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Abstract 

Interpretation of a given variant’s pathogenicity is one of the most profound challenges to 

realizing the promise of genomic medicine. A large amount of information about associations 

between variants and diseases used by curators and researchers for interpreting variant 

pathogenicity is buried in biomedical literature. The development of text-mining tools that can 

extract relevant information from the literature will speed up and assist the variant interpretation 

curation process. In this work, we present a text-mining tool, MACE2k that extracts evidence 

sentences containing associations between variants and diseases from full-length PMC Open 

Access articles. We use different machine learning models (classical and deep learning) to 
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identify evidence sentences with variant-disease associations. Evaluation shows promising 

results with the best F1-score of 82.9% and AUC-ROC of 73.9%.  Classical ML models had a 

better recall ( 96.6% for Random Forest) compared to deep learning models. The deep learning 

model, Convolutional Neural Network had the best precision (75.6%), which is essential for any 

curation task.  

1 Introduction  

The interpretation of any given variant’s pathogenicity is one of the most profound challenges to 

realizing the promise of genomic medicine.  It is imperative to understand how gene variants 

impact certain diseases and associated phenotypes. Consortium projects like ClinGen [1], 

gnomAD [2], and GA4GH [3]  are curating knowledge bases for understanding the clinical 

relevance of human genetic variation, based on novel methods for assessing the clinical 

actionability of genes and the pathogenicity of genetic variants. Literature review to identify 

published assertions of associations between variants and diseases is a crucial step variant 

interpretation curation process. There has been a rise in the volume of scientific literature 

describing variant-disease assertions due to sequencing techniques [4]. Manually curated 

databases through literature review containing variants and associated diseases such as COSMIC 

[5], BioMuta [6], OMIM [7], HGMD [8], dnSNP [9], ClinVar [10], CIViC [11] have been 

developed.  It is becoming increasingly difficult for biocurators, clinical researchers, and 

clinicians to keep up with the rapidly growing volume and breadth of variant-related information 

from published literature.  The value of extracting and understanding genetic variations and their 

relationship to disease from literature has been recognized [12] and there is a pressing need to 

develop text-mining tools to extract evidence of variant-disease associations from literature.  

Extracting such relevant information from literature will speed up and assist the manual variant 
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interpretation curation process. To address such variant interpretation curation needs, we have 

developed a text-mining tool named MACE2K to extract evidence sentences indicating variant-

disease associations from full-length PMC articles. We will treat this extraction task as a 

classification problem i.e. given a sentence with the variant and disease annotated, we will train 

ML models to classify the sentence as positive or negative indicating the presence or absence of 

the variant-disease association. We train and test different classical ML models: Logistic 

Regression, Support Vector Machines, Random Forest, and deep learning models: Convolutional 

Neural Networks (CNN) and Long short-term memory (LSTM) for evidence sentence 

classification. The different ML classifiers were evaluated using 5-fold cross-validation on an in-

house curated dataset and achieved average precision, recall, and F1-score of up to 75.6%, 

96.6%, and 82.9%, respectively. 

2 Methods  

As indicated earlier,  MACE2k is a text-mining tool that extracts evidence sentences 

indicating variant-disease associations from full-length PMC articles. An example positive 

sentence indicating a variant-disease association is provided in Example 1 below. In this 

instance, an association between the variant “His239Arg”, the associated gene “HRAD9”, and 

the disease “lung adenocarcinoma” is stated. 

Example 1: His239Arg SNP of HRAD9 is associated with lung adenocarcinoma. [PMID:  

16444745] 

We treat this extraction task as a classification problem i.e. given a sentence with the 

variant and disease annotated, we will train ML models to classify the sentence as positive or 

negative indicating the presence or absence of the variant-disease association. We will use 
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PubTator [13] for entity typing i.e. to detect and normalize the gene, variant, and disease 

mentioned in a sentence to be classified. In a previous work, we have developed a pattern-based 

relation extraction system called eGARD [14] to extract such relationships between variants, 

disease, and drug responses from abstracts. As with any rule/pattern-based approach, eGARD 

suffered from low recall.  In this work, we employ Machine Learning (ML) to address the issue 

of low recall and additionally extend the extraction to full-length PMC articles. We present an 

overall workflow of the study design and methodologies in Fig 1. The different steps of the 

approach are (1) Creation of a curated dataset, (2) Extraction of features from evidence sentences 

for training ML models, and (3) Training and evaluation of ML models. These steps are 

described in the subsequent subsections. 

 

 

Fig 1. System Workflow.  
Abbreviations used: tf-idf (term frequency-inverse document frequency) 

 

2.1 Creation of the curated dataset 

For the creation of this dataset, we formulated an annotation protocol, which was provided to the 

curators. The object of this annotation experiment was to highlight the evidence sentences in 

full-length PMC articles that indicate an assertion by the author for a relationship between any 
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pair of the three entities: (1) disease, (2) gene, and/or (3) variant. Additionally, the entities 

(disease, gene, variant) with normalized identifiers (HGNC [15], MONDO [16], ClinVar [10]) in 

the evidence sentences were also marked by the annotator. If no associated ClinVar identifier 

existed for the annotated variant, the curator used a  ClinGen Allele Registry (CA) [17] identifier 

to normalize the variant. An annotation tool called Hypothes.is [18] was used to assist in the 

creation of the curated gold set. Based on the annotation protocol, 1000 evidence annotations 

(gene-variant, gene-disease, or variant-disease associations) from 87 PMC Open Access articles 

were annotated. The different statistics of the curated dataset are depicted in Table 1. A total of 

557 evidence sentences were annotated out of which 181 sentences contained a variant-disease 

association. As our aim is to extract evidence sentences containing a variant-disease association 

relevant for variant pathogenicity interpretation, we used these 181 evidence sentences as 

positive instances for our ML models. 

 

Category Number of instances 

PMC Open Access Articles 87 

Gene Entities 137 

Variant Entities 186 

Disease Entities 136 

Evidence Sentences with any entity-entity 
relation 

557 

Evidence Sentences with variant-disease relation 181 

 
Table 1. Curated dataset statistics 
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Since the annotation protocol only required the curator to identify sentences, where an 

association between a variant and disease was asserted, all these sentences are positive instances 

of evidence sentences. Since negative instances are required to train ML models, we used an 

automated approach to identify such negative sentences. From the curated PMC open-access 

articles, we downloaded the associated manuscript text and relevant entities (gene, variant, 

disease) using PubTator’s APIs [19] in BioC-XML format. The XML output was parsed and text 

associated with each section in the manuscript was split into sentences using the Stanford 

CoreNLP toolkit [20]. For a particular curated PMC article, all sentences with a variant and 

disease mention (as determined by PubTator) that were not annotated by the curator assigned as 

negative instances. Our assumption is that a sentence where a variant and disease co-occur and 

not identified by the curator for a variant-disease association is not relevant for variant 

pathogenicity interpretation and should be assigned a negative label for ML training purposes. 

This approach yielded a total of 98 negative evidence sentences. Thus our curated dataset for ML 

training contained 181 positive and 98 negative instances. 

2.2 Feature Engineering 

In order to train ML models, the evidence sentences for positive and negative annotations need to 

be converted to structured features. The first set of features, which we used as input for our 

classical ML models is term frequency-inverse document frequency (tf-idf) weighting [21]. The 

second set of features, which we used as input to our deep learning models are distributed word 

embeddings, which have been shown to achieve better performance in NLP tasks by learning 

similar vectors for similar words [22,23].  For our deep learning models, we used the publicly 

available pre-trained word embeddings from NCBI: BioWordVec [24,25]. BioWordVec are 

biomedical word embeddings, trained on PubMed and clinical notes from the MIMIC-III 
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Clinical Database [26] using fastText [27]. The word vectors have a dimensionality of 200. 

Words that were not present in the set of pre-trained words are set as a zero vector. 

2.3 Classification Machine Learning Models 

Different classical and deep learning ML models were employed to classify sentences 

indicating a variant-disease association or not. The different shallow ML models with tf-idf 

feature representation that we tried are Logistic Regression (LR), Support Vector Machine 

(SVM), and Random Forest (RF).  Default parameters and loss function were used.  

Additionally, we used pre-trained word embeddings (BioWordVec) to build and test two deep 

learning architectures, namely, Convolutional Neural Network (CNN) and Bi-directional Long 

Short-Term Memory (bi-LSTM). The CNN architecture had a one-dimensional convolutional 

layer with rectified linear unit (ReLU) activation. For the convolutional layer, we experimented 

with three windows sizes: 3, 5, and 7, each of which has 400 filters. Every filter performs 

convolution on the text matrix and generates variable-length feature maps. We got the best 

results with a single-window of size 5.  Global max pooling was then performed over each map, 

which essentially extracts fixed-length global features for the text. A dense layer of size 1 with a 

sigmoid activation function was applied over the global features to obtain the CNN classifier.  

The biLSTM architecture consisted of a 64-cell bidirectional LSTM layer followed by two 

pooling layers (maximum and average). The maximum and average pooling layers were 

concatenated fed to a fully connected layer with 64 units (with ReLU activation). A dense layer 

of size 1 with a sigmoid activation function was applied over the fully connected layer to obtain 

the biLSTM classifier. For the deep learning models, we used binary cross-entropy as the 

objective loss function and the Adam algorithm [28]  to optimize the loss function. To train the 

parameters for CNN and bi-LSTM, we used mini-batch training with a batch size of 32.  In 
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between each layer of our deep learning architectures, we added a dropout layer with a dropping 

probability of 0.5 to avoid overfitting during training. We set the number of epochs to 100 during 

training.  

3 Results and Discussion 

We compared the performance of the different ML models to classify evidence sentences 

using 5-fold cross-validation. Average precision, recall, F1-score, and area under the receiver 

operating characteristic Curve (AUC-ROC) were computed across the folds and reported in 

Table 2 below. SVM had the best performance in terms of  F1-score 82.9% and an AUC-ROC of 

73.9%. Classical ML models had a better recall (best 96.6% for Random Forest) compared to 

deep learning models. The deep learning model CNN has the best precision of 75.6%.  

 

Model Precision Recall F1-score AUC-ROC 

LR 68.1 95.4 79.5 63.6 

SVM 74.1 94.3 82.9 73.9 

RF 71.1 96.6 81.8 60.1 

CNN 75.6 84.7 79.9 73.7 

biLSTM 70.2 78.4 73.7 67.9 

 

Table 2. Evaluation results  

An initial analysis of the errors made by the deep learning models was conducted. We 

observed that some of the negative instances in our dataset that were generated automatically 

were incorrect. As indicated earlier, we assigned a negative label to any sentence with variant 
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and disease mention that was not annotated by a curator. Our approach will incorrectly label a 

positive sentence (with a variant-disease association) that was missed during the annotation 

process as a negative instance. Subsequent verification of the automatically labeled negative 

instances by a curator will resolve this issue.  

A potential threat to the validity of our results is the small set of evidence annotation 

sentences (181 positive and 98 negative) with a variant and disease mention. We plan to add 

more curations to our dataset to validate and additionally improve the results.  Although deep 

learning models can achieve good performance without complex human-engineered features, it 

requires large amounts of data to effectively train the numerous parameters in the model.  As a 

future step, we aim to investigate various state-of-the-art ML techniques to learn from a small 

gold set and a large “noisy” automatically labeled data set with approaches such as transfer 

learning [29,30], distant supervision [31–33], and adversarial networks [34,35]. We will 

automatically generate large amounts of distantly labeled data using existing knowledge bases 

with known variant-disease entity pairs such as CIViC [11], ClinGen [1], and ClinVar [10]. 

Noise-reduction heuristics will be used to remove noise in the distantly-labeled data. We will 

first train our models on the large distantly labeled set and then re-train the model on the “small” 

amount of human-labeled data to increase accuracy. The intuition behind this two-step training is 

that an ML model trained on a large distantly labeled data is a better starting point in terms of 

learning the model parameters than only training on the small human-labeled data. This idea is 

similar to transfer learning, which leverages labeled data in a different (but similar) domain to 

help training models in the domain of interest that does not have sufficient training data.  
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4 Conclusion 

Information regarding the evidence of variant and disease associations is largely buried in 

biomedical literature. This information is critical for determining variant pathogenicity and its 

clinical utility. It is becoming difficult for researchers and curators to keep up with the increasing 

amount of published literature about variant-disease associations. We have developed a text-

mining tool, MACE2K to extract evidence sentences with variant-disease associations from full-

length PMC Open Access articles using machine learning (ML). We compare the performance of 

different ML models (classical and deep learning) with different feature representations 

(frequency-based, distributed word embeddings) for classifying sentences containing variant-

disease association or not. Our results indicate SupportVector Machines performs the best 

overall (F1-score: 82.9 %) for evidence sentence classification, while Convolutional Neural 

Network (CNN) has the best precision (75.6%), which is essential for any downstream curation 

task. We believe that MACE2k will assist and speed up the variant interpretation curation 

process by extracting relevant information from the literature. 
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