 

CoVs from the cluster including the SARS-CoV-2, GD Pangolin CoV and 

RatTG13 viruses (62%). Thus, the location of both pangolin clusters and that of 

RatTG13 are the most uncertain in this tree. 

Our similarity analysis showed that SARS-CoV-2 and RatTG13 share 89.47% of 

the whole-gene identity, while the SARS-CoV-2 and GD Pangolin CoV RB domain 

amino acid sequences are 97.36% identical. Consequently, some exchange of 

genetic material between the clusters of GD Pangolin CoVs and SARS-CoV-2 

would be expected here. In fact, a gene transfer from GD Pangolin CoVs to SARS-

CoV-2 was detected in region [131-186] with bootstrap support of 57.7%. Another 

transfer found for this tree was that from the cluster containing BtCoV 273 2005, 

Rf1, HKU3-12, HKU3-6 and BtCoV 279 2005 to GX Pangolin CoVs in region [41-

141] with bootstrap support of 65.4%. 

Moreover, we also inferred an extended version of the RB domain tree, adding to 

it 21 coronavirus organisms (Fig. 4a) labeled as common cold CoV in the Gisaid 

coronavirus tree (Shu and McCauley 2017) and other coronavirus organisms 

available in GenBank (Prabakaran al. 2006). These additional CoVs include Human 

betacoronavirus 2c EMC/2012 (i.e. MERS-CoV S), Human coronavirus (i.e. 

HKU1 and its isolates N1 and N2), Human coronavirus OC43 and Human enteric 

coronavirus strain 4408. This extended analysis allowed us to discover some 

additional intergenic and intragenic gene transfer-recombination events involving 
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human-related coronaviruses, including the exchange of genetic material between: 

(1) Murine CoVs and HKU1-related viruses, i.e. a complete gene transfer detected 

with high bootstrap score of 88.5%, and a partial transfer detected with bootstrap 

score of 59.8%; (2) Equine CoV and the cluster including Human OC43 and Enteric 

CoVs, i.e. a partial gene transfer with bootstrap score of 63.5%; (3) Rabbit HKU14 

CoV and the cluster including the Enteric human CoV, and the three bovine CoVs, 

i.e. a partial gene transfer with bootstrap score of 65.4%; (4) Human OC43 CoV 

and Bovine OH440 CoV, i.e. a partial gene transfer with bootstrap score of 57.7%; 

and (5) Human Enteric CoV and Bovine AH187 CoV, i.e. a partial gene transfer 

with bootstrap score of 84.6%. Interestingly, no any gene transfer-recombination 

event between the viruses of the upper part of the species tree, containing SARS-

related coronaviruses (Fig. 4b), and the lower part of this tree, containing MERS-

related, HKU1-related, OC43 CoV-related and Enteric CoV-related viruses, has 

been detected. 

Analysis of intergenic recombination in 46-species phylogeny 

We also carried out an analysis of intergenic (complete gene transfers) 

recombination events in the 46-species phylogeny discussed in the previous 

section. This extended analysis allowed us to discover some additional gene 

transfer-recombination events that affected the lower part of this larger phylogeny 

(see Fig. 5), including the 25 SARS-CoV-2-related viruses from Fig. 1b as well as 

MERS-CoV, HKU1 coronavirus strains, Human coronavirus OC43, Human enteric 

coronavirus, and different Bat, Rat Parker, Murine, Feline, Equine, Bovine, Porcine 

and Rabbit coronavirus strains. The analysis was conducted using the HGT-

Detection program (Boc et al. 2010) available on the T-Rex web server (Boc et al. 

2010). The transfers of the higher part of the tree presented in Figure 5 are the 

complete gene transfers from Figure 3. The most significant transfers found for the 

lower part of the tree include those between: (1) Murine JHM and Rat Parker 
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coronaviruses found for gene N (bootstrap score of 55.4%); (2) Feline CoV and the 

ancestor of the cluster comprising Porcine, Human OC43, Human enteric and three 

Bovine CoVs for gene N2 (bootstrap score of 72.3%); (3) Rabbit CoV and the 

ancestor of the cluster comprising Human OC43, Human enteric and three Bovine 

CoVs for gene S (bootstrap score of 58.4%); and, finally, (4) an interesting 

complete transfer affecting the cluster of MERS-CoV S and two of its close 

relatives, i.e. bat coronaviruses HKU-4 and HKU-5, for gene ORF3a (bootstrap 

score of 76.4%). Gene transfer accounting for this recombination event most likely 

stems from an external source (a CoV organism which is absent in the tree). It is 

marked by a green arrow in Figure 5. It is worth noting that no intergenic 

recombination events between coronaviruses from the higher and lower parts of the 

extended CoV species phylogeny tree were found.  

Cluster analysis of CoV gene phylogenies 

Finally, we also carried out the CoV gene tree clustering to identify genes 

following similar evolutionary patterns (i.e. similar gene tree topologies). This 

analysis was performed using the k-means-based tree clustering algorithm 

adapted for clustering phylogenies with different numbers of leaves (Tahiri et al. 

2018) as some gene trees contained less than 25 species (see the Methods 

section). Our results indicate that coronavirus genes followed three different 

patterns of evolution as the phylogenies of 11 CoV genes and that of the RB 

domain of the spike protein were partitioned into 3 disjoint clusters. Figure 6 

presents the consensus trees of the detected tree clusters. The first of them (Fig. 

6a) obtained using the Consense program from the Phylip package (Felsenstein 

1993) is the extended majority rule consensus tree of the gene phylogenies of 

ORF1ab, S, RB domain of S and N. The supertree inferred by CLANN (Creeve 

and McInerney 2005) (in this case we could not use Consense since the species 

BM48_31_BGR_2008 and BtKY72 were missing in the gene phylogeny of 
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ORF8) for the gene phylogenies of ORF3a, E, M, ORF6, ORF7a, ORF7b and 

ORF8 is shown in Fig. 6b. The consensus tree of the third cluster, containing a 

unique representative - gene tree of ORF10, is its RAxML gene phylogeny (Fig. 

6c). attract 

Discussion 

Recombination is a prevalent process contributing to diversity of most viruses, 

including SARS-CoV-2 and other betacoronavirus organisms. It allows viruses to 

overcome selective pressure and adapt to new hosts and environments (Pérez-

Losada et al. 2015). In this work, we conducted thorough gene-by-gene horizontal 

gene transfer and recombination analysis of SARS-CoV-2-related viruses. Even 

though gene borders are not always a natural demarcation of regions where 

recombination might occur, e.g. two large portions of gene ORF1ab exhibit 

different evolutionary histories, the performed sliding window analysis allowed 

us to treat each considered genetic segment as an independent gene region having 

its own evolutionary history. We first performed a comparative analysis of four 

strains of SARS-CoV-2 with 21 close members of the SARS-CoV family, which 

revealed multiple horizontal gene transfer and recombination events between 

these coronavirus organisms. The most striking of them were statistically 

significant gene transfers from Guangdong Pangolin CoV to SARS-CoV-2 found 

in gene S (i.e. this transfer most likely accounts for a putative recombination 

event between Guangdong Pangolin CoV and RatTG13 in the RB domain region 

of the spike protein) and gene N (i.e. this transfer most likely accounts for a 

putative recombination event between Guangdong Pangolin CoV and RatTG13 in 

region [534-727] of this gene). These findings are in support of the hypothesis 

that SARS-CoV-2 genome is a chimera resulting from recombination of the 

RatTG13 and Guangdong Pangolin CoV genomes. According to some recent 

studies, the discovery of SARS-CoV-like coronaviruses from pangolins with 
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similar RB domain, provides the most parsimonious explanation of how SARS-

CoV-2 could acquire it via recombination or mutation (Anderson et al. 2020; Xiao 

et al. 2020; Li et al. 2020). The fact that the highlighted gene transfer-

recombination events were detected only between Guangdong Pangolin CoV and 

SARS-CoV-2, but not between Guangxi Pangolin CoV and SARS-CoV-2, is 

another argument in favor of a mosaic recombinant origin of the SARS-CoV-2 

genome, and against the parallel evolution paradigm. The confirmed 

recombination events in genes S and N (Fig. 3b and j) as well as the SimPlot 

recombination analysis of genes S, ORF3a, M, ORF 7a and N (Fig. 2) suggest 

that Guangdong pangolin is a likely intermediate host of SARS-CoV-2, on its way 

of transmission from bats to humans. The bat RatTG13 virus strain could infect a 

Guangdong pangolin, which was already a bearer of its own CoV virus, probably 

similar to that found in Guangxi pangolins. The two CoV genomes could then 

recombine and the resulting recombinant evolve into a SARS-CoV-2 mosaic 

strain which was transmitted to humans. Furthermore, we also discovered 

multiple gene exchanges between the cluster including the bat CoVZC45 and 

CoVZXC21 viruses, and the cluster including the SARS-CoV-2 strains and 

RatTG13. Some statistically significant gene transfer-recombination events 

between these CoV clusters were found in 6 of 11 coronavirus genes, namely in 

ORF1ab, ORF3a, M, ORF6, ORF8 and ORF10 (according to the gene transfer-

recombination analysis conducted with HGT-Detection; see Fig. 3), and in genes 

ORF1ab, S, ORF3a, ORF7a, ORF8 and N (according to recombination analysis 

conducted with Φ-test; see Table 1). These findings confirm that not only the 

RatTG13 and GD Pangolin CoVs have influenced the evolution of SARS-CoV-2, 

but also the bat CoVZC45 and CoVZXC21 coronaviruses or their common 

ancestor.  

The intergenic recombination analysis of the extended 46-species coronavirus 

phylogeny allowed us to detect eight additional statistically significant gene 
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transfer events affecting the lower part of the tree. Among them, we need to 

highlight a complete gene transfer affecting the cluster of MERS-CoV S and two 

bat coronaviruses (HKU-4 and HKU-5), stemming from an external source, which 

was found for gene ORF3a (see Fig. 5). No recombination events between 

coronaviruses from the higher and lower parts of the extended CoV phylogeny were 

found (see Figs. 4b and 5). This finding suggests that the gene transfer-

recombination history of coronaviruses from the SARS-Cov-2 cluster (common 

cold CoVs from the higher part of the extended 46-species phylogeny) and that of 

coronaviruses from the cluster including MERS-related, HKU1-related, OC43-

related and Enteric-related CoVs (lower part of the extended 46-species phylogeny) 

can be studied separately. 

It is worth noting that we have also tried to add to our data set some extra SARS-

CoV-2 genomes (in addition to the four originally considered SARS-CoV-2 

genomes from Wuhan in China, Italy, Australia and USA), but realized that it did 

not lead to discovery of any further gene transfer-recombination event in which 

these extra SARS-CoV-2 organisms could be involved. This happens because of a 

very high sequence similarity between the available SARS-CoV-2 genomes. For 

example, the root genomes of the two main SARS-CoV-2 lineages, A and B 

(according to a recent SARS-CoV-2 sequence classification proposed by Rambaut 

et al. 2020), share 99.89% of whole genome identity (we measured it between the 

following coronavirus organisms: Lineage_A_EPI_ISL_406801 and 

Lineage_B_MN908947.3; see Rambaut et al. 2020 for more details), while the 

Hu_Wuhan_2020 and Hu_Australia_VIC231_2020 SARS-CoV-2 genomes 

analyzed in our work share 99.98% of whole genome identity. The difference 

between the existing SARS-Cov-2 genomes can be mainly explained by the 

presence of particular sets of mutations, with respect to the root sequence (Rambaut 

et al. 2020). These mutations are few in numbers and are usually not contiguous. 

They can be detected by a simple genome comparison, and do not necessitate the 
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use of horizontal gene transfer and recombination detection methods. It should be 

mentioned that when extra SARS-CoV-2 genomes were added to the 46 

betacoronavirus organisms analyzed in our work, they were always involved into 

the same gene transfer-recombination events as the four originally considered 

SARS-CoV-2 genomes. 

We also conducted a cluster analysis of the coronavirus gene trees in order to 

identify genes with similar evolutionary histories. This analysis revealed the 

presence of three clusters of gene phylogenies: the first cluster includes the 

phylogenies of genes ORF1ab, S, RB domain and N, the second cluster includes 

the phylogenies of genes ORF3a, E, M, ORF6, ORF7a, ORF7b and ORF8, and 

the third cluster contains only the phylogeny of gene ORF10. For example, the 

phylogenies of genes S and N, whose evolution was affected by the highlighted 

recombination events between Guangdong Pangolin CoV and RatTG13, were 

assigned to the same cluster. 

Conclusions 

The main finding of our work is a detailed list of statistically significant 

horizontal gene transfer and recombination events inferred for 11 main genes and 

the RB domain of the spike protein of SARS-Cov-2 and related betacoronavirus 

genomes (see Figs. 3, 4 and 5). The main advantages of the conducted gene 

transfer and recombination analysis, compared to other recent works in the field 

(Lam et al. 2020; Zhang et al. 2020; Boni et al. 2020), is that it allowed us not 

only to identify genes and genomes that have been affected by recombination, but 

also to determine the donor and recipient organisms for each detected 

recombination event, to find out whether this event was intergenic or intragenic, 

and to assess its statistical significance via a bootstrap score. Our detailed 

horizontal gene transfer and recombination analysis was conducted for each of 11 

main genes of the SARS-Cov-2 genome, involving 46 betacoronavirus organisms. 
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The obtained results (see Figs. 1 to 5) suggest that SARS-Cov-2 could not only be 

a chimera resulting from recombination of the bat RaTG13 and Guangdong 

pangolin coronaviruses but also a close relative of the bat CoV ZC45 and ZXC21 

virus strains. They also indicate that a Guangdong pangolin may be an 

intermediate host of SARS-CoV-2 prior to its transmission to humans. 

Furthermore, our topology-based clustering analysis of coronavirus gene trees 

revealed a three-way evolution of SARS-CoV-2 genes (see Fig. 6). 

It is worth mentioning that some incongruencies among horizontal gene transfer 

and recombination detection methods may exist when applied to the same data 

(Becq et al. 2010). In this work, we used three different methods for detecting 

gene transfer and recombination events (Φ-test recombination analysis of Bruen 

et al. 2006, intergenic HGT analysis of Boc et al. 2010, and both intergenic and 

intragenic HGT analysis of Boc and Makarenkov 2011) to study the evolution 

SARS-CoV-2 and related betacoronaviruses. While the method of horizontal gene 

transfer analysis of Boc et al. (2010) is based on the comparison of the species 

and gene tree topologies, that of Boc and Makarenkov (2011) conducts a sliding 

window analysis of aligned gene sequences. Both of them make part of a 

phylogenetic approach. In the future, it would be interesting to validate our 

horizontal gene transfer and recombination results using composition-based 

("parametric") horizontal gene transfer detection methods (Ravenhall et al. 2015). 

Methods 

Data description 

We explored the evolution of 25 coronavirus organisms, including a cluster of 

four SARS-CoV-2 genomes (from Wuhan in China, Italy, Australia and USA 

taken from different clusters of the Gisaid human coronavirus tree available at: 

https://www.gisaid.org; Shu and McCauley 2017), two GD Pangolin CoV 

genomes (obtained from dead Malayan pangolins during an anti-smuggling 
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operation in the Guangdong province of China) and five Guangxi Pangolin CoV 

genomes (obtained from the Beijing Institute of Microbiology and 

Epidemiology). We also included in our analysis the RaTG13 bat CoV genome 

from Rhinolophus affinis from the Yunnan province of China, along with the 

cluster of two Bat CoVZ organisms, comprising the bat CoV ZC45 and ZXC21 

viruses, collected in the Zhejiang province of China in 2018 and five bat CoV 

genomes sampled in bats across multiple provinces of China from 2006 to 2010 

(denoted as BtCoV 273 2005, Rf1, HKU3-12, HKU3-6 and BtCoV 279 2005 in 

the whole genome CoV phylogeny, see Fig. 1b). Finally, we also considered the 

SARS-CoV-related genomes from the first SARS outbreak (i.e. human SARS, 

Tor2, SARS-CoV BJ182-4 CoVs and bat Rs3367 CoV found in Rhinolophus 

sinicus) and two CoV strains coming from bats found in Kenya and Bulgaria 

(BtKY72 and BM48 31 BGR 2008). Most of these CoV genomes have been 

originally considered by Lam et al. (2020). Moreover, for an extended analysis of 

putative gene transfer-recombination events affecting the RB domain of the spike 

protein and intergenic recombination events (complete gene transfers) affecting 

all the genes under study, we considered 21 additional coronavirus organisms, 

including viruses labeled as common cold CoVs in the Gisaid coronavirus tree 

(Shu and McCauley, 2017) and other CoV organisms studied by Prabakaran et al. 

(2006; they are available in GenBank (Benson et al. 2012) at: 

https://www.ncbi.nlm.nih.gov/Structure/cdd/PF09408). Supplementary Table 1 in 

Supplementary Material reports full organism names, host species and GenBank 

or Gisaid accession numbers for all CoV genomes analyzed in this study. 

We first carried out the SimPlot (Lole et al. 1999) similarity analysis of 

coronaviruses most closely related to SARS-CoV-2, comparing the Wuhan 

SARS-CoV-2 reference genome to a consensus genomes of five CoV groups (GD 

Pangolin CoVs, GX Pangolin CoVs, RaTG13, Bat CoVZ and Bat SL-CoV; see 

Fig. 1a). The GD Pangolin group in our analysis consisted of two Guangdong 
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Pangolin CoVs available in Gisaid (GD Pangolin 1 and GD Pangolin P2S in Fig. 

1b). This explains differences in the results of our SimPlot similarity analysis with 

the results of Lam et al. (2020), who considered only the first of these GD 

Pangolin CoVs in their SimPlot analysis. To avoid possible inconsistency and 

program crashes during the SimPlot similarity analysis (Lole et al. 1999), Φ-test 

recombination analysis (Bruen et al. 2006) and horizontal gene transfer detection 

(Boc et al. 2011), we replaced missing nucleotides in the low-coverage regions of 

the GD Pangolin P2S CoV genome by the corresponding nucleotides of the GD 

Pangolin 1 CoV genome. This allowed us to better highlight intersections 

between the GD Pangolin CoV group similarity curve and the RaTG13 similarity 

curve (see Figs. 1a and Fig. 2), which may indicate the presence of gene transfer-

recombination events between the GD Pangolin and RaTG13 coronaviruses. 

Multiple sequence alignments for all gene and genome CoV sequences (in the 

Fasta format) used in this study as well as all inferred phylogenetic trees (in the 

Newick format) are available at: 

http://www.info2.uqam.ca/~makarenkov_v/Supplementary_Material.zip. 

Methods details 

The VGAS (Viral Genome Annotation System) tool (Zhang et al. 2019), designed 

to identify automatically viral genes and perform gene function annotation, was 

used to validate all CoV genes extracted from GenBank and Gisaid. Multiple 

sequence alignments for 11 CoV genes of the 25 original, and then 46 (for an 

extended analysis), betacoronavirus organisms (nucleotide sequences), and for the 

RB domain of the spike (S) protein (amino acids), were carried out using the 

MUSCLE algorithm (Edgar 2004) with default parameters of the MegaX package 

(version 10.1.7) (Kumar et al. 2018). These alignments were used to infer gene 

trees presented in Figs. 3 and 4 (left part of each portion of the figure). The whole 

genome CoV sequences for the original 25, and then 46 (for an extended 
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analysis), betacoronavirus organisms were aligned in MegaX using the same 

version of MUSCLE. The whole genome alignments were used to infer species 

trees (see Figs. 1b and 4b). The alignment accuracy for all gene and genome 

alignments was verified manually base by base. The GBlocks tool (version 0.91b; 

Castresana 2000) from the Phylogeny.fr web server (Dereeper et al. 2008) was 

used to eliminate sites with large proportions of gaps. The less stringent 

correction option of GBlocks was used.  

The maximum likelihood (ML) gene and genome phylogenies were inferred using 

the RAxML algorithm (version v0.9.0; Stamatakis 2006). Each tree was 

constructed under the best-fit DNA/amino acid substitution model found using 

MegaX, and available in RAxML, for the corresponding multiple sequence 

alignment. The best available substitution model for genes ORF1ab, S, N and the 

whole genomes was (GTR+G+I), for genes ORF3a, E, ORF6, ORF7a it was 

(HKY+G), for gene ORF7b it was (HKY+I), for gene ORF8 it was (HKY+G+I), 

for gene ORF10 it was (JC), and for the RB domain it was (WAG+G) (see 

Supplementary Table 2). In each case, the bootstrap scores of internal branches of 

all phylogenies were calculated using 100 bootstrap replicates. All gene and 

genome trees were originally drawn in MegaX. 

The Partial HGT-Detection program (Boc and Makarenkov 2011) from the T-Rex 

web server (Boc et al. 2012) was used to infer directional horizontal gene 

transfer-recombination networks for 11 CoV genes and the RB domain of the 

spike protein (see Figs. 3 and 4b). Rooted ML genome tree of 25, and then 46, 

CoV organisms, playing the role of the species tree, and multiple sequence 

alignments (for 11 CoV genes and the RB domain of the spike protein) provided 

by MUSCLE, were used as input parameters of the Partial HGT-Detection and 

HGT-Detection programs (Boc et al. 2010; for the extended analysis of intergenic 

recombination events). The PhyML algorithm (Guindon et al. 2005) with 100 

bootstrap replicates was carried out to infer trees from different gene regions for 
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each position of the sliding window used in Partial HGT-Detection. This 

algorithm was carried out separately with sliding window sizes of 10, 25, 50 and 

100 sites as well as with the whole sequence alignments (to infer gene transfers of 

whole genes). The sliding window advancement sizes (i.e. step sizes) of 1 (for 

short genes) and 10 (for long genes and whole genomes) sites was used in our 

analysis. Gene transfer-recombination events with bootstrap support of at least 

50% identified by Partial HGT-Detection (see Figs. 3 - right portion of each 

panel, and 4b), and at least 40% identified by HGT-Detection (see Fig. 5), were 

represented by mapping them into the species tree. Some of these transfers may in 

fact be explained by the paradigm of parallel evolution when species sharing 

similar environment undergo similar mutations and develop similar traits. 

SimPlot v3.5. (Lole et al. 1999) was used to carry out a sliding window analysis 

and determine patterns of sequence similarity using as reference the Wuhan 

SARS-CoV-2 2020 genome. This genome was compared to the RatTG13 genome 

as well as to the consensus genomes of the Guangdong Pangolin CoV group, 

Guangxi Pangolin CoV group, Bat CoVZ group and Bat SL-VoC group (see Fig. 

1a). These consensus genomes were the default consensus genomes generated by 

SimPlot v3.5 in order to represent a group of species. In addition, gene-by-gene 

SimPlot similarity analysis was performed to compare the genes of the Wuhan 

SARS-CoV-2 2020 reference genome with those of the RatTG13, Guangdong 

Pangolin CoV and Bat CoVZ group genomes (Fig. 2). 

The Φ-recombination test (Bruen et al. 2006) was performed to detect 

recombination patterns among individual genes and whole genome sequences of 

the Wuhan SARS-CoV-2, RaTG13, GD Pangolin 1 CoV, GD Pangolin P2S CoV, 

CoV ZC45 and CoV ZXC21 viruses (see Table 1). The Φ-test was conducted 

with sliding windows of sizes 50 to 400 (with a step of 50) and the window 

progress step of 1. The version of the Φ-test used in our study was that provided 
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by David Bryant at his web site: 

https://www.maths.otago.ac.nz/~dbryant/software.html. 

Tree clustering (Fig. 6) was carried out using the k-means-based tree clustering 

algorithm adapted for clustering trees with different numbers of leaves (Tahiri et 

al. 2018) because some gene trees contained less than 25 species. The latest 

version of the tree clustering program was used (it is available at: 

https://github.com/TahiriNadia/KMeansSuperTreeClustering). The program was 

run with the following options - Tree clustering method: k-means; cluster 

validation index: Calinski-Harabasz; penalization parameter  = 0; Tree distance: 

Robinson and Foulds topological distance (not squared; Makarenkov and Leclerc 

1996; Leclerc and Makarenkov 1998, Makarenkov and Leclerc 2000). The only 

difference with the default parameters of the program was that we set the 

penalization parameter  to 0 because 11 out 12 trees contained a full set of 25 

species. 

For the first cluster of trees (i.e. trees of genes ORF1ab, S, RB domain of S, and 

N) inferred for the full list of 25 species, the Consense program of the Phylip 

package (Felsenstein 1993) was used to infer the extended majority-rule 

consensus tree. As the sequences of BM48_31_BGR_2008 and BtKY72 were 

missing in the multiple sequence alignment of gene ORF8, we applied a supertree 

reconstruction method to retrace consensus evolutionary patterns for the cluster of 

genes ORF3a, E, M, ORF6, ORF7a, ORF7b, and ORF8. The CLANN program 

(Creevey and McInerney 2005) was used with the best heuristic search (hs) and 

bootstrap options with 100 replicates to infer a supertree for these genes. The 

consensus tree of the third cluster, containing the only tree of ORF10, is the 

ORF10 gene tree inferred with RAxML. 
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Table 1. The results of the Φ recombination test carried out for gene and whole 

genome sequences of Wuhan SARS-CoV-2, RaTG13, GD Pangolin 1 CoV, GD 

Pangolin P2S CoV, bat CoV ZC45 and bat CoV ZXC21.  

 

Region 
Φ-test result 

(p-value) 

Recombination 
detected 
(yes/no) 

Window 
size 

Gene ORF1ab 2.23 x 10-3 Yes 150 

RB domain too short -  

Gene S 8.60 x 10-3 Yes 200 

Gene ORF3a 1.13 x 10-5 Yes 100 

Gene E 0.56 No 200 

Gene M 0.226 No 100 

Gene ORF6 too short -  

Gene ORF7a 0.00155 Yes 200 

Gene ORF7b too short -  

Gene ORF8 0.0453 Yes 200 

Gene N 0.024 Yes 50 

Gene ORF10 too short -  

Whole genomes 0.0156 Yes 200 
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Figure 1 
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Figure 2 
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Figure 3
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Figure 4 
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Figure 5 
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Figure 6 
 

 

.CC-BY 4.0 International licensedisplay the preprint in perpetuity. It is made available under a
holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to 

The copyrightthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.410233doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410233
http://creativecommons.org/licenses/by/4.0/


 

43 

Figure legends 
 

Figure 1. Genome similarity and phylogenetic analysis of SARS-CoV-2 and related viruses: (a) 

SimPlot sliding window analysis of changing patterns of sequence similarity between: the 

Wuhan  SARS-CoV-2 2020 reference genome with the RatTG13 CoV genome (green) and the 

consensus genomes of the GD Pangolin CoV (red), GX Pangolin CoV (orange), Bat CoVZ (violet) 

and Bat SL-VoC (gray) groups. Gene limits for genes ORF1ab, S, ORF3a, E, M, ORF6, ORF7a, 

ORF7b, ORF8, N and ORF10, as well as for the RB domain, are shown at the top of the figure. 

Different groups of sequences merged in SimPlot analysis are represented by different colors 

corresponding to species clusters in the whole genome phylogeny shown in panel (b) of the figure; 

(b) Whole genome phylogeny of 25 SARS-CoV and SARS-CoV-2-related organisms. Species 

clusters are indicated on the right. Bootstrap scores are indicated on the internal branches of the tree. 

Branches with bootstrap score lower than 60% were collapsed. The tree was inferred using the 

RAxML method with the most suitable for these data, the HKY-gamma evolutionary model, and 100 

replicates in bootstrapping. 

 

Figure 2. Gene-by-gene SimPlot similarity analysis performed to compare gene sequences of the 

Wuhan SARS-CoV-2 2020 reference genome with those of the RatTG13 genome (green), GD 

Pangolin CoV consensus genome (red) and Bat CoVZ consensus genome (violet). Graphs are shown 

for genes ORF1ab, S, ORF3a, M, ORF7a and N that encompass the most important overlaps between 

the RaTG13, GD Pangolin CoV and Bat CoVZ similarity curves. 

 

Figure 3. Putative horizontal gene transfer events found for the main 11 genes and the RB domain of 

25 SARS-CoV and SARS-CoV-2-related viruses. Left part of each portion of the figure shows the 

gene tree, while its right part shows the species tree (i.e. whole genome tree) into which statistically 

significant horizontal gene transfers are mapped. Full lines represent complete gene transfers (i.e. 

when a complete copy of the donor’s gene is incorporated into the recipient genome; this accounts 

for intergenic recombination) and dashed lines represent partial gene transfers (i.e. when a mosaic 

gene is formed by recombination of two homologous gene sequences; this accounts for intragenic 

recombination). Numbers on the internal branches represent their bootstrap scores. Transfer 

directions are represented by arrows (when the direction is not certain, the arrow is bidirectional). 

Gene fragments transferred from the donor organism are indicated between brackets and followed by 

the transfer bootstrap score calculated by the Partial HGT-Detection program (Boc and Makarenkov, 

2011). 

 

Figure 4. Putative horizontal gene transfer events found for the RB domain (amino acid sequences) 

of 46 betacoronavirus organisms (extended version of Fig. 3i). Left part of the figure presents the 

gene tree of the RB domain. Right part of the figure presents the species tree (i.e. whole genome tree) 

with putative horizontal gene transfers mapped into it. The explanations of the caption of Fig. 3 also 

apply for this figure. 

 

Figure 5. Putative complete horizontal gene transfer events (accounting for intergenic 

recombination) found for the main 11 genes of 46 betacoronavirus organisms from Fig. 4. The 

detected complete horizontal gene transfers are mapped into the species tree (i.e. whole genome tree). 

Numbers on the internal tree branches represent their bootstrap scores. Transfer directions are 

represented by arrows (when the direction is not certain, the arrow is bidirectional). Transfer 

bootstrap scores calculated by the HGT-Detection program (Boc et al. 2010) and the associated gene 

names are indicated on arrows. 
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Figure 6. Three consensus trees showing the three ways of evolution of the SARS-CoV and SARS-

CoV-2-related genes. Tree clustering was carried out using the k-means-based tree partitioning 

algorithm adapted for clustering trees with different numbers of leaves. The first tree is the extended 

majority-rule consensus tree inferred for the phylogenies of genes ORF1ab, S, RB domain of S and 

N, forming Cluster 1. This consensus tree was obtained using the Consense program from the Phylip 

package. The second tree is the best heuristic search (hs) CLANN supertree inferred for the 

phylogenies of genes ORF3a, E, M, ORF6, ORF7a, ORF7b and ORF8 (these gene phylogenies had 

different numbers of leaves), forming Cluster 2. The consensus tree of gene ORF10 is its RAxML 

tree, which was unique in Cluster 3. Bootstrap scores are indicated on the internal tree branches. 

Branches with bootstrap support lower than 40% were collapsed. 
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