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Abstract 36 

 37 
Gene regulation is highly cell type-specific and understanding the function of non-coding genetic 38 

variants associated with complex traits requires molecular phenotyping at cell type resolution. In 39 
this study we performed single nucleus ATAC-seq (snATAC-seq) and genotyping in peripheral 40 

blood mononuclear cells from 10 individuals. Clustering chromatin accessibility profiles of 41 

66,843 total nuclei identified 14 immune cell types and sub-types. We mapped chromatin 42 
accessibility QTLs (caQTLs) in each immune cell type and sub-type which identified 6,248 total 43 

caQTLs, including those obscured from assays of bulk tissue such as with divergent effects on 44 

different cell types. For 3,379 caQTLs we further annotated putative target genes of variant 45 
activity using single cell co-accessibility, and caQTL variants were significantly correlated with 46 

the accessibility level of linked gene promoters. We fine-mapped loci associated with 16 47 
complex immune traits and identified immune cell caQTLs at 517 candidate causal variants, 48 

including those with cell type-specific effects. At the 6q15 locus associated with type 1 diabetes, 49 
in line with previous reports, variant rs72928038 was a naïve CD4+ T cell caQTL linked to 50 
BACH2 and we validated the allelic effects of this variant on regulatory activity in Jurkat T cells. 51 

These results highlight the utility of snATAC-seq for mapping genetic effects on accessible 52 
chromatin in specific cell types and provide a resource for annotating complex immune trait loci. 53 
 54 
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Introduction 70 

 71 
Genome-wide association studies have identified thousands of genomic loci associated with 72 

complex human traits and disease1–3, but their molecular mechanisms remain largely unknown. 73 
Interpreting the mechanisms of trait-associated loci is paramount to an improved understanding 74 

of the cell types, genes and pathways involved in complex traits and disease1. Genetic variants 75 

at complex trait-associated loci are primarily non-coding and enriched in transcriptional 76 
regulatory elements1,4,5, implying that the majority affect gene regulatory programs. As gene 77 

regulation is highly cell type-specific6,7, uncovering the molecular mechanisms of complex trait 78 

loci requires determining the function of non-coding variants in the individual cell types that 79 
comprise a tissue. While substantial advances have been made in annotating the non-coding 80 

genome5,8, the regulatory effects of genetic variants in specific cell types are still largely 81 
unknown.   82 

 83 
Mapping quantitative trait loci (QTLs) for molecular phenotypes such as gene expression levels, 84 
histone modifications and chromatin accessibility is an effective strategy to determine the 85 

regulatory activity of genetic variants9–15. Molecular QTL studies to date have been primarily 86 
performed in ‘bulk’ tissue, cell lines, or individual sorted cell types, however, and therefore have 87 
not yet widely annotated the breadth of cell type effects. Single cell technologies have created 88 
new avenues to study gene regulation in the specific cell types comprising a heterogeneous 89 

tissue and define relationships to complex traits and disease16,17. Several recent studies 90 
mapped gene expression QTLs (eQTLs) using cell type-specific expression profiles derived 91 
from single cell RNA-seq assays18–20. These studies represented proof-of-concept for using 92 

profiles derived from single cell data to map genetic effects on molecular phenotypes in specific 93 
cell types and sub-types. Moreover, they enabled additional analyses which leveraged data 94 

from across thousands of cells such as the identification of co-expression QTLs19. To date, 95 

however, no studies have mapped chromatin accessibility QTLs in specific cell types and sub-96 

types using single cell assays. 97 

 98 

In this study we used single nucleus ATAC-seq (snATAC-seq) to profile human peripheral blood 99 
mononuclear cell (PBMC) samples. We derived chromatin accessibility profiles of immune cell 100 

types and sub-types and mapped chromatin accessibility QTLs (caQTLs) for these profiles 101 

which identified thousands of immune cell type and sub-type caQTLs. We characterized 102 
caQTLs for each cell type, including caQTLs whose effects are obscured in bulk assays, and 103 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.387894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.387894
http://creativecommons.org/licenses/by-nc-nd/4.0/


linked distal caQTLs to putative target gene promoters using single cell co-accessibility. Finally, 104 

we fine-mapped causal variants at genomic loci associated with 16 complex immune traits and 105 
diseases, annotated fine-mapped variants for these traits with immune cell type caQTLs and 106 

validated the molecular effects of high-probability caQTL variants.   107 
 108 

Results 109 

 110 
Chromatin accessibility profiling of peripheral blood mononuclear cells 111 

 112 

We performed snATAC-seq and genotyping of human peripheral blood cell (PBMC) samples in 113 
order to map genetic effects on lymphoid and myeloid cell type accessible chromatin (Figure 114 

1a). We used droplet-based snATAC-seq (10X Genomics) to assay 10 PBMC samples from 115 
individuals of self-reported European descent (Supplementary Table 1, see Methods). The 116 

snATAC-seq libraries were sequenced to an average depth of 178M reads, and libraries had 117 
consistently high-quality metrics including enrichment at transcription start sites (TSS) and 118 
fraction of reads mapping in peaks (Supplementary Table 2). We then performed array 119 

genotyping of each sample and imputed genotypes into 39.6M variants in the Haplotype 120 
Reference Consortium (HRC) panel21. Principal components analysis of genotypes mapped 121 
onto 1000 Genomes Project data confirmed European ancestry for the majority of samples 122 
(Supplementary Figure 1).   123 

 124 
After extensive quality control that removed low quality cells and potential doublet cells (see 125 
Methods), we performed clustering of 66,843 snATAC-seq profiles, which revealed 14 clusters 126 

(Figure 1b). We then assigned clusters to lymphoid and myeloid cell types and sub-types based 127 
on the chromatin accessibility patterns at known marker genes (Figure 1b, Supplementary 128 

Figure 2, Supplementary Table 3). For example, among immune cell types, NCR1 129 

accessibility marked NK cells, MS4A1 accessibility marked B cells, and PCTRA accessibility 130 

marked plasmacytoid dendritic cells. Among cell sub-types, accessibility at FOXP3 differentiated 131 

regulatory T cells from other T cell sub-types, and accessibility at TCL1A differentiated naïve B 132 

cells from memory B cells (Supplementary Figure 2). The proportion of each immune cell type 133 
and sub-type was broadly consistent across samples (Figure 1c, Supplementary Figure 3a) 134 

and was highly correlated with cell proportions determined from flow cytometry of cell surface 135 

markers for each sample (Supplementary Figure 3b-c). Similarly, clusters were composed of 136 
similar proportions of cells from different individuals (Supplementary Figure 3d). These results 137 
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demonstrate that snATAC of PBMCs resolved lymphoid and myeloid cell types and sub-types 138 

with broadly consistent representation across samples.   139 
 140 

Mapping chromatin accessibility QTLs in immune cell types and sub-types 141 
 142 

Within each immune cell type and sub-type cluster, we aggregated reads for all cells in the 143 

cluster, generated accessible chromatin read count profiles, and called accessible chromatin 144 
sites using MACS222. Considering all immune cell types and sub-types there were 210,771 total 145 

accessible chromatin sites (Supplementary Table 5). Immune cell type and sub-type sites were 146 

highly concordant with sites identified in a previous study of FACS-sorted immune cell types23 147 
(Supplementary Figure 4). We then performed QTL mapping of chromatin accessibility read 148 

counts in these sites using RASQUAL24, a method which combines population-based and allele-149 
specific mapping. We focused on the 5 immune cell types with appreciable numbers of cells (B, 150 

CD4+ T, CD8+ T, monocyte, NK) and mapped QTLs at both cell type and sub-type resolution. 151 
For each cell type or sub-type, we retained sites with >5 reads per sample on average and only 152 
tested variants that mapped directly in accessible sites and were heterozygous in at least two 153 

samples. After applying these filters, on average 67,979 variants per cell type were tested for 154 
association with 46,373 peaks (3.8 variants/peak). For comparison, we also performed caQTL 155 
mapping after merging all reads for each sample ignoring their cell of origin to mimic a ‘bulk’ 156 
ATAC-seq experiment.  157 

 158 
In total we identified 6,248 distinct caQTLs in an immune cell type or sub-type (at FDR <0.1), 159 
including 5,187 at cell type resolution and 5,398 at sub-type resolution (Figure 2a, 160 

Supplementary Table 6). We also identified 5,697 caQTLs at ‘bulk’ resolution (Figure 2a, 161 
Supplementary Table 6). There was limited evidence for reference bias in the resulting 162 

caQTLs (1.68% with y<.25, annotated in Supplementary Table 6). Excluding the allelic 163 

imbalance component from QTL mapping resulted in substantially fewer caQTLs at FDR<.10 164 
(168 cell type, 426 sub-type) although the allelic effects were highly concordant 165 

(Supplementary Figure 5). The majority of caQTLs were identified at FDR<.10 at different 166 
resolutions, although a subset was found only at one resolution (Figure 2a). The number of 167 

caQTLs identified in each cell type was proportional to the number of cells for that cell type 168 

(Figure 2b), likely due to differences in available read depth leading to reduced power for less 169 
common cell types. Most caQTLs were identified at FDR<.10 in only one cell type or sub-type 170 

(80% for cell types, 75% for cell sub-types) (Figure 2c). However, when considering caQTLs 171 
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significant in at least one cell type, allelic effects (p) were strongly correlated across cell types 172 

as well as with ‘bulk’ data (median Spearman correlation r=0.63, Figure 2d), with stronger 173 

correlation between more similar cell types.  174 

 175 
We next compared cell type caQTLs in our study to external QTL datasets previously generated 176 

in immune cells. We first compared caQTL results from our ‘bulk’ analysis with caQTLs 177 

previously mapped in 24 lymphoblastoid cell lines (LCLs)24. Of the 2,694 caQTLs in our data 178 
that were tested in the LCL study, 660 (24.4%) were also significant LCL caQTLs (OR=15.9, 179 

P<2.2x10-16, Fisher’s exact test) of which 164 shared also the same lead variant (OR=4.2, 180 

P=1.05x10-16 Fisher’s exact test) and were 99.99% concordant in their effect direction (Figure 181 
2e). Of note, when considering caQTLs from each individual cell type, B cell caQTLs had the 182 

highest overlap with LCL caQTLs, consistent with LCLs being derived from B cells 183 
(Supplementary Figure 6). We next compared caQTLs in our study to published histone 184 
H3K27ac QTLs (hQTLs) and expression QTLs (eQTLs) from FACS-sorted T cells and 185 

Monocytes from the BLUEPRINT project15. The enrichment for T cell hQTLs was stronger in 186 
CD4+ (OR=3.8, P=3.2x10-113, Fisher’s exact test) and CD8+ (OR=3.4, P=1.3x10-60) T cell 187 
caQTLs compared to monocyte caQTLs (OR=1.6, P=9.1x10-16) (Figure 2f). We observed the 188 
converse pattern for monocyte hQTLs, which were more enriched for monocyte caQTLs than T 189 

cell caQTLs (CD4+ T cell OR=1.65, P=3.8x10-20; CD8+ T cell OR=1.7, P=1.4x10-18; monocyte 190 
OR=2.4, P=1.1x10-153) (Figure 2f). We observed the same cell type enrichment pattern for T 191 
cell and monocyte eQTLs (T-cell eQTLs: CD4+T-cell OR=1.51, P=1.2x10-42; CD8+ T cell 192 

OR=1.3, P=5.6x10-14; monocyte OR=1.2, P=2.0x10-15; monocyte eQTLs:  CD4+ T cell OR=1.2, 193 
P=2.4x10-10; CD8+ T cell OR=1.2, P=1.4x10-8; monocyte OR=1.3, P=3.9x10-39; Figure 2f).   194 
 195 

To identify transcription factors (TFs) mediating immune cell type caQTLs, we identified TF 196 

sequence motifs preferentially disrupted by caQTL variants in each cell type. We used 197 

MotifBreakR25 to predicted allelic effects of SNPs on TF motifs from the HOCOMOCO v10 198 
human database26, comprising 640 motifs corresponding to 595 unique TFs. We first predicted 199 

allelic motif effects for all variants tested for QTL association. Then, for each TF motif, we 200 
compared the proportion of motif instances disrupted by caQTLs compared to non-caQTL 201 

variants. Thus, we were able to measure the enrichment of predicted TF-disrupting caQTLs for 202 

each TF motif.  Immune cell type caQTLs were broadly enriched for disrupting any TF motif 203 
compared to non-caQTL variants (OR=1.2, P=6.1x10-4, Fisher’s exact test). When considering 204 

caQTLs in each cell type, there were 25 TF motifs significantly enriched for B cell caQTLs, 44 205 
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motifs enriched for CD4+ T cell caQTLs, 29 motifs enriched for CD8+ T cell QTLs, 29 motifs 206 

enriched for NK cell QTLs and 93 motifs enriched for monocyte QTLs (FDR<0.05, one-tailed 207 
binomial test, Figure 2g, Supplementary Table 7). Motifs disrupted by caQTLs included those 208 

with broadly shared enrichment across different cell types including ETS1, ETV6 and GABP1, 209 
as well as those with highly cell type-specific enrichment such as BCL11A in B cells (FDR= 210 

0.012), SPI1 in B cells and monocytes (FDR=3.07x10-8, FDR=5.10x10-34), and CEBPB in 211 

monocytes (FDR=7.8x10-17).  212 
 213 

At numerous loci, caQTLs mapped at cell type and sub-type resolution provided insight beyond 214 

those obtained by mapping caQTLs in bulk tissue. The most straightforward examples consisted 215 
of caQTLs for accessible chromatin sites active in only one cell type, where the effects of a 216 

caQTL identified in bulk data could be simply ascribed to that cell type (1,776 caQTLs, 217 
Supplementary Figure 7a). For example, rs13294415 was a caQTL for a B cell-specific site 218 

(allelic effects [p]=.79, q-value=.003), rs11136478 was a caQTL for a CD4+ T cell-specific site 219 

(p=.65, q=.013), rs10888395 was a caQTL for a monocyte-specific site (p=.31, q=2.1x10-4) and 220 

rs1475159 was a caQTL for a NK cell-specific site (p=.81, q=6.3x10-4) (Figure 2h). We also 221 

identified caQTLs for immune sub-type-specific sites (1,325 caQTLs), such as rs3014874 which 222 

was a caQTL for a classical monocyte-specific site (p=.28, q=.008) and rs7094953 which was a 223 

caQTL for a naïve CD4+ T cell-specific site (p=.26, q=.008) (Supplementary Figure 7b). 224 

Another class of caQTLs were those for sites active in all cell types, yet where the variant 225 
effects were specific to only a few cell types (2,362 and 2,704 for cell types and subtypes, 226 
respectively). For example, variant rs61943586 mapped in a site active in all immune cell types 227 

and had a significant effect in CD8+ T cells (p=.76, q=1.4x10-4), but no effect in B cells and 228 

monocytes (p=.50, q=.96; p=.48, q=.76) (Figure 2i). Similarly, variant rs747748 mapped in a 229 

site active in all cell types yet only had a significant effect in classical monocytes (p=.43, 230 

q=.0018) (Supplementary Figure 7c). In these latter examples, variant effects in bulk data 231 

were dampened due to the inclusion of cell types with no effect (rs61943586 bulk p=.57, q=.04; 232 

rs747748 bulk p=.48, q=.18) (Figure 2i, Supplementary Figure 7c). 233 

 234 

We also observed caQTLs with more complex effects, such as those with divergent effects on 235 
different cell types (41 and 60 for cell types and subtypes, respectively). In one example, variant 236 

rs1867687 was a significant caQTL in all immune cell types, where the G allele had increased 237 

accessibility in B cells and monocytes (B cell p=.66, q-value=.02; monocyte p=.66, q=4.8x10-4) 238 
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and the A allele had increased accessibility in CD4+ and CD8+ T cells and NK cells (CD4+ T 239 

p=.29, q=.002; CD8+ T p=.20, q=.001; NK cell p=.27, q=.064) (Figure 2j).  In comparison, 240 

rs1867687 had no effect in ‘bulk’ data (p=.51, q=.78). The alleles of this variant were predicted 241 

to bind different TFs, where the G was predicted to bind SPI1 and SPIB motifs and the A allele 242 
was predicted to bind IRF TF motifs (Figure 2k). SPI1 and SPIB motifs were specifically 243 

enriched in B cells and monocytes, whereas IRF motifs were broadly enriched across cell types 244 
(Figure 2k), suggesting a potential mechanism through which this variant has opposing effects 245 

on different immune cell types.   246 

 247 
Linking distal caQTLs to effects on target gene promoters 248 

 249 
Among the 6,248 caQTLs identified in our study, a minority (17%) mapped to gene promoter 250 

regions. The remaining caQTLs were in chromatin sites distal to promoters, and we therefore 251 
sought to define the target genes of these caQTLs. Co-accessibility between pairs of accessible 252 
chromatin sites across single cells has been used to annotate putative target genes of distal 253 
enhancers17,27.  We therefore defined co-accessible sites (co-accessibility score >.05) in the 5 254 

immune cell types with >1k cells (CD4+ T, CD8+ T, B, monocyte, NK) using Cicero27. For each 255 
cell type we retained co-accessible sites greater than 10kb apart and that also were co-256 
accessible in at least two samples individually. In total we identified 481,963 pairs of co-257 

accessible sites, which included between 75k and 132k per cell type (Figure 3a). We compared 258 
co-accessible sites for each cell type to chromatin interactions from promoter capture Hi-C 259 

(pCHi-C) data previously generated in 16 immune cell types and sub-types28. We observed 260 

strongest enrichment of cell type co-accessible sites for the corresponding cell type in pCHi-C 261 

interactions in each case, except for NK cells, which were not assayed by pCHi-C (Figure 3b). 262 
When segregating co-accessible sites by distance, there remained strong enrichment for pCHi-263 

C interactions even at distances of up to 1MB (Figure 3c). 264 

 265 
Using the co-accessible sites identified for each cell type we then annotated caQTLs with their 266 

putative target genes. There were 179,347 distal accessible chromatin sites co-accessible with 267 
at least one promoter site (30.5k-44.4k per cell type) and 66,571 promoter sites co-accessible 268 

with promoter sites of a different gene (13.0k–18.1k per cell type) (Figure 3d-e). Across all 269 

6,248 caQTLs, 3,379 were either in a site co-accessible with at least one gene promoter or in a 270 
promoter site directly. Among these 3,379 caQTLs, the majority were distal sites co-accessible 271 
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with a promoter (54-65% per cell type) (Figure 3f. Among distal caQTLs co-accessible with a 272 

gene promoter, 38-53% were linked to just one gene (Figure 3g).                       273 
 274 

Previous studies have identified coordinated allelic effects between distal sites and interacting 275 
promoters29. We therefore tested caQTL variants for association with chromatin accessibility 276 

levels of all promoter sites co-accessible with the caQTL site.  There was a positive and highly 277 

significant correlation between variant allelic effects on the original site and effects on co-278 
accessible promoter sites (B r=.24, CD4+ T r=.23, CD8+ T r=.16, monocyte r=.21, NK r=.17, 279 

Pearson correlation) (Figure 3h). When separating co-accessible sites by distance, the 280 

correlations were reduced between more distal sites (Supplementary Figure 8). As we were 281 
unable to leverage allelic imbalance in this analysis, our power was more limited, and we only 282 

identified 7 linked promoter caQTLs at FDR<.20 (Figure 3i).  There was a significant, positive 283 
correlation in variant effects on the linked promoter caQTL and the original caQTL (Figure 3i). 284 

For example, at the 6p24 locus rs4959438 was a caQTL for a distal site in B cells (p=.65, 285 

q=.0066) and was also a caQTL for the DSP promoter linked to the distal site (p=.59, q=.077) 286 

(Figure 3j). This variant was also a QTL for the expression of DSP in whole blood in GTEx v89 287 

(NES=.29, P=3.2x10-12), and which was directionally consistent with the C allele having 288 
increased activity. Together these results demonstrate how snATAC-seq data can be used to 289 
link caQTLs to effects on putative target genes. 290 

 291 
Identifying caQTLs at fine-mapped variants for complex immune trait loci 292 

 293 

Genomic loci affecting complex immune traits and disease are primary non-coding, and the 294 

causal variants and molecular mechanisms at these loci are largely unknown. We therefore 295 
used immune cell type and sub-type caQTLs to annotate variants associated with complex 296 

immune traits and disease. We first collected published genome-wide association summary 297 

statistics for 16 blood cell count, autoimmune, inflammatory and allergy traits imputed into 298 
reference panels with comprehensive variant coverage such as 1000 Genomes or the 299 

Haplotype Reference Consortium (Figure 4a, Supplementary Table 8).  At most traits, fine-300 
mapping of causal variant sets at associated loci was either not performed as part of the initial 301 

study or not made publicly available. We therefore fine-mapped primary association signals at 302 

loci reported for these 16 traits using a Bayesian approach, from which we generated credible 303 
sets of variants representing 99% of the total posterior probability for each signal (see Methods, 304 

Supplementary Data 1). Across all traits there were 1,275 total credible sets, which contained 305 
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a median of 16 variants, where traits with the smallest credible set sizes included monocyte 306 

count (median 6.5 variants), basophil count (median 7.5 variants) and rheumatoid arthritis 307 
(median 9 variants). At 396 signals fine-mapping resolved credible sets to 5 or fewer variants 308 

(Figure 4a).  309 
 310 

A total of 523 credible set variants representing 211 association signals were immune cell type 311 

or sub-type caQTLs (Figure 4b). We determined whether fine-mapped variants for each trait 312 
were preferentially enriched for caQTLs from specific immune cell sub-types by comparing to a 313 

background of non-caQTL sites (see Methods). The majority of traits (12/16) showed nominal 314 

enrichment (P<.05) for caQTL peaks in at least one immune cell sub-type, several of which 315 
recapitulated known biology of cell types contributing to the trait (Figure 4c). For example, type 316 

1 diabetes (T1D)-associated variants were enriched in CD4+ T cell caQTLs (naïve CD4+ T 317 
logOR=1.9, p=0.024; activated CD4+ T logOR=1.5, p=0.043), where T cells are the critical cell 318 

type in the pathogenesis of T1D30.  Lymphocyte count-associated variants were enriched in 319 
caQTLs for lymphocyte cell types (memory B logOR=2.9, p=0.024; naïve CD4= T logOR=1.7, 320 
p=0.012). Strong enrichments for other traits may similarly point to cell types involved in trait 321 

biology. For example, child onset asthma-associated variants were enriched in activated CD4+ 322 
T cells (logOR=2.5, p=0.001) and memory B cells caQTLs (logOR=4.1, p=0.001) (Figure 4c), 323 
and ulcerative colitis-associated variants were strongly enriched in classical monocyte caQTLs 324 
(logOR=2.6, p=0.001).   325 

 326 
Among fine-mapped variants that were immune cell caQTLs, 185 had a posterior probability 327 
>1% and were either in a distal site linked to a gene promoter or in a promoter site directly 328 

(Figure 4d, Supplementary Table 9). Among these, at multiple loci fine-mapped variant 329 
caQTLs replicated cell type-specific effects observed in previous studies31,32. For example, at 330 

the 5q11.2 locus associated with rheumatoid arthritis (RA), among the two candidate variants 331 

with highest causal probability rs28722705 (PPA=.70) and rs7731626 (PPA=0.28) only 332 

rs7731626 mapped in an accessible chromatin site (Supplementary Figure 9a). This variant 333 

was a caQTL in naive CD4+ T cells (p=0.38, q=0.06), and was co-accessible with the IL6ST and 334 

ANKRD55 promoters (Supplementary Figure 9b-e). A previous study identified rs7731626 as 335 

likely causal for multiple sclerosis and RA and was also a T cell-specific eQTL for both IL6ST 336 

and ANKRD5531. At the 15q22.33 locus, rs17293632 was fine mapped in multiple traits 337 
including Crohn’s disease (PPA=.28) and asthma (PPA=.16), and was a monocyte caQTL 338 

(p=.40, q=.0138) which was co-accessible with the promoter of multiple SMAD3 isoforms 339 
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(Supplementary Figure 9f-i). The high effect C allele of rs17293632 was also predicted to 340 

have allele-specific binding to a JUN/FOS TF family motif, which were specifically enriched in 341 
monocyte caQTLs (Supplementary Figure 9j, Figure 2g).  342 

 343 
In another example, at the 6q15 locus associated with type 1 diabetes (T1D) and multiple other 344 

traits, rs72928038 (PPA=.07) was a caQTL in naïve CD4+ T cells (p=0.26, q=4.9x10-3) where 345 

the reference and T1D-protective allele G had increased accessibility (Figure 4e-f). The site 346 
harboring rs72928038 was specific to naïve CD4+ T cells and was co-accessible with multiple 347 

gene promoters including BACH2 (Figure 4e, Supplementary Table 9).  The G allele was also 348 

predicted to have allele-specific binding to ETS family motifs, which were broadly enriched 349 
among T cell caQTLs (Figure 4g. We validated the allelic effects of this variant on regulatory 350 

activity using reporter assays in Jurkat T cells. There were significant effects on enhancer 351 
activity in luciferase gene reporter assays where the G allele had increased activity (Two-sided 352 
t-test, P=.015), and allele-specific transcription factor binding to the G allele in electrophoretic 353 

mobility shift assays (Figure 4h). Previous studies have shown that this variant is a QTL in 354 
CD4+ T cells31, and this site was linked to the BACH2 promoter in promoter-capture Hi-C data in 355 
naïve CD4+ T cells28.  356 
 357 

We next identified caQTLs for high-probability fine-mapped variants at loci without established 358 
molecular mechanisms. At the 11q23 locus associated with child-onset asthma, we fine-mapped 359 
a single variant rs12365699 to near-causality (PPA=.98) (Figure 4i, Supplementary Table 9). 360 

This variant was a caQTL in activated CD4+ T cells, effector CD8+ T cells and memory B cells, 361 

where the reference and risk-increasing allele G had higher accessibility (CD4+ T p=0.36, 362 

q=5.4x10-4, CD8+ T p=0.33, q=6.5x10-3, B p=0.35, q=0.073, respectively) and was linked to the 363 

promoter regions of multiple genes including CXCR5 and NLRX1, the latter of which is ~300kb 364 

distal to the variant (Figure 4i,j). The G allele of rs12365699 was also predicted to have allele-365 
specific binding for ZSCAN16 (Figure 4k). At the 12p13.33 locus associated with lymphocyte 366 

count, we also fine mapped a likely causal variant rs34038797 (PPA =.94), which had the same 367 

effect in all cell sub-types (strongest association in classical monocytes p=0.26, q=9.2x10-4) and 368 

was co-accessible with multiple genes (Supplementary Figure 10a-c). The C allele had higher 369 

accessibility and higher predicted affinity with ETS transcription factors, which were ubiquitously 370 
enriched in immune cell caQTLs (Supplementary Figure 10d). 371 

 372 

 373 
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DISCUSSION 374 

 375 
In this study we demonstrated that profiles derived from single nucleus ATAC-seq assays can 376 

be used to map chromatin accessibility QTLs in individual cell types, even with modest sample 377 
sizes. While we profiled only a small number of samples in our study, we identified thousands of 378 

immune cell type and sub-type caQTLs. A likely contributor to the large number of caQTLs we 379 

identified despite the small sample is the high depth at which samples were sequenced, which 380 
provides greater power for allelic imbalance mapping. Supporting this, we identified few caQTLs 381 

when performing population-based QTL mapping only. As the number of unique reads covering 382 

a variant can in theory be much higher for snATAC-seq compared to bulk ATAC-seq due to the 383 
thousands of unique libraries per assay, the value of snATAC-seq compared to bulk ATAC-seq 384 

in mapping allelic imbalance is even more pronounced. Deeply sequenced snATAC-seq assays 385 
even in few samples therefore represent an effective approach to map genetic effects on 386 

chromatin profiles from multiple cell types in a heterogeneous tissue.   387 
 388 
Mapping caQTLs at cell type resolution enabled insights into cell type-specific regulation that 389 

are obscured from assays of bulk tissue chromatin. For example, we identified variants mapping 390 
in sites active in all cell types but with allelic effects on only a few cell types.  We also identified 391 
examples of variants with opposite effects on different cell types resulting in no net effect in 392 
bulk.  In both of these scenarios, simply annotating bulk caQTLs using reference maps of cell 393 

type-specific chromatin sites would not be sufficient to uncover these effects, and therefore 394 
requires mapping accessible chromatin profiles in each cell type directly. Single cell data also 395 
enabled additional cell type-specific analyses such as linking distal sites to putative target gene 396 

promoters using co-accessibility27. While high-resolution maps of distal 3D interactions exist for 397 
many immune cell types in promoter-capture Hi-C28, most other tissues do not currently have 398 

such cell type-resolved interaction maps and therefore cell type co-accessibility data will be 399 

particularly valuable in annotating distal caQTLs in these tissues.    400 

 401 

Although we mapped thousands of immune cell type caQTLs from few snATAC-seq samples, 402 

our study design also has several notable limitations. Most importantly, there was a large 403 
difference in the number of caQTLs per cell type or sub-type dependent on the number of cells 404 

assayed. For example, we identified few significant caQTLs for the less common sub-types 405 

identified in our data such as adaptive NK cells and memory B cells. There are even further sub-406 
divisions of immune cell types that we were not able to identify due to the resolution of snATAC-407 
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seq profiles. As identifying caQTLs from rarer cell types and sub-types will therefore require 408 

many additional snATAC-seq assays to sufficiently define their profiles, cell sorting may 409 
represent a more efficient and cost-effective strategy at present for QTL mapping in these cell 410 

types. An additional limitation of our study was that, due to the small number of samples 411 
profiled, we focused only on variants mapping in accessible chromatin sites directly in order to 412 

leverage allelic imbalance. As we did not test all variants at a locus for association to each site, 413 

we had limited ability to formally compare caQTL association and disease association signals, 414 
for example using colocalization techniques33. Moving forward studies profiling larger sample 415 

sizes and cell numbers will help circumvent these limitations. Furthermore, data from mutiomic 416 

assays of joint gene expression and accessible chromatin will help resolve cell types and sub-417 
types and facilitate joint caQTL and eQTL mapping34. 418 

 419 
In summary, we identified thousands of caQTLs in immune cell type and sub-types from 420 

peripheral blood samples using single cell chromatin accessibility assays.  Immune cell caQTLs 421 
mapped to hundreds of loci associated with complex immune traits and disease and therefore 422 
represent a valuable resource for interpreting the molecular mechanisms of these loci. Given 423 

the ability to deconvolute individual cells into their sample-of-origin20, one promising strategy 424 
moving forward will be to pool samples prior to running snATAC-seq assays, which will reduce 425 
the per-sample cost and facilitate studies of greater genotype diversity. Mapping cell type-426 
specific chromatin exposed to disease-relevant conditions and stimuli will also help uncover the 427 

breadth of genetic effects23,35. Together these efforts will enable more comprehensive 428 
annotation of variant function in human cell types and their contribution to complex disease. 429 
 430 

METHODS 431 
 432 

Single nuclei ATAC-Seq  433 

Peripheral blood mononuclear cells (PBMCs) from 10 individuals (4 females and 6 males) were 434 

purchased from HemaCare (Northridge, CA) and profiled for snATAC using 10x Genomics 435 

Chromium Single Cell ATAC Solution, following manufacturer’s instructions (Chromium 436 

SingleCell ATAC ReagentKits UserGuide CG000209, Rev A) as described previously17. Briefly, 437 
cryopreserved PBMC samples were thawed, resuspended in 1 mL PBS (with 0.04% FBS) and 438 

filtered with 50 μm CellTrics. Cells were centrifuged and permeabilized with 100 μl of chilled 439 

lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% 440 
IGEPAL-CA630, 0.01% digitonin and 1% BSA) for 3 min on ice and then washed with 1mL 441 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.387894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.387894
http://creativecommons.org/licenses/by-nc-nd/4.0/


chilled wash buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween- 20 and 442 

1% BSA). After centrifugation, pellets were resuspended in 100 μL of chilled Nuclei buffer 443 
(2000153, 10x Genomics) in a final concentration of 3,000 to 7,000 of nuclei per μl. 15,300 444 

nuclei (targeting 10,000) were used for each sample. Tagmentation was performed using nuclei 445 
diluted to 5 μl with 1X Nuclei buffer, 10x ATAC buffer and ATAC enzyme from 10x Genomics, 446 

for 60 min at 37°C. Single cell ATAC-seq libraries were generated using the Chromium Chip E 447 

Single Cell ATAC kit (10x Genomics, 1000086) and indexes (Chromium i7 Multiplex Kit N, Set 448 
A, 10x Genomics, 1000084) following manufacturer instructions. Samples were sequenced to 449 

an average depth of 178 million 50-nt read pairs each, using an illumina HiSeq4000 instrument 450 

at the UCSD Institute for Genomic Medicine. Alignment to the hg19 genome and initial 451 
processing were performed using the 10x Genomics Cell Ranger ATAC v1.1 pipeline. We 452 

filtered reads with MAPQ<30, secondary or unmapped reads, and duplicate reads from the 453 
resulting bam files using samtools36. Sample information and a summary of the Cell Ranger 454 

ATAC-seq quality metrics are provided in Supplementary Table 1. 455 
 456 
Quality control, clustering and cell type assignment 457 

For each sample we performed multiplet removal (Ncells=1,311) using Cell Ranger’s custom 458 

multiplet removal script (version 1.1). The genome was split into 5 kb windows and windows 459 
overlapping blacklisted regions from ENCODE (version 2) were removed. For each sample, a 460 

sparse m x n matrix containing read depth for m cells (identified using the snATAC-seq 461 
barcodes) passing read depth thresholds at n windows was then generated.  462 
 463 

Initial cell clustering was performed separately for each snATAC-seq sample sparse matrix 464 
using scanpy (version 1.5). Highly variable windows were extracted using mean read depths 465 

and dispersion was normalized. Read depth was normalized, and the log-transformed read 466 

depth was regressed out for each cell. Principal component analysis was then performed, and 467 
the top 50 principal components were used to calculate the nearest 30 neighbors using the 468 

cosine metric. This cosine metric was then used to perform UMAP dimensionality reduction 469 

clustering with the parameters ‘min_dist=0.3’, along with further sub-clustering using the 470 
Louvain clustering algorithm with the parameters ‘resolution=1.25’. Clusters with a low fraction 471 

of reads in promoter, a low log usable read count, and/or a low fraction of reads in peaks were 472 

iteratively removed for each sample (Ncells=6,333). The samples filtered for low quality cells were 473 
then merged, and PCs and UMAP dimensions were obtained as above and Harmony was used 474 

to correct for donor batch effects37. Manual doublet removal was then performed by removing 475 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.387894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.387894
http://creativecommons.org/licenses/by-nc-nd/4.0/


Louvain-defined sub-clusters that had higher than average useable read counts, mapped 476 

between clusters and/or expressed multiple marker genes. Clusters that did not have uniform 477 
representation across samples were also removed. A total of 14,268 cells were removed during 478 

all of the quality control steps. UMAP dimensionality reduction was performed again using the 479 
same parameters on the remaining cells in order to re-cluster a final time.  480 

 481 

In order to assign cell type and sub-type identity to each cluster, we determined chromatin 482 
accessibility at 5 kb windows around promoter regions of known marker genes (see 483 

Supplementary Table 3). 484 

 485 
Peak Calling 486 

For each cluster mapped reads were extracted from all cells within the cluster. Reads 487 

aligning to the positive strand were shifted by +4 bp and reads aligned to the negative 488 

strand were shifted by -5 bp. Reads were extended to 200 bp and then centered, and bed 489 

files were created from the resulting read coordinates. We then called peaks with MACS222 from 490 
the bed files using the parameters ‘-q 0.05’, ‘-nomodel’, ‘-keep-dup all’, ‘-g hs’, and ‘-B’. The 491 
read count pileup bedgraph was sorted and normalized to counts per million (CPM), converted 492 
to bigwig and visualized using the UCSC Genome Browser. We created a merged peak set by 493 

combining narrow peak files across all cell type and sub-type clusters into a single bed file.  494 
 495 
Comparison with bulk immune cell ATAC-seq data 496 
We obtained published data of FACS-sorted immune cell types (GSE118189)23, mapped reads 497 

to hg19 using bwa mem38 and removed duplicate reads. We merged replicate samples and 498 

performed peak calling for each cell type as described above. Mapped reads from immune cell 499 
types and sub-types derived from snATAC-seq in this study and from the bulk immune cell 500 

ATAC-seq profiles were used to generate bedgraph files using bedtools39. Read counts were 501 

normalized to CPM and bigwig files were generated using ENCODE ‘bedgraphToBigWig’40. We 502 
created a bed file of the union of peak calls from snATAC-seq and bulk ATAC-seq using 503 

bedtools. We then compared bulk ATAC-seq cell type and snATAC-seq cell type normalized 504 
read count profiles within the union peak set using deeptools ‘multiBigWigSummary’41. A 505 

heatmap of the clusters of Spearman rank correlation coefficients indicating similarity between 506 

bigwig files was generated using deeptools ‘plotCorrelation’ and the summary comparison from 507 

‘multiBigWigSummary’.  508 
 509 
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Sample genotyping and imputation 510 

Genomic DNA form PBMC samples was extracted using the PureLink genomic DNA kit 511 
(Invitrogen). Genotyping was performed using Infinium Omni2.5-8 arrays (Illumina) at the UCSD 512 

Institute for Genomic Medicine. Genotypes were assigned with GenomeStudio (v.2.0.4) with 513 
default settings.  Variants with minor allele frequency (MAF) < 0.01 or with ambiguous alleles 514 

(G/C, or A/T) and MAF > 0.4 were filtered out using PLINK. For the remaining variants, we 515 

imputed genotypes into the Haplotype Reference Consortium (HRC) r1.1 panel using the 516 
Michigan Imputation Server with minimac4.  We then retained variants with imputation quality 517 

R2>0.7   518 

 519 
Identification of chromatin accessibility QTLs 520 

For each sample, we split reads in the snATAC .bam files according to cluster label.  For each 521 
cell type and sub-type cluster, we generated peak count matrices (peak x sample) using merged 522 

peak site coordinates and the split .bam files using featureCounts42.  We then obtained VCF 523 
files of SNPs located within peaks and annotated allelic read counts using RASQUAL tools24.  524 
We filtered for variants heterozygous in at least 2 samples.  For the ‘bulk’ experiment we 525 

ignored cell type labels and used all reads.         526 
 527 
For each cell type and sub-type, we retained only accessible sites with at least 5 reads on 528 
average across samples.  To perform caQTL analysis we used RASQUAL and tested for 529 

association between each peak and variants contained in the peak itself or in other peaks within 530 
a 10Kb window. We included the library size of each sample calculated using the 531 
rasqualCalculateSampleOffsets() function and read count covariates using make_covariates() 532 

function in each model.  The number of ATAC-seq read count covariates were dynamically 533 
calculated for each cell type and sub-type and therefore different cell types/sub-types had 534 

different numbers of covariates. We also included the first four principal components derived 535 

from genotype data together with major 1KG populations as covariates in each model.   536 

 537 

For each peak, we calculated adjusted p-values accounting for the number of variants tested 538 

per peak, and the variant with the minimum adjusted p-value was marked as the lead variant. 539 
To correct for multiple testing genome-wide, we performed permutations of labels across 540 

samples and counts across alleles of heterozygous variants. For the permutations across 541 

samples, we required that the labels were swapped within the samples of European and 542 
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American ancestry separately. We then repeated the association tests and calculated an 543 

empirical FDR (10%) by comparing the q-values of the real and permuted association results. 544 
 545 

To estimate the correlation of effect sizes of caQTLs across cell types and ‘bulk’ data we 546 

calculated the spearman correlation coefficient of effect sizes (p) in each pair of cell types and 547 

“bulk”. For each comparison we selected lead SNP-peak pairs that were significant caQTLs in at 548 

least one of the two cell types. Correlation coefficients were tabulated in a matrix and 549 
hierarchically clustered using ‘pheatmap’. Bulk-like caQTLs were compared with caQTLs from 550 

24 LCLs also calculated using RASQUAL24. Of 172,241 peaks tested in PBMCs, 65,787 551 

intersected with a peak tested in LCLs, and 660 were caQTLs in both dataset (FDR 10%). 552 
Enrichment was estimated using Fisher’s exact test. To calculate coordination of caQTLs effects 553 

we restricted the analysis to those peaks having the same lead variants (589), 164 of which 554 
were caQTLs in both datasets. Monocyte and CD4+ and CD8+ T-cells single-cell caQTLs were 555 
compared with H3K27ac QTLs and eQTLs from FACS sorted Monocytes and T-cells from the 556 

BLUEPRINT project, calculated using WASP and the Combined Haplotype Test at FDR 10%, 557 
which similarly to RASQUAL takes into account both allelic and population effects.  For each 558 
comparison we selected variants tested in both datasets and calculated enrichment for shared 559 
variant QTLs (lead variants only) using Fisher’s exact test.  560 

 561 
Transcription factor motif analysis 562 
To identify enriched motifs that were altered by caQTLs we used the package MotifBreakR25. 563 

First, we selected 109,554 SNPs that were tested in any of the cell types for caQTLs and 564 
imported them using the function snps.from.file(), using hg19 as reference genome. Then we 565 
determined if they disrupted TF motifs from the HOCOMOCO v10 human database26, 566 

comprising 640 motifs corresponding to 595 unique TFs, and accessed via MotifDb. The 567 

following motifbreakR() function parameters were used: filterp = TRUE, method="ic", = 5e-4, 568 

BPPARAM = BiocParallel::bpparam("SerialParam"). SNPs that resulted in disruption of any TF 569 
motif with a strong effect (defined by motifbreakR) were considered as motif altering 570 

(n=107,280). To calculate enrichment for alteration of specific TF in caQTLs of individual cell 571 
types (B-cell, CD4_T-cell, CD8_T-cell, NK_cell, Monocyte), we performed a one-tailed exact 572 

binomial test (binom.test(alternative= “greater)) comparing the frequency of alteration of a motif 573 

by caQTLs to the total frequency of motif alteration in the tested SNPs for each cell type. 574 
Significant enrichment was considered at a Benjamini & Hochberg corrected P-value<0.05. To 575 
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display enriched motifs we used the packages MotIV and motifPiles, selecting the top motifs in 576 

each cell type ranked by p-value. 577 
 578 

Single cell co-accessibility  579 
Peak-to-peak co-accessibility was calculated using Cicero (version 1.1.5)27 for B-cells, CD4+ T-580 

cells, CD8+ T-cells, NK cells, and Monocytes. We created a sparse binary matrix encoding the 581 

snATAC-seq barcodes for each cell in a given cell type and the superset of ATAC-seq peaks for 582 
all cell types, indicating which cells were accessible in which peaks. For each cell type, the 583 

cicero function ‘make_cicero_cds’ was used to aggregate cells into bins of 30 nearest neighbors 584 

(parameter k=30) from the UMAP reduced dimensions obtained from clustering. We then 585 
calculated co-accessibility scores using a window size of 1 Mb.  Once co-accessibility scores 586 

were calculated, a threshold of 0.05 and a minimum distance of 10 kb were used to define pairs 587 
co-accessible for a given cell type. We also generated cell type co-accessibility for each sample 588 

individually and only retained sites co-accessible at .05 in at least two individual samples.  A 589 
peak was categorized as ‘promoter’ if it fell within a 2 kb window of a transcription start site 590 
based on GENCODE (version 19) promoter annotations43, and otherwise was categorized as 591 

‘distal’.   592 
 593 
To validate the cell-type specificity of promoter-distal sites connections calculated using co-594 
accessibility, we compared them to chromatin interactions from promoter capture Hi-C (pCHi-C) 595 
data previously generated in 16 immune cell types and sub-types28. We obtained the list of 596 

promoter baits and the matrix containing CHiCAGO scores for all interactions in all immune cell 597 
type. First, for each pair of peaks that we analyzed in each cell type, we filter those where at 598 

least one peak intersected (+/- 1kb) a pCHi-C bait using pgltools44. Then, we identified 599 
overlapping connection between the filtered pairs of sites in each of our 5 cell type (B-cells, 600 

CD4+ T-cells, CD8+ T-cells, NK cells, and Monocytes) and the pCHi-C connection (CHiCAGO 601 

score >= 5) from each of the 16 blueprint adult cell types (Mon, Mac0, Mac1, 'Mac2', Neu, MK, 602 
EP, Ery, nCD4, tCD4, aCD4, naCD4, nCD8, tCD8, nB, tB) using the function 603 

compare_connections() from the Cicero package. For each celltype-celltype comparison we 604 

then estimated the enrichment for the co-accessible sites in pCHi-C connection using Fisher’s 605 
exact test. Odds ratios for each comparison were tabulated and displayed using heatmap. For 606 

each of the matching cell types (B-cells-tB, CD4+T-cells-tCD4, CD8+T-cells-'tCD8', and 607 
Monocytes-Mon) we also calculated enrichment at different peak distances (10-50, 50-100, 100-608 

200, 200-350, 350-1000 kb). 609 
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 610 

Distal effect of caQTL variants on coaccessible-promoters 611 
To examine the effect of caQTLs on co-accessible sites, for each of the 5 major cell types we 612 

took the lead caQTL variant and tested for association with accessibility level of the co-613 
accessible site using RASQUAL24.  We used the same method as above for caQTLs with the 614 

exception of adopting a more relaxed FDR threshold of 20% instead of 10%. caQTLs-615 

coaccessible peaks were then filtered to retain only enhancer-promoters and promoter-promoter 616 
co-accessible peaks (B-cells n=828, CD4+ T-cells n=2,323, CD8+ T-cells n=1,909, NK cells 617 

n=1,489, Monocytes n=2,243, with an average number of 3.45 co-accessible promoters for 618 

each caQTL). Pearson correlation of effect sizes was calculated between variant effect on the 619 
original caQTL peak and on one of the co-accessible promoters (with lowest RASQUAL p-value 620 

of association), and only considering co-accessible peaks at >10kb of distance. 621 
 622 

Genetic fine mapping analysis 623 
We obtained genome-wide summary statistics for immune-related phenotypes including blood 624 
cell type counts45, autoimmune diseases46–50, and inflammatory diseases51–53. For each study, 625 

we obtained lists of index variants for each independent signal from the supplement. We used 626 
PLINK54 to estimate linkage disequilibrium (LD) between these index variants and all variants 627 
within ±2.5 Mb using samples of European ancestry from the 1000 Genomes Project55. For 628 
each signal, we first pre-filtered variants in at least low LD (r2>0.1) with the index variants. We 629 

calculated approximate Bayes factors56 (aBF) for each variant using the effect estimates (β) and 630 
standard errors (SE), assuming prior variance w=0.04. We calculated the posterior probability of 631 
association (PPA) by dividing the aBF for each variant by the sum of aBFs for all variants 632 

included in the signal. We then defined the 99% credible set as the smallest set of variants that 633 
added up to 99% PPA. Fine-mapped variants were annotated using cell type and sub-type 634 

caQTLs, considering each lead variant as well as variants with the same q-value of the lead 635 

variant for each caQTL. Fine-mapped caQTL variants with PPA>1% were then further 636 

annotated with co-accessible promoters (Supplementary Table 8).  637 

 638 

To test for enrichment of caQTLs for complex immune traits we calculated the cumulative PPA 639 
of variants overlapping immune cell sub-type caQTL peaks across all credible sets for each trait. 640 

For each cell sub-type, we defined a background set of peaks tested for association but did not 641 

have significant caQTLs. We estimated an empirical distribution for the total PPA using 1,000 642 
random draws of peaks from the background equal in number to the caQTL sites. For each test 643 
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(trait vs cell sub-type) a p-value was calculated by comparing the total PPA within caQTL peaks 644 

to the empirical distribution. 645 
 646 

Luciferase gene reporter assays 647 

Human DNA sequences (Coriell) with reference allele for rs72928038 (BACH2 intron) were 648 
cloned in forward orientation in the luciferase reporter vector pGL4.23 (Promega) using the 649 

primers: forward, AGCTAGGTACCACACTCAGTGGTTGGGGTTT, and reverse, 650 
TACCAGAGCTCCTGGATAGAGGTCCCAGTCG and the enzymes SacI and KpnI. Alternate 651 

allele plasmids were generated via site directed mutagenesis (Q5 SDM kit, New England 652 

Biolabs) using the following primers: forward, CGGATTTCCTaTAAGCTGATC, reverse, 653 
TCCCTATTTGTGTGTAATG. 654 

 655 
Jurkat cells were maintained in culture at a concentration of 1x1005/mL-1x1006/mL. 656 

Approximately 0.5x1006 cells per replicate (3 replicates) were co-transfected with 500 ng of 657 
firefly luciferase vector containing either the reference or alternate allele or an empty pGL4.23 658 
vector as a control, and 50 ng pRL-SV40 Renilla luciferase vector (Promega), using the 659 

Lipofectamine LTX reagent. Cells were collected 48 hours post transfection and assayed using 660 
the Dual-Luciferase Reporter system (Promega). Firefly activity was normalized to the Renilla 661 
activity and expressed as fold change compared to the luciferase activity of the empty vector 662 
(RLU). A two-sided t-test was used to compare the luciferase activity between the two alleles. 663 

 664 
Electrophoretic mobility shift assays 665 

EMSAs were performed according to manufacturer's instruction, with changes indicated below, 666 
using the LightShift™ Chemiluminescent EMSA Kit (Thermo Scientific, 20148). Biotinylated and 667 
non-biotinylated single-stranded oligonucleotides harboring the rs72928038 variant (5’-668 

TAGGGACGGATTTCCTGTAAGCTGATCTTGAAG-3’, 5’-669 

TAGGGACGGATTTCCTATAAGCTGATCTTGAAG-3’) were purchased from Integrated DNA 670 

Technologies. Nuclear extract from E6-1 Jurkat T cells (ATCC TIB-152), cultured as described 671 

above, was obtained using the NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo 672 

Scientific, 78833). Binding reactions were carried in a total volume of 20 µl, with 10X Binding 673 
Buffer (100 mM Tris pH 7.5, 500 mM KCl and 10 mM DTT), 2.5% glycerol, 5 mM MgCl2, 0.05% 674 

NP40, 50 ng Poly(dI:dC), 100 fmole of biotin-labeled probe, and 5.1 µg nuclear extract. For 675 

competition experiments, 20 pmol of unlabeled probe was added. Competition reactions were 676 
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incubated at room temperature for 10 mins before the addition of the biotin-labeled probe. At the 677 

addition of the biotin-labeled probe, all reactions were incubated at room temperature for 20 678 
min. Reactions were loaded onto a 6% polyacrylamide 0.5X TBE Gel (Invitrogen, 679 

EC62655BOX) for electrophoresis and transferred for 45 mins to a Biodyne™ B Pre-Cut 680 
Modified Nylon Membrane, 0.45µm (Thermo Scientific, 77016). Transferred DNA was UV-681 

crosslinked for 15 mins, and the biotinylated probes were detected using Chemiluminescent 682 

Nucleic Acid Detection Module (Thermo Scientific, 89880) following the manufacturers 683 
instruction, with initial blocking increased to 60 mins. The image was acquired using C-DiGit 684 

Blot scanner (LI-COR Biosciences, Model 3600).  685 

 686 
FIGURE LEGENDS 687 

 688 
Figure 1. Single nucleus ATAC-seq in a population of PBMC samples. a) Schematic 689 

overview of the study. b) Clustering of single cell accessible chromatin profiles of 66,843 690 
PBMCs from 10 individuals. Cells are plotted based on the first two UMAP components. 691 
Fourteen distinct clusters, indicated by different colors, were identified and assigned to a cell 692 
type based on known marker genes. The number of cells for each cell type is indicated in 693 

parenthesis.  c) Barplot showing the relative proportions of each cell type in each sample. Color 694 

scheme is the same as in 1b. 695 

 696 
Figure 2. Identification and characterization of immune cell type chromatin accessibility 697 
QTLs.  a) Venn diagram showing the total number of caQTLs from single-cell ATAC-seq across 698 
immune cell types (red), cell sub-types (blue); and in ‘bulk’ (gray). b) Number of caQTLs 699 

identified in each cell type (red for cell types, blue for sub-types) and the subset found in ‘bulk’ 700 
data (gray). c) Number of caQTLs unique or common to different cell types. d) Heatmap of 701 

pairwise correlation (Spearman) between effect sizes of caQTLs, where association is 702 

significant in at least one of the two cell types in the pair.  e) Comparison between caQTLs from 703 
PBMC bulk-like data and published caQTLs from 24 LCLs. Venn diagram on top indicates the 704 

number of significant caQTLs in each dataset and their overlap. Scatter plot of effect sizes for 705 

caQTLs found in both studies and having the same lead variant. f) Overlap between cell type 706 
caQTLs and H3K27ac QTLs (top) or gene expression QTLs (bottom) in either Monocytes (gray) 707 

or T cells (black). g) Top transcription factor motifs disrupted by caQTL variants across different 708 

cell types. Clustering is based on motif similarity. The heatmap shows the enrichment ranking of 709 
each TFs in each cell type. h) Examples of caQTLs in peaks specific to a single cell type 710 
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including rs13294415 (B cell-specific), rs1475159 (CD4+ T cell-specific), rs10888395 711 

(Monocyte-specific) and rs11136478 (NK cell-specific). Top panels: colored-coded box-plots 712 
show association in the different cell types, white box-plots show caQTL in ‘bulk’ PBMCs. 713 

Association q-values are shown on the top and variant genomic location (hg19) is shown at the 714 
bottom. Bottom panels: genome-browser screenshot of cell type chromatin profiles. i) Variant 715 

rs61943586 was in peaks active in all cell types but was a significant caQTL in CD8+ T cells 716 

only. Left: genome-browser screenshot of cell type chromatin signal. Right: boxplots as in H.  l) 717 
Variant rs1867687 was a significant caQTL in all cell types but had opposite effects in different 718 

cell types. Top-left: genome-browser screenshot of cell type chromatin signal. Top-right: boxplot 719 

of signal split by genotype in bulk and each cell type. Boxplots are color-coded as in I. Bottom-720 
left: TF motifs altered by the rs1867687 variant and their respective score differences are 721 

shown. Positive scores indicate preference for alternate allele. Bottom-right: UMAP plot showing 722 
accessibility of the SPI1 gene in Monocytes and B-cells and ubiquitous accessibility of IRF1. 723 

 724 
Figure 3. Linking distal immune cell caQTLs to putative target genes.  a) Number of co-725 
accessible links in each immune cell type. b) Enrichment of cell type co-accessible links for 726 

overlap with promoter-capture Hi-C (pcHi-C) interactions in immune cell types.  c) Enrichment of 727 
cell type co-accessible links for pcHi-C interactions separated by distance between linked sites.  728 
d) Number of co-accessible links between a promoter site (+/- 1kb) and a distal (non-promoter) 729 
site in each cell type. e) Number of co-accessible links between promoter sites. f) Breakdown of 730 

caQTLs linked to promoters in each cell type, including caQTLs directly in promoter sites, 731 
caQTLs in distal sites co-accessible with a promoter site, caQTLs in promoter sites co-732 
accessible with a different promoter site, and more complex cases involving multiple linked 733 

caQTLs. g) Breakdown of caQTLs in each cell type by the number of promoter sites they were 734 
linked to. h) Correlation in the effects of caQTL variants on the primary site and co-accessible 735 

promoter sites in each cell type. Pearson correlation coefficient and number of co-accessible 736 

pairs of peaks are indicated. i) Correlation in caQTL variant effects on the primary site and co-737 

accessible promoter site for variants significant (FDR 20%) for the latter. j) A caQTL in B cells 738 

rs4959438 was also a QTL for a co-accessible site at the DSP promoter and an eQTL for DSP 739 

in GTEx.      740 
 741 

Figure 4. Immune cell type caQTLs at fine-mapped complex immune trait loci.  a) Fine-742 

mapping of causal variants at association signals for 16 complex immune traits and diseases.  743 
Bar plots represent the number of variants in credible sets for each trait.  b) Posterior 744 
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probabilities of caQTLs at fine-mapped variants for each immune trait and disease. c). d) 745 

Breakdown of caQTLs for fine-mapped variants that were linked to promoter sites. e) Regional 746 
plot of the locus on chr6 near BACH2 associated with type 1 diabetes (T1D). (top) T1D variant 747 

association, with credible set variants highlighted in red, (bottom) chromatin signal in naïve 748 
CD4+ T cells and the co-accessible link between the site harboring rs72928038 and the BACH2 749 

promoter. f) Cell type-specific effects of rs72928038 on naïve CD4+ T cell chromatin. (top) 750 

Chromatin signal grouped by rs72928038 genotype in bulk PBMCs and naïve CD4+ cells on 751 
top, (bottom) genome browser of chromatin signal in each cell type. g) Predicted TF sequence 752 

motifs at rs72928038, where the variant base is highlighted. h) Validation of allelic activity for 753 

rs72928038 in T cells. (top left) Luciferase gene reporter of sequence surrounding the G and A 754 
allele of rs72928038 in Jurkat T cells.  The G allele had significantly higher reporter activity. (top 755 

right) Electrophoretic mobility shift assay of oligonucleotides containing the G and A allele of 756 
rs72928038 in Jurkat T cells, where the G allele had protein binding. i) Regional plot of the 757 

chr11 locus near CXCR5 associated child asthma. (top) Asthma association statistics, with the 758 
two credible set variants highlighted in red, (bottom) chromatin signal in activated CD4+ T cells 759 
and the co-accessible links between the site harboring rs12365699 and the CXCR5, BCL9L, 760 

NLRX1 MCAM, and MPZL3 promoters. j) Cell type-specific effects of rs12365699. (top) 761 
Chromatin signal grouped by rs12365699 genotype in bulk PBMCs and activated CD4+ cells on 762 
top, (bottom) genome browser of chromatin signal in each cell type. k) Predicted TF sequence 763 
motifs at rs12365699, where the variant base is highlighted. 764 

  765 
SUPPLEMENTARY FIGURE LEGENDS 766 
 767 

Supplementary Figure 1. Population structure of PBMC samples. The first four principal 768 
components derived from joint analysis of genotype data from the 1000 Genomes Project and 769 

PBMC samples. Samples in 1000 Genomes are colored by major population group, and the 770 

PBMC samples are colored in pink.     771 

 772 

Supplementary Figure 2. Defining immune cell types and sub-types from snATAC-seq 773 

profiles.  a) UMAP plots showing promoter accessibility in a 1 kb window around the TSS for 774 
selected cell type marker genes (see Supplementary Table 3). b) Genome browser plots 775 

showing aggregate read density (scaled to uniform 1×105 read depth, range: 5-35, shown on 776 

vertical axis for each plot) for cells within each cell type for selected cell type marker genes.  777 
 778 
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Supplementary Figure 3. Immune cell type snATAC-seq profiles in individual PBMC 779 

samples. a) UMAP plot showing cells clustering in each of the 10 PBMC samples assayed in 780 
this study. b) Scatter plot comparing cell type proportions obtained from cluster analysis versus 781 

those obtained from flow cytometry, excluding leukocytes. Proportions represent the fraction of 782 
all cells in each sample (see Supplementary Table 4 for individual sample proportions). Each 783 

dot represents an individual sample. c) Barplot showing the number of cells assigned to 14 784 

distinct immune cell types and sub-types in each sample. d) Barplot showing the relative 785 
proportion of cells from each sample in each immune cell type and sub-type. 786 

 787 

Supplementary Figure 4. Comparison of ATAC-seq peaks from PBMC snATAC and FACS 788 
sorted PBMCs. Heatmaps and hierarchical clustering of Spearman correlation coefficients for 789 

pairwise comparisons of genome-wide ATAC-seq profiles across (a) cell-types or (b) sub-types 790 
from PBMC snATAC from this study (in blue) and from a published bulk ATAC-Seq study using 791 

FACS sorted immune cells (in black).  792 
 793 
Supplementary Figure 5. Comparison of caQTL effects with and without the allelic 794 

imbalance component. For each cell type (first 5 plots) and cell sub-type (remaining 10 plots), 795 
a scatter plot show the consistency between caQTL effect considering both allelic and 796 
population effect (x-axis) and the effect for the same variant-peak pair using only the population 797 
component (y-axis) obtained running RASQUAL using the  --population-only option. The 798 

percentage of discordant effect are indicated. 799 
 800 
Supplementary Figure 6. Comparison of snATAC-seq caQTLs with LCL caQTLs from 24 801 

individuals. a-e) Significant PBMC caQTLs in a) B-cells, b) CD4+ T-cells, c) CD8+ T-cells, d) 802 
Monocytes and e) NK-cells and their overlap with caQTLs from LCLs (Venn diagram, 803 

considering only peaks tested in both datasets. For each shared caQTLs between each cell 804 

type and LCLs, a scatter plot shows effect sizes for caQTLs found in both studies and having 805 

the same lead variant. f) Table with p-values and odds ratio from two-tailed Fisher’s exact test 806 

for enrichment of cell-type caQTLs in LCLs caQTLs. 807 

 808 
Supplementary Figure 7. Examples of caQTLs specific to immune sub-types. a) Examples 809 

of cell-type specific caQTLs due to presence of the peak in a single cell type. From left to right, 810 

rs1957554 is a caQTL for a naïve B cell-specific site, rs7094953 is a caQTL for a naïve CD4+ T 811 
cell-specific site, rs3014874 is a caQTL for a classical monocyte-specific site, and rs59176853 812 
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is a caQTL for a cytotoxic NK cell-specific site. Top panels: colored-coded box-plots show 813 

association in the different cell types, white box-plots show corresponding caQTL in bulk 814 
PBMCs. Association q-values are shown on the top and variant genomic location (hg19) is 815 

shown at the bottom. Bottom panels: genome-browser screenshot of snATAC-seq in different 816 
cell types. b) Example of caQTL specific to classical monocytes (rs747748) although the peak is 817 

active in all immune cell types. Box-plots show association with the same variant in 10 immune 818 

sub-types and the bulk PBMCs. Right: genome-browser screenshot of cell-type color-coded 819 
snATAC-seq peaks and position of the variant. c) Example of a caQTL specific to effector CD8+ 820 

T cells (rs61943586) although the peak is active in all cell types.  821 

 822 
Supplementary Figure 8. Correlation of caQTL effects with effects at distal promoters 823 

across different distances. Correlation in the effects of caQTL variants on the QTL site and 824 
co-accessible promoter sites in each cell type, grouped by distance between the QTL site and 825 

co-accessible promoter site. Pearson correlation coefficient and number of co-accessible pairs 826 
of peaks are indicated. 827 
 828 

Supplementary Figure 9. Additional examples of immune cell type caQTLs at fine-829 
mapped complex immune trait loci with cell-specific effect. a) Regional plot of a locus on 830 
chr5 associated with rheumatoid arthritis, with the four credible set variants highlighted in red. 831 
The candidate causal variant rs7731626 is indicated with a triangle and PPA. b) Chromatin 832 

signal in naïve CD4+ T cells in the region and co-accessible link between the site harboring 833 
rs7731626 and the IL6ST (aka GP130) promoter. The other three peaks co-accessible with 834 
rs7731626 map to the promoter of a non-coding isoform of ANKRD55 (in green). c) Zoomed-in 835 

chromatin signals at the rs7731626 and the IL6ST promoter sites in all cell subtypes, showing 836 
specificity for naïve CD4+ T cells. d) Chromatin signal at the rs7731626 variant grouped by 837 

rs7731626 genotype in bulk PBMCs and naïve CD4+ cells and q-values of association. e) Top 838 

four predicted TF sequence motifs rs7731626, where the variant base is highlighted. Twelve 839 

other motifs predicted to be altered are not shown. f) Regional plot of the locus on chr15 840 

associated with Crohn’s disease, with the five credible set variants highlighted in red. The 841 

candidate causal variant rs17293632 is indicated with a triangle and PPA. g) Chromatin signal 842 
in classical monocytes in the region and co-accessible link between the intronic enhancer 843 

harboring rs17293632 and three alternative SMAD3 promoters. h) Zoomed-in chromatin signals 844 

at the rs17293632 (right) and SMAD3 promoter sites in all cell subtypes, showing specificity for 845 
monocytes at the enhancer site and the two closest promoters. i) Chromatin signal at the 846 
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enhancer site grouped by rs17293632 genotype in bulk PBMCs, monocytes (including all 847 

subtypes), classical monocytes and non-classical monocytes, with q-values of association 848 
(RASQUAL). j) Four predicted TF sequence motifs rs7731626, where the variant base is 849 

highlighted. Ten other similar motifs (ETS family) predicted to be altered are not shown.  850 
 851 

Supplementary Figure 10. Additional examples of immune cell type caQTLs at fine-852 

mapped complex immune trait loci with high causal probability. a) Regional plot of the 853 
locus on chr12 in the NINJ2 gene showing association with Lymphocyte count, with the eight 854 

credible set variants highlighted in red. The candidate causal variant rs34038797 is indicated 855 

with a triangle and its PPA is shown. b) Chromatin signal in memory CD8+ T cells and Classical 856 
Monocytes in the same region and the co-accessible link between the site harboring 857 

rs34038797 and promoters of CCDC77, WNK1, RAD52 (CD8+ T), NINJ2 and SLC6A12 858 
(Monocyte). c) Chromatin signal at the rs34038797 variant grouped by rs34038797 genotype in 859 

all cell sub-types and q-values of association (RASQUAL) and zoomed-in genome browser 860 
track. d) Top five predicted TF sequence motifs altered by rs34038797, where the variant base 861 
is highlighted.  862 

 863 
SUPPLEMENTARY TABLES 864 
 865 
Supplementary Table 1. Summary of PBMC samples information. For each of the 10 866 

samples analyzed, sample name, lot number, donor ID, donor age, gender, ethnicity, blood 867 
type, and flow cytometry markers percentages are indicated. 868 
 869 

Supplementary Table 2. Summary of snATAC-seq cell ranger statistics. For each of the 10 870 
samples analyzed, we indicate snATAC-seq sequencing and mapping statistics.  871 

 872 

Supplementary Table 3. Marker genes references. List of marker genes used to assign 873 

clusters to PBMC cell types and sub-types and corresponding reference papers. 874 

 875 

Supplementary Table 4. Clustering vs. flow cytometry cell type proportions. Comparison 876 
between cell type proportions in each sample as estimated by flow cytometry and snATAC. 877 

 878 
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Supplementary Table 5. Immune cell type and sub-type accessible chromatin sites. 879 

Merged bed file of all ATAC peaks sites called in each cell type and sub-type, used for all 880 
analyses. 881 

 882 
Supplementary Table 6. Immune cell type and sub-type caQTLs. RASQUAL results for all 883 

caQTLs significant at FDR 10% in each cell type (5 cell types and 10 sub-types) and pseudo-884 

bulk analyses. The first 25 columns are outputs from RASQUAL, and p-values and q-values 885 
were calculated from columns 11 and 10, respectively.  886 

 887 

Supplementary Table 7. Transcription factor motifs enriched in immune cell type caQTLs. 888 
List of TF motifs from the HOCOMOCO v.10 human database that were tested for enrichment in 889 

caQTLs and results of binomial test. 890 
 891 

Supplementary Table 8. Complex immune traits and diseases included in fine-mapping. 892 
List of traits and corresponding GWAS study used for fine mapping. 893 
 894 

Supplementary Table 9. Immune cell type and sub-type QTLs at fine-mapped variants. 895 
List of SNPs in credible sets for blood and auto-immune traits that are caQTLs in one or more 896 
cell types, have PPA >0.01 and are located either in gene promoters or in enhancers that are 897 
co-accessible with distal promoters. For each fine-mapped variant we report caQTL results and 898 

co-accessible promoters (multiple entries) in each of the cell types with significant caQTLs.  899 
 900 
SUPPLEMENTARY DATA FILES 901 

 902 
Supplementary Data 1.  Summary statistics of caQTLs in PBMC cell types, subtypes, and 903 

bulk like data. RASQUAL results for all peaks tested in each cell type (5 cell types and 10 sub-904 

types) and pseudo-bulk analyses. The first 25 columns are outputs from RASQUAL, and p-905 

values and q-values were calculated from columns 11 and 10, respectively.  906 

 907 

Supplementary Data 2.  Fine-mapping credible sets for loci associated with 16 complex 908 
immune traits. The 99% credible sets derived from fine-mapping of loci associated with 16 909 

complex immune traits and disease. 910 

 911 
 912 
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