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Abstract
Precision medicine, regarded as the future of healthcare,
is gaining increasing attention these years. As an essen-
tial part of precision medicine, clinical omics have been
successfully applied in disease diagnosis and progno-
sis using machine learning techniques. However, exist-
ing methods mainly make predictions based on gene-
level individual features or their random combinations,
none of the previous work has considered the activa-
tion of signaling pathways. Therefore, the model in-
terpretability and accuracy are limited, and reasonable
signaling pathways are yet to be discovered. In this
paper, we propose a novel multi-level attention graph
neural network (MLA-GNN), which applies weighted
correlation network analysis (WGCNA) to format the
omic data of each patient into graph-structured data,
and then constructs multi-level graph features, and fuses
them through a well-designed multi-level graph fea-
ture fully fusion (MGFFF) module to conduct multi-
task prediction. Moreover, a novel full-gradient graph
saliency mechanism is developed to make the MLA-
GNN interpretable. MLA-GNN achieves state-of-the-
art performance on transcriptomic data from TCGA-
LGG/TCGA-GBM and proteomic data from COVID-
19/non-COVID-19 patient sera. More importantly, the
proposed model’s decision can be interpreted in the sig-
naling pathway level and is consistent with the clinical
understanding.

Introduction
Precision medicine aims at enhancing the treatment effect
compared to one-fits-all products by providing personal-
ized treatment plans, medical decisions, and products (Yau
2019). One natural way to assign patients into customized
subgroups is through clinical omic data, such as the data
from genomics, transcriptomics, and proteomics. Among
the omic data, biomarkers which indicate the biological state
or disease progression are generally applied for disease diag-
nosis and prognosis. Researchers usually detect gene muta-
tions or specific individual gene expression profiles (GEPs)
to discover biomarkers. The GEPs can be represented ei-
ther at the transcription level using transcriptomics or at
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the protein level using proteomics. In addition to the above
biomarkers, pathway-level biomarkers have recently been
proposed and proven to have unique advantages in medical
outcome predictions (Ben-Hamo et al. 2020).

Although omic data have been studied in disease diag-
nosis and prognosis (Zhang et al. 2018; Shen et al. 2020;
Chen et al. 2017), there remain some problems to be solved.
First, existing methods mainly make predictions based on in-
dividual GEPs or their random combinations, which cannot
correctly reflect the complex disease mechanism, thus yield-
ing limited performance. Second, relying on random com-
binations of GEPs, the methods have poor generalizability
due to the batch effects (Haghverdi et al. 2018), which are
caused by the instability of GEPs on different batches of data
due to the differences in experiment times, handlers, reagent
lots, etc. Third, the biological regulatory network is a cas-
cading amplification process. A small change in the tran-
scription factor can amplify its signal, and result in a great
change of functional proteins. Statistical analysis can only
discover functional proteins with great changes while ig-
noring the driven factor of the disease, which are clinically
relevant and usually used as the drug target. Furthermore,
current research mainly focuses on transcriptomics while
ignoring the irreplaceability of proteomics. In fact, some
disease development (e.g., the infectious disease COVID-
19) can only be reflected and detected by proteomics (e.g.,
sera GEPs). Without enough proteomics researches, current
methods cannot comprehensively reveal the underlying dis-
ease mechanism.

To solve these problems, we thoroughly inspect the omic
data and delicately design our method. The omic data is
non-Euclidean since the GEPs do not form grid-structures
like image data, meaning the convolutional neural networks
(CNNs) that achieve great success in computer vision are
not suitable for processing the omic data. Instead, the omic
data can be represented in a graph structure since the tran-
scription factors and the functional proteins make up a hi-
erarchical regulatory network in biology. Considering these
characteristics, we employ graph neural networks (GNNs)
to exploit the information contained in the non-Euclidean
graph-structured omic data. Specifically, we format the omic
data into WGCNA graphs, which connect the GEPs that per-
form similar functions or on the same signaling pathway,
to mimic the GEP connections in the organism. Then, we
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propose a multi-level attention graph neural network (MLA-
GNN) to imitate the hierarchical regulatory network. As
the layer deepens, the MLA-GNN gradually integrates the
GEPs on the same signaling pathway, and amplify the con-
tribution of the driven factors, thus can better reveal the un-
derlying disease mechanism or biological process. Further-
more, we develop a full-gradient graph saliency mechanism
to interpret the model performance and discover pathway-
level biomarkers. By imitating the biological regulatory pro-
cess and identifying pathway-level biomarkers, the proposed
MLA-GNN is robust to batch effects, resulting in efficiency
and accuracy on prediction tasks on the transcriptomic data
as well as the proteomic data. Our contributions in this work
can be summarized as follows:

• We propose a concise and robust MLA-GNN on omic
data to imitate biological processes and discover pathway-
level biomarkers, supporting survival prediction and clas-
sification. To the best of our knowledge, MLA-GNN is the
first work that utilizes GNNs to explore the prior struc-
tured information contained in the WGCNA graphs.

• We develop a novel full-gradient graph saliency (FGS)
mechanism for the interpretation of GNN-based models
and validate its superiority on the proposed MLA-GNN.

• Using the FGS mechanism, the MLA-GNN can discover
clinically interpretable pathway-level biomarkers, which
are relevant but cannot be discovered by existing methods.

• We perform extensive experiments on different tasks us-
ing transcriptomic data and proteomic data. The results
demonstrate that the superiority and robustness of the
MLA-GNN compared to state-of-the-art methods.

Related Work
In this section, we introduce the existing methods for clinical
omics analysis.

Statistical Approaches for GEP Analysis
At present, most of the clinical analysis on GEPs are based
on statistical approaches (Chen et al. 2017; Zhang et al.
2018; Yang et al. 2018), where differentially expressed pro-
teins are calculated using a certain fold change and p-value
threshold by t-test or its variants. Unsupervised learning
methods, especially hierarchical clustering, are often used
for disease subtyping. For instance, comprehensive LUAD
proteogenomics exposes multi-omic clusters and immune
subtypes (Gillette et al. 2020). However, it cannot provide a
specific decision bound to predict the efficacy or the subtype
of each patient, and often has a high false discovery rate due
to the “large p, small n” problem (Diao and Vidyashankar
2013), hindering its clinical application.

Machine Learning-based GEP Analysis Methods
In recent years, machine learning has been widely employed
in the medical field (Zhao et al. 2020; Wang et al. 2020;
Liang et al. 2020). Encouraged by these studies, an increas-
ing number of machine learning-based methods are applied
to omic data. Random forest is reported to successfully pre-
dict the risk of preterm delivery of pregnant women based

on cell-free RNA (Ngo et al. 2018). Support Vector Ma-
chine (SVM) using single-cell transcriptomic data is applied
to predict brain development through distinguishing neocor-
tical cells and neural progenitor cells (Hu et al. 2016). How-
ever, these methods require great efforts in hand-crafted fea-
ture engineering and have limited generalizability.

Deep Learning-based GEP Analysis Methods
Deep learning, as the most recent iteration of the machine
learning method, has been applied to GEP analysis. Self-
Normalizing Network (SNN), as a variant of fully connected
neural networks, achieves state-of-the-art performance on
cancer diagnosis and prognosis tasks using RNAseq data
(Chen et al. 2019). However, the features in SNN are ran-
domly combined based on the weight matrix between ad-
jacent layers, such random combination cannot fully ex-
ploit the inherent structure information of the omic data.
Recently, GNNs (Kipf and Welling 2016; Veličković et al.
2017) have been applied to predict the node-level embed-
dings of Protein-Protein Interaction (PPI) graphs. However,
graph-level predictions, which have great clinical signifi-
cance in predicting the phenotype or survival time of each
patient, are under-studied.

Methods
The overview of the proposed MLA-GNN is illustrated in
Figure 1. Given the training data XN×K for N patients (K
GEPs for each patient), we first construct the edge matrix
EK×K through WGCNA analysis (Langfelder and Horvath
2008). Then, each patient can be represented by a graph
G1 = G(V K×1, EK×K), where V K×1 represents the fea-
tures of K nodes and the edge matrix EK×K denotes the
edge connections in the graph. We then utilize several graph
attention (GAT) layers (Veličković et al. 2017) to construct
hierarchical graph features G2 and G3 from the WGCNA
graph G1. In the proposed multi-level graph feature fully
fusion (MGFFF) module, the multi-level graph features are
fused after linear projection (LP) and vectorization. Then,
the fused feature is sent to the last stage of the pipeline, a se-
quential network for multi-task prediction, such as disease
classification and survival prediction. Furthermore, we pro-
pose a novel full-gradient graph saliency (FGS) mechanism
to reveal the importance of each node on the graph, thus pro-
viding clinical interpretation for the proposed model.

Gene Co-expression Computation
In order to employ GNNs for omics analysis, the first step is
to format the omic data of each patient into a graph which is
specified by an input feature V and an edge matrix E. Sup-
pose each patient is represented by K GEPs, the feature can
be represented by V K×1, which corresponds to a graph with
K nodes, with each node contains the expression of a gene.
As shown in Figure 1 (a), we perform gene co-expression
computation through WGCNA analysis to calculate the edge
matrix E. Specifically, for the training data XN×K (where
N denotes the number of patients in the training set), the ex-
pression profile of each gene (node) is characterized by an
N -dimension vector. For any two nodes vi and vj ∈ RN ,
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Figure 1: Overview of the proposed Multi-Level Attention Graph Neural Network (MLA-GNN). (a) Gene Co-expression Com-
putation module performs weighted correlation network analysis (WGCNA) on the training data to produce the edge matrix. (b)
Multi-Level Graph Construction module builds multi-level graphs through GAT layers. (c) Multi-Level Graph Feature Fully Fu-
sion (MGFFF) module integrates local gene-level features and global pathway-level features. (d) Multi-Task Prediction module
conducts multiple medical tasks, such as disease classification and survival prediction.

their pairwise correlation Aij is calculated as

Aij =

∑N
n=1(vi,n − v̄i)(vj,n − v̄j)√∑N

n=1(vi,n − v̄i)2
√∑N

n=1(vj,n − v̄j)2
, (1)

where v̄i and v̄j are the average features of the node vi and
vj . In this way, the nodes with similar gene expressions are
connected with larger adjacency values.

To construct the edge matrix E, we binarize the continu-
ous values in the adjacency matrix A through

Eij =

{
1, Aij > adj thresh

0, otherwise,
(2)

where the hyper parameter adj thresh is optimized by an
automated machine learning (Waldrop, Youn, and Patterson
2014) algorithm. Note that the edge matrix E is calculated
based on all training data, thus is not patient-specific and
does not need to be computed repeatedly.

Utilizing the edge matrix E, we format each patient into
a WGCNA graphG1 = G(V K×1, EK×K). In the WGCNA
graph, nodes with similar gene expressions are connected by
edges, while others are not. It is reported in (Langfelder and
Horvath 2008) that genes with similar expressions usually
conduct similar functions and are more likely to be mapped
to the same signaling pathway. Therefore, the genes on a
signaling pathway are naturally connected in the WGCNA
graph, thus could be processed to extract pathway-level in-
formation that cannot be discovered by existing methods.

Multi-Level Graph Construction
For each patient, the constructed WGCNA graph G1 =
G(V K×1, EK×K) is fed into a stack of GAT layers to con-
struct multi-level graph features. GAT layer is an advanced
graph convolutional layer which outputs each node feature

as the weighted combination of its neighboring nodes and
the node itself. A self-attention mechanism is performed to
compute the attention coefficient between the node and its
neighbors. For example, the attention coefficient between
the node vi ∈ Rh and its neighbor vj ∈ Rh is computed
as

eij = W2(W1vi||W1vj), (3)
whereW1 is the weight parameter of a fully connected layer,
|| denotes the concatenation operation, and a fully connected
layer with weight parameter W2 ∈ R2h encodes the corre-
lation between the node i and node j. Then, the attention
coefficients are normalized using the softmax function

αij =
exp(eij)∑

k∈Ni
exp(eik)

, (4)

there k ∈ Ni denotes all first-order neighbors of the node i
and the node itself. After that, the normalized attention coef-
ficients αij are used to compute a linear combination of the
corresponding features as the output features for the node i:

v′i = ELU(
∑
j∈Ni

αijW1vj), (5)

where ELU, a combination of Sigmoid and ReLU, is the
non-linear activation function. According to Eq. 5, the fea-
tures of neighboring nodes with high similarity are inte-
grated into the target node with large weights.

As aforementioned, GEPs on the same signaling path-
way are more likely to be connected in the WGCNA graphs.
Therefore, the output feature of each node in the graph af-
ter the GAT layer is the weighted combination of the GEP
features on the signaling pathway, which is a natural way to
extract the feature representations in the pathway-level. To
the best of our knowledge, this work is the first to utilize
GNNs to explicitly explore the prior structured information
contained in the WGCNA graphs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.409755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multi-Level Graph Feature Fully Fusion
As shown in Figure 1, there are three different levels of
graphs, including the input graph G1, and the generated
high-level graphsG2 andG3. These graphs, although having
the same number of nodes, contain hierarchical information.
Specifically, the feature of a node in G1 represents the ex-
pression of a specific gene, while each node in G2 or G3

contains features from many GEPs in a signaling pathway.
Therefore, we denote the features fromG1 as local GEP fea-
tures and those from G2 and G3 as global pathway features.

Since both local GEP features and global pathway fea-
tures are important in omics representation learning and
phenotype prediction (Ben-Hamo et al. 2020), we fuse the
multi-level graph features to produce more discriminative
feature representation. However, due to the different node di-
mensions in multi-level features, direct concatenation would
put more weights on the graph at a higher level. To this
end, we first perform linear projection by a fully connected
layer to generate high-level graph features G′2 and G′3 with
reduced node dimension. Then, the features G1, G′2, and
G′3 are vectorized to generate three same-dimension feature
vectors F1, F2, F3 ∈ RK , which are concatenated to pro-
duce the fused feature F ∈ R3K . By this design, the net-
work could adaptively select the most meaningful informa-
tion during the training process and find the desired repre-
sentation for each node, which will lead to a leap in model
capacity. Benefiting from the global pathway-level informa-
tion, the fused feature F ∈ R3K enables the model to dis-
cover high-level biomarkers (e.g., transcription factors) that
cannot be discovered by the original input feature F1 ∈ RK .
This is of great significance to bioinformatics research and
clinical applications.

It is noteworthy that different from the common methods
which generate graph representations by pooling across all
the nodes, our method compresses the features inside each
node while keeping the node structure in the graph. This is a
specific design in this work, and the reason is that each node
corresponding to an individual GEP has its special biological
meaning, thus cannot be compressed across nodes.

Multi-Task Prediction
The proposed MLA-GNN is designed to address multiple
different clinical tasks. As shown in Figure 1, the fused fea-
ture F is encoded by a sequential fully connected layers to
perform disease classification and survival prediction in the
multi-task prediction module.

For the disease classification task, the output y ∈ Rc de-
notes the probability scores of c classes. This task is opti-
mized by the cross-entropy loss. For the survival prediction
task, the output y ∈ R1 denotes “hazard ratio”. And the cox
loss is calculated as

Lcox =
∑

C(p)=1

(yp −
∑

yq≥yp

exp(yq)), (6)

whereC(p) = 1 means the p-th patient is censored, and only
censored patients are included in the cox loss computation.

Note that the proposed model degrades to SNN (Chen
et al. 2019) if we utilize the input feature F1 rather than the
fused feature F for multi-task prediction.

Full-Gradient Graph Saliency
Currently, increasing concern regarding the interpretability
of deep neural networks has been raised. A clinically inter-
pretable model, which can reveal the working mechanism
and improve the credibility of the model, is especially de-
manded in the clinical community. In this paper, consider-
ing the success of full-gradient saliency in CNNs (Srinivas
and Fleuret 2019), we develop a novel full-gradient graph
saliency (FGS) mechanism to interpret GNNs and provide
clinical explanations for the proposed MLA-GNN.

In the MLA-GNN, the node on the input graph G1 rep-
resents the expression of an individual gene and may have
limited importance (local importance). However, the node
on G2 and G3 combining a group of GEPs may be criti-
cal if they form an important signaling pathway (global im-
portance). From the view of the clinical community, the lo-
cal importance could reveal low-level functional biomarkers,
and the global importance help discovers high-level regula-
tory factors. Thus, they are both crucial in clinical interpre-
tation and biological research. To this end, the FGS mech-
anism is designed to reveal node importance by integrating
the gradients of multi-level graph features.

First, for the p-th patient, we deduce level-wise feature
importance by computing the gradients of target tp over the
input graph G1 and over the intermediate graphs G′2, G′3.
Specifically, for l ∈ {1, 2, 3} corresponding to the graph
features of different levels (i.e., G1, G′2, G′3), the gradient
for the i-th node of the p-th patient is calculated by

sli,p = ReLU(
∂tp
∂vli,p

), (7)

where vli,p is the feature of the i-th node in the l-th level
of the p-th patient, ReLU is the activation function which is
utilized to remove negative gradient response. According to
the different tasks, the target tp in Eq. 7 is defined as

tp =

{
yp, survival

yp × gp, classification,
(8)

where yp and gp are the prediction and ground-truth labels
of the p-th patient.

Then, we compute the saliency score si for the i-th node
by aggregating the gradients cross three levels and all pa-
tients, which is defined as

si =
3∑

l=1

∑
p

sli,p. (9)

The FGS mechanism would reveal the contribution of
each GEP to the final prediction. The top GEPs with high
saliency scores are recognized as biomarkers and will be an-
alyzed by biological methods for further biological insights.

Experiment
To comprehensively evaluate the performance of MLA-
GNN, we conduct experiments on two public datasets, in-
cluding transcriptomic data and proteomic data separately,
for the tasks of survival prediction, histological grading,
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Table 1: Data summary

Dataset Data source # Patients # GEPs Type of omics Tasks
Glioma TCGA-LGG & TCGA-GBM 769 240 transcriptomics survival outcome & histological grading

COVID-19 COVID-19 patients sera 70 791 proteomics COVID-19 diagnosis

and COVID-19 diagnosis. Moreover, taking the TCGA-
LGG/TCGA-GBM dataset as an example, we show the
paradigm of the model interpretability which is an impor-
tant breakthrough in clinical omics.

Datasets
The summary of the datasets used in the experiments is
shown in Table 1.

Glioma Dataset: RNAseq of glioma patients for sur-
vival prediction and histological grading. The glioma
cases are collected from the TCGA-GBM and TCGA-LGG
projects. The dataset contains a total of 769 patients. Each
case contains 240-dimensional RNAseq data curated from
the TCGA and cBioprotal platforms (Cerami et al. 2012).
The corresponding clinical information includes survival
outcomes and histological grading (grade II, grade III, and
grade IV), as the labels to be predicted by the models.

COVID-19 Dataset: Proteomic data of the COVID-19 pa-
tients sera for diagnosis. The outbreak of the COVID-19
pandemic has brought a global crisis. Recently, the sera pro-
teomic data from some COVID-19 cases have been released
(Shen et al. 2020). We also apply MLA-GNN to the clas-
sification of COVID-19 patients, contributing to the under-
standing and auxiliary diagnosis of COVID-19. The dataset
contains 34 COVID-19 patients and 36 non-COVID-19 pa-
tients, with 791 proteins identified in the sera samples.

Implementation Details
We implement the proposed MLA-GNN with Pytorch
(Paszke et al. 2017) and Pytorch Geometric library (Fey and
Lenssen 2019). The model is trained in an end-to-end man-
ner utilizing Adam optimizer and with batch size set to 8.
The learning rate is initialized as 0.002 and linearly decayed
in the training process. For the COVID-19 dataset, we em-
ploy the SelectKBest function in the scikit-learn package to
reduce the feature dimensions and use the selected features
as input to the proposed model. To tackle the class imbal-
ance problem, we employ the “WeightedRandomSampler”
strategy to prepare each training batch data.

To validate the effectiveness and robustness of the pro-
posed method, we conduct cross-validation in the experi-
ments. Specifically, 15-fold cross-validation is performed on
the glioma dataset, to be consistent with (Chen et al. 2019)
for a fair comparison. For the COVID-19 dataset, we per-
form 5-fold cross-validation considering the relatively small
amount of data.

Evaluation
For the survival prediction task, performance of the MLA-
GNN is compared with the SNN (Chen et al. 2019), cox-
PH model (Cox 1972), and cox-nnet (Ching and Garmire

Table 2: Model performance on the survival prediction task
of the glioma dataset

Model c-index
cox-PH (Cox 1972) 0.6911 ± 0.0748

cox-nnet (Ching and Garmire 2018) 0.7152 ± 0.0730
SNN* (Chen et al. 2019) 0.7286 ± 0.0744

MLA-GNN (Ours) 0.7620 ± 0.0682
SLA-GNN-level2 0.7382 ± 0.0674
SLA-GNN-level3 0.7266 ± 0.0723

* The SNN can also be called as SLA-GNN-level1.

2018). The performances of these models are evaluated with
c-index, which is generally employed to measure the perfor-
mance of survival prediction.

For the histological grading and COVID-19 diagnosis
tasks, the performance of the MLA-GNN is compared with
the SNN (Chen et al. 2019), SVM (Suykens and Vandewalle
1999), and Random Forest (Liaw, Wiener et al. 2002). These
models are evaluated by overall accuracy, precision, recall,
and F1-score.

To evaluate the effectiveness of feature fusion in the
MGFFF module, we conduct ablation studies to compare the
performance of the fused feature F and the single-level fea-
ture F1, F2, and F3. For clarity, we denote the model with a
single-level feature as Single-Level Attention Graph Neural
Network (SLA-GNN). Therefore, the models with feature
F1, F2, and F3 are named as SLA-GNN-level1 (which is
the same as the SNN model), SLA-GNN-level2, and SLA-
GNN-level3, respectively.

Results and Discussion
Experimental Results
Performance on the glioma dataset for survival predic-
tion and histological grading. Table 2 shows the model
performance on the survival prediction task of the glioma
dataset. The MLA-GNN achieves the c-index of 0.7620, out-
performing the cox-PH, cox-nnet, and the current state-of-
the-art SNN by a large margin. This result validates the supe-
riority of the proposed MLA-GNN. Furthermore, we can ob-
serve performance gains of the MLA-GNN over SLA-GNNs
at different levels. This indicates that the fused feature F
(used in MLA-GNN) is more discriminative than the single-
level features (used in SLA-GNNs), thus demonstrating the
effectiveness of feature fusion in the MGFFF module.

For the histological grading task, we present the model
performance in Table 3. Our proposed MLA-GNN achieves
an accuracy of 0.6920, significantly outperforming two
commonly used machine learning methods (i.e., SVM and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.409755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Model performance on the histological grading task of glioma dataset

Model Accuracy Precision Recall F1-score
SVM (Hu et al. 2016) 0.5391 ± 0.0632 0.6879 ± 0.0692 0.5546 ± 0.0739 0.5808 ± 0.0736

Random Forest (Ngo et al. 2018) 0.6297 ± 0.0601 0.7087 ± 0.0442 0.7065 ± 0.0716 0.6993 ± 0.0424
SNN* (Chen et al. 2019) 0.6303 ± 0.0716 0.6716 ± 0.0694 0.6572 ± 0.0638 0.6559 ± 0.0645

MLA-GNN (Ours) 0.6920 ± 0.0645 0.7483 ± 0.0582 0.7247 ± 0.0553 0.7299 ± 0.0553
SLA-GNN-level2 0.5765 ± 0.0610 0.5847 ± 0.0720 0.6180 ± 0.0549 0.5832 ± 0.0588
SLA-GNN-level3 0.6625 ± 0.0489 0.7173 ± 0.0469 0.7140 ± 0.0369 0.7079 ± 0.0418

* The SNN can also be called as SLA-GNN-level1.

Table 4: Model performance on the diagnosis of the COVID-19 dataset.

Model Accuracy Precision Recall F1-score
SVM (Hu et al. 2016) 0.8710 ± 0.0843 0.8982 ± 0.0532 0.8893 ± 0.0510 0.8860 ± 0.0537

Random Forest (Ngo et al. 2018) 0.8456 ± 0.0764 0.8530 ± 0.0716 0.8482 ± 0.0753 0.8450 ± 0.0769
SNN* (Chen et al. 2019) 0.8600 ± 0.0882 0.8653 ± 0.0869 0.8589 ± 0.0891 0.8588 ± 0.0891

MLA-GNN (Ours) 0.9305 ± 0.0618 0.9385 ± 0.0553 0.9304 ± 0.0620 0.9297 ± 0.0627
SLA-GNN-level2 0.7884 ± 0.0859 0.8030 ± 0.0880 0.7911 ± 0.0867 0.7864 ± 0.0866
SLA-GNN-level3 0.8190 ± 0.1417 0.8344 ± 0.1376 0.8214 ± 0.1392 0.8168 ± 0.1433

* The SNN can also be called as SLA-GNN-level1.

Random Forest), and the deep neural network SNN. Further-
more, compared with SLA-GNNs which make predictions
based on single-level features, the MLA-GNN achieves bet-
ter performance since more comprehensive information is
represented by the multi-level fused feature F .

Performance on the COVID-19 dataset for diagnosis.
Comparing with the histological grading of the glioma
dataset, the binary classification of the COVID-19 dataset
is an easier task since the features of COVID-19 patients
and non-COVID-19 patients are very different. The model
performance is shown in Table 4. Compared with existing
methods (i.e., SVM, Random Forest, and SNN) and SLA-
GNNs, our proposed MLA-GNN achieves state-of-the-art
performance with an accuracy of 0.9305, which further val-
idates the effectiveness of the MLA-GNN and the MGFFF
module on a different task and a different omic dataset.

These results are of great significance since this is the first
work to explore and validate the capability of GNNs on pro-
teomic data. With satisfying performance, the MLA-GNN
can serve as a tool to assist COVID-19 diagnosis and dis-
ease mechanism discovery.

Discussion
As aforementioned, MLA-GNN achieves the best perfor-
mance on three different tasks and two different omic
datasets. By comparing the results comprehensively, we can
gain several insights:

(1) Although deep learning-based methods have shown
great promises in medical applications, the deep network
SNN did not show obvious improvements comparing with
other shallow methods. This suggests that the proper design
of deep learning algorithms specific to omic data is required
to achieve superior performance.

(2) In all experiments, the MLA-GNN consistently out-
performs SLA-GNNs, thus suggesting the superiority of the
fused feature F over single-level features. We further take
the grading task of the glioma dataset as an example to vi-
sualize the feature distributions. As shown in Figure 2, the
fused feature F tends to be more separable than single-level
features, which is consistent with the quantitative results. We
conjecture the underlying reason is: Different levels of fea-
tures may characterize different aspects of a disease. Specif-
ically, low-level graph feature F1 describes the expression
of individual genes (functional GEPs), while high-level fea-
tures F2 and F3 reflect the expressions of a group of genes
on a signaling pathway. The development of a disease is
a complex mechanism regulated by millions of genes and
proteins (which form signaling pathways), thus it cannot be
well represented by gene expressions at a single level. In
our method, the fused feature F integrates information from
both the local gene-level and the global pathway-level thus
can better reveal the biological mechanism behind diseases.

(3) Among the three SLA-GNN models, SLA-GNN-
level2 achieves the best performance on the survival predic-
tion of the glioma dataset, SLA-GNN-level3 performs better
on glioma grading, while SLA-GNN-level1 (same as SNN)
is more accurate for COVID-19 diagnosis. This indicates
that features at different levels may be suitable for different
tasks and fused features make our model more generalizable.

Model Interpretability
We use the histological grading task of the glioma dataset as
an example to demonstrate the model interpretability.

First, we distinguish the most important nodes utilizing
the proposed FGS saliency and perform layer-by-layer anal-
ysis. As indicated in Figure 3, the most important node in

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.409755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: UMAP visualization of the features at different levels for the grading task of the glioma dataset. The fused feature F
is more separable among different classes (Grade II, Grade III, and Grade IV) than the single-level features F1, F2, and F3.

Figure 3: Visualization of the TOP10 important GEPs and their gradient-based saliency scores in each layer and after fusion.
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Figure 4: Signaling pathways enriched by the most impor-
tant GEPs. Larger −log(p-value) indicates greater signifi-
cance in distinguishing different classes.

F1 is the functional GEP, MKI67, also known as an impor-
tant biomarker in glioma (Zeng et al. 2015). As the level
deepens, the most important node in F3 becomes the tran-
scription factor, EGFR, which is reported by previous clini-
cal studies as the driven factor for glioma initiation and pro-
gression (Huang, Xu, and White 2009). These results show
that the existing methods based on the feature F1 cannot dis-
cover the driven factor EGFR. By fusing multi-level graph
features through the MGFFF module in the forward propa-
gation and integrating the gradients of multi-level features
through the FGS mechanism, our method can discover both
the functional GEP (MKI67) and the driven factor (EGFR),
thus proving the superiority of our MLA-GNN.

To discover pathway-level biomarkers, we use the Metas-
cape platform (Zhou et al. 2019) to enrich signaling path-
ways from the most important nodes (GEPs). As shown in
Figure 4, the most significant nervous system development

and L1CAM interactions are discovered as pathway-level
biomarkers. They have been proven to be the most impor-
tant signaling pathways in glioma progression (Wachowiak
et al. 2018). For further verification, we calculate the activa-
tion scores of these pathway-level biomarkers in each pa-
tient and find that their distributions are significantly dif-
ferent in patients with different histological gradings (i.e.,
nervous system development: grade II vs grade III p-value
2.21 × 10−4, L1CAM interactions: grade II vs grade III p-
value 3.33 × 10−4). In this way, we prove that the enriched
signaling pathways can be used as biomarkers instead of a
random combination of individual GEP, throwing light on
pathway-level biomarkers discovery using deep learning.

Conclusions
In this paper, we propose the pioneer MLA-GNN model on
omic data to imitate biological processes and explicitly ex-
plore the structured information contained in the WGCNA
graphs. On both transcriptomic and proteomic data, exten-
sive experimental results show that MLA-GNN achieves
state-of-the-art performance in survival prediction, histolog-
ical grading, and COVID-19 diagnosis. For model interpre-
tation, we propose a novel full-gradient graph saliency mod-
ule to distinguish the most important GEPs and discover
pathway-level biomarkers. In the future, we will apply our
model to more clinical omic data to discover novel pathway-
level biomarkers, which will promote the application and in-
terpretation of deep learning in clinical omics. Furthermore,
we will explore the application of multi-modality model fu-
sion in precision medicine.
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