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Abstract 

 

Methods for data analysis in the biomedical, life and social sciences are developing at a 

rapid pace. At the same time, there is increasing concern that education in quantitative methods 

is failing to adequately prepare students for contemporary research. These trends have led to 

calls for educational reform to undergraduate and graduate quantitative research method 

curricula. We argue that such reform should be based on data-driven insights into within- and 

cross-disciplinary use of research methods. Our survey of peer-reviewed literature screened ~3.5 

million openly available research articles to monitor the cross-disciplinary usage of research 

methods in the past decade. We applied data-driven text-mining analyses to the methods and 

materials section of a large subset of this corpus to identify method trends shared across 

disciplines, as well as those unique to each discipline. As a whole, usage of T-test, analysis of 

variance, and other classical regression-based methods has declined in the published literature 

over the past 10 years. Machine-learning approaches, such as artificial neural networks, have 

seen a significant increase in the total share of scientific publications. We find unique groupings 

of research methods associated with each biomedical, life and social science discipline, such as 

the use of structural equation modeling in psychology, survival models in oncology, and 

manifold learning in ecology. We discuss the implications of these findings for education in 

statistics and research methods, as well as within- and cross-disciplinary collaboration.  
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Introduction 

 

 Accelerated by trends in open-source science in the past decade, the methodological 

landscape of the biomedical, life and social (BLS) sciences is becoming increasingly complex. 

The classic statistical tools (e.g. T-tests, analysis of variance, other types of linear regression) 

taught in introductory statistics courses are nowadays perceived insufficient to prepare 

researchers for the age of big data, machine learning, and open source software. Concerned that 

BLS sciences educational training is failing to keep up with these trends, many researchers and 

statisticians have advocated for educational reform to introductory research methods and 

statistics courses (1–4).  We argue that a crucial step in this direction is a more complete 

understanding of actual trends in method usage across BLS sciences. Such an understanding will 

offer valuable insights into the necessary methodological skills and knowledge needed to train 

early career scientists for future success in their disciplines and collaborations.  

 

 In this study, we conduct a systematic charting of research method usage across BLS 

disciplines over time. We applied natural language processing tools to a large corpus of open-

access peer-reviewed literature (5). Our study aimed to map out the methodological landscape of 

the BLS disciplines and changing trends over the past decade. Here we use the term research 

methods to broadly denote any quantitative or qualitative method, algorithm, or metric used to 

describe, summarize or interpret a sample of data. ‘Study’ is also broadly defined as a peer-

reviewed computer- or qualitative-based assessment of measured data points, including 

experimental, observational, or meta-analytic research. We carefully retraced trends in research 

methods across 1) time, and 2) research disciplines. From a temporal perspective, we identified 

research methods that have increased or decreased in prominence across BLS disciplines over 

the past decade (2009 to 2019). From a cross-disciplinary perspective, we identified research 

methods that are uniquely prominent within each BLS discipline, and the similarity or 

dissimilarity of BLS disciplines, in terms of their usage of research methods.  

 

Results  

 

Pre-processing and Analysis Summary 

 

 The primary goal of this study is to describe and understand usage shifts in research 

methods across BLS disciplines over time. We screened ~3,500,000 articles published in a 

decade of research to accomplish this goal. We extracted mentions/adoptions of research 

methods from ‘Methods and Materials” sections of a large corpus of peer-reviewed articles 

(PubMed Open Access Subset; 5). We used a named entity recognition algorithm trained 

specifically for this purpose. We refer to these extracted mentions from the text as method 

entities – unique strings of alphanumeric characters that refer to a distinct research method. The 

extracted method entities then underwent a sequence of pre-processing steps including removal 

of unwanted characters and lemmatization (removing inflectional endings). The pre-processing 

workflow included a manual entity disambiguation step that classified method entities into more 

meaningful superordinate method categories. In addition to pre-preprocessing of method entities, 

articles were classified into a set of 15 research disciplines (see Figure 1 and Figure 2) using a 

supervised machine learning framework pooling information from article titles, abstracts and 

journal names. The 15 disciplines were chosen by the authors from a survey of the corpus to 
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balance breadth and specificity of the BLS literature. The entire pre-processing pipeline is 

illustrated in Figure 1. 

 The method category counts per article (Narticles = 585,362) were used as input to two 

analytic pipelines: 1) method usage trends to observe temporal trends in research method usage 

over the time window of 2009 to 2019 (at an annual frequency), and 2) discipline by research 

method probability analysis to understand what research methods are unique to each BLS 

discipline. In addition, the pre-processed method entities before the entity disambiguation step 

were supplied to a third analytic pipeline: 3) Analysis of Research Method Groupings to discover 

data-driven clusters of research methods that frequently co-occur within and across BLS 

disciplines. To promote reproducibility and re-use, the full code for all pre-processing and 

analytic processes are provided on the following webpage: 

https://github.com/tsb46/stats_history. 

 

  

 
Figure 1. Pre-processing Pipeline. The pre-processing pipeline consists of 1) retrieval and 

parsing of full-text “Methods and Materials” sections, 2) named entity recognition of research 

method entities, 3) entity string pre-processing, 4) article classification into BLS disciplines, 5) 

and a manual entity disambiguation step whereby method entities are classified into 

superordinate categories of employed research methods (e.g. survival models, graph theory). 
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 The corpus of open-access peer-reviewed literature predominantly consisted of science-

general journals, such as Plos One, Scientific Reports, Nature Communications (Figure 1A). 

This observation highlights one advantage of the machine-learning classification of journal 

articles into scientific disciplines. The common practice of article classification by its journal 

publication would fail to capture the mixture of scientific disciplines contained within these 

science-general journals. Discipline-specific journals with high article counts included 

Oncotarget (Oncology), BMJ Open (Clinical Research, Public Health/Epidemiology), BMC 

Genomics (Biochemistry/Cellular Biology/Genetics), Sensors (Engineer/Biotechnology), BMC 

Public Health (Public Health/Epidemiology), and Frontiers in Psychology (Psychology). These 

discipline-specific journals publish peer-reviewed articles in a specific area of study and have a 

more focused readership. The disciplines with the highest article counts are primarily biomedical 

and clinical disciplines: Clinical Research (N=126,446), Biochemistry/Cellular Biology/Genetics 

(N = 76,607), Public Health/Epidemiology (N = 67,928), and Oncology (N = 52,487) (Figure 

1B). 

 

 We deployed classical multidimensional scaling (MDS) to express each discipline’s total 

method entity counts in a parsimonious two-dimensional space (Figure 1B). The distances 

between the disciplines in the resulting plot reflect the dissimilarity/similarity in total research 

method counts. This approach made apparent that four disciplines stood out as relative outliers in 

research method usage: Oncology, Population Genetics, Evolution/Ecology and 

Chemistry/Material Sciences. As we observe below, among all 15 candidates, these select 

disciplines revealed a unique profile of research method usage. For illustration, we consider the 

discipline of Ecology/Evolutionary Sciences. Compared with other BLS disciplines, distance 

matrix and manifold learning methods (e.g., multidimensional scaling) are more widely used in 

the analysis of ecological data (6–8). Such methods have been found to be uniquely suited for the 

analysis of species composition and abundance data (9). For example, distance matrices 

constructed through metric/non-metric dissimilarity metrics (e.g., Bray-Curtis dissimilarity) are 

used to represent a species-by-sample/site matrix. Manifold learning methods are routinely used 

to analyze the resulting distance matrices (9). Manifold learning methods are often referred to as 

‘ordination’ in ecology. 

 

 The most frequently mentioned method entities included summary statistics of a 

collection of data points (e.g., mean, variance, median, standard deviation), tools that are 

intimately related to statistical significance (e.g., p value, statistically significant, statistical 

significance, confidence interval), mean comparison tests (e.g., T-test, ANOVA), as well as (e.g., 

Pearson’s/Spearman’s) correlation coefficient and linear/logistic regression. Other frequently 

evoked method entities included dimension reduction and clustering techniques (e.g., principal 

component analysis and hierarchical clustering), resampling methods (e.g., bootstrapping), 

classification performance metrics (e.g., area under the curve, receiver operating characteristic), 

and survival models (e.g., cox regression). Interestingly, content analysis - a sometimes 

quantitative, sometimes qualitative coding method of documents to examine communication 

patterns – also appears in the top 50 most frequently mentioned method entities. 
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Figure 2. Journal, Discipline and Entity Statistics. (BIOCHEM: Biochemistry/Cellular Biology/Genetics; 

CLINIC: Clinical/Hospital Research; CS: Computer Science/Informatics; CHEM: Chemistry/Material Science; 

ENVIRON: Environmental/Earth Science; ECO: Evolution/Ecology; IMMUN: Immunology; ONCO: 

Oncology; PSYCH: Psychology; NEURO: Neuroscience; EPIDEM: Public Health/Epidemiology; ENG: 

Engineering/Biotechnology; PHYSIO: Human Physiology/Surgery; POPGENE: Population Genetics; 

ANIMAL: Animal/Insect/Plant Sciences). Translations of discipline abbreviations (e.g. CLINIC) are displayed 

at the top of the figure. A) A horizontal stacked bar plot displaying the number of articles for the top 20 

journals in the corpus (defined in terms of article count). The percentage of articles per domain within a journal 

are proportionally shaded within each bar (IJERPH = International Journal of Environmental Research and 

Public Health). The research disciplines with the highest article counts were primarily biomedical and clinical 

disciplines. B) Multidimensional scaling plot displaying the similarity between research disciplines, in terms of 

total entity counts (summed across all articles in the discipline), on a two-dimensional space. C) Top 50 

research method entity strings were sorted row-wise by the number of mentions across the corpus. The size of 

each entity string is proportional to the logged article count. The most frequently mentioned method entities 

were summary statistics and classical statistical methods (e.g., ANOVA, T-test, linear regression). 

 

 

Research Method Usage Trends 

  

 The methodological landscape of BLS sciences has seen a dramatic shift over the past 

decade. In order to track what research methods have increased or decreased in prominence over 

the past decade, we calculated the proportion of articles mentioning each method category (N = 

126) per year (2009 – 2019) (Figure 3). As can be observed from Figure 3 (top panel), classical 

statistical methods have remained the dominant analytic methods in the BLS sciences over the 

past decade. These classical methods include the ANOVA, T-test, linear regression, and chi 

square test. However, plotting these trends together on the same plot fails to visualize the relative 
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increases/decreases in usage of these methods. When plotted relative to their own scale (i.e., 

different y-axis per method category), interesting trends appear. While still dominant, the 

widespread adoption of classical statistical methods has steadily weakened over the course of 

2009 to 2019. Interestingly, the only classical statistical methods that we observed to gain in 

adoption over the past decade are effect sizes and confidence intervals. The increasing adoption 

of effect sizes and confidence intervals may reflect the increased pressure from institutions and 

researchers (10–12) to report effect sizes and confidence intervals along with significance tests in 

peer-reviewed research. 

  

 Advanced statistical and machine learning methods have grown in adoption over the past 

decade. The method categories include metrics for evaluating classification performance (e.g., 

area under the curve, receiver operating characteristics), principal components analysis/factor 

analysis, random forest algorithms, support vector machines, manifold learning and partial least 

squares. In addition, the adoption of graph theoretical or network science approaches has grown 

in the BLS disciplines over the past decade. The frequency of usage of artificial neural networks 

in BLS disciplines remained relatively steady for the first half of the decade. However, a steep 

surge in adoption is observed after 2016, consistent with the recent explosion of interest in ‘deep 

learning’ (13, 14). 

 

 Other recent developments in research method usage are also worthy of note (Figure 4). 

First, the adoption of qualitative research methods has steadily grown in the BLS sciences over 

the past decade. These methods include thematic analysis (15), framework analysis (16), content 

analysis (17; though this method is sometimes used in quantitative manner - e.g., word counts), 

and grounded theory methodology (18). The common features of these qualitative methods are 

their application to unstructured or non-relational data (e.g. text, audio or video recordings) - an 

exponentially growing source of data in both industry and the BLS sciences (19–21).  

 

Another noteworthy trend of interest is the lack of growth in adoption of Bayesian 

methods for the BLS sciences. Bayesian methods include general Bayesian concepts (e.g. prior 

distribution, posterior distribution, Bayesian estimation), as well as sampling methods such as 

Markov chain Monte Carlo (MCMC) sampling. In contrast, null-hypothesis testing methods and 

concepts (e.g., p value, statistical significance, null hypothesis, alternative hypothesis) have 

exhibited a steady increase in application in the BLS sciences over the past decade. This lack of 

enthusiasm for Bayesian methods may be somewhat surprising, given the increasing advocacy of 

these methods as an alternative to the predominant use of null-hypothesis testing, with its 

perceived flaws (22, 22–24). 
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Figure 3. A Decade of Research Method Trends (2009-2019). Time-series of research method categories from 

2009-2019 (annual frequency). For each research method category, the time-series represent the proportion of 

articles that contained an instance of that category per year. Top Panel) All time-series displayed in single plot with 

categories differentiated by color. Note that trends are difficult to discern due to base category proportions in the 

literature - ‘summary statistic’ entities appear in slightly over half (~50%) of all articles. Bottom Panel) Time-series 

of individual categories (y-axis limits and scale relative to each category), separated into ‘traditional statistical 

method’ and ‘advanced analytic and machine learning’ categories. Random sampling variability for each proportion 

estimate was visualized using bootstrapped standard errors (SE) from 100 bootstrapped samples of articles at each 

time point (dark shaded region: ± 1 SE, light shaded region: ± 2 SE). Overall, advanced analytic methods have 

grown in adoption over the past decade. However, classical statistical methods have decreased in usage over the past 

decade.  
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Figure 4. Additional Research Method Trends. Additional time-series of research method categories from 2009-

2019 (annual frequency). For each research method category, the time-series represent the proportion of articles that 

contained an instance of that category per year. Random sampling variability for each proportion estimate was 

visualized using bootstrapped standard errors (SE) from 100 bootstrapped samples of articles at each time point 

(dark shaded region: ± 1 SE, light shaded region: ± 2 SE). Qualitative methods, meta-analysis, and null-hypothesis 

significance testing have steadily grown in adoption over the past decade. Other research method trends exhibit 

more complex patterns – e.g. survival models exhibited a steady decrease in the first half of the decade, followed by 

a steady increase in the latter half.   

 

Unique Method Usage by Discipline 

 

 To examine method categories uniquely associated with each BLS discipline, we used a 

contingency table approach. Specifically, we modeled the probability that an article belongs to 

each discipline vs. the rest (i.e., binary dependent variable) as a function of the research method 

category mentions in that article. Figure 5 displays the unique set of method categories most 

frequently used in that discipline. For example, Gaussian Process regression (GPR; known as 

‘kriging’ in geostatistics), employed as a method for spatial smoothing by interpolation, is 

uniquely associated with Earth/Environmental sciences. GPR is uniquely suited for the often 

required need to infer the level of quantities (e.g., minerals) at spatial locations for which no or 

sparse data were measured. Another example is the uniquely predominant use of partial least 

squares in chemistry, or chemometrics. PLS, a multivariate technique that predicts a set of 

response variables (Y) based on a set of predictor variables (X), is often used in chemometrics to 

relate properties of chemical samples (e.g. spectral properties) to their chemical composition 

(e.g., sample concentrations) (25). Other discipline-method groupings include structural equation 

modeling in psychology, independent component analysis in neuroscience, meta-analysis in 

clinical/health research, and survival models in oncology.  
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Figure 5. Research Method Usage Across Disciplines.  Top eight standardized chi-square 

residuals for each discipline from the contingency table analysis. The greater the chi-square 

residual, the greater the difference between the observed and expected number of method entities 

within that discipline. Method entities are arranged by ranking from left to right. Disciplines 

have a unique set of research methods frequently applied to their subject matter: e.g. information 

theory in computer science, independent component analysis in neuroscience, and meta-analysis 

in population/behavioral genetics. 
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 Research methods in the BLS sciences are rarely used in isolation. Rather, a set of 

methods are applied jointly, or in sequence, to understand a dataset. We term these frequently co-

occurring research methods, ‘method groupings’. To directly extract coherent constellations of 

methods and understand how they vary across BLS disciplines, we applied a tensor 

decomposition approach to a method entity (N = 1,218) co-occurrence by discipline (N = 15) 

tensor (Figure 6; top left panel). For illustration, we displayed the selected components for a 20 

component (i.e., 20 rank-one tensors) solution (Figure 6). Each component is associated with 

separate weights for method entities and disciplines, indicating the method entities and 

disciplines most associated with the component, respectively.  

 

 The method groupings revealed by the tensor decomposition can be roughly classified 

into cross-discipline and within-discipline categories. Cross-discipline method families include 

components with a broad representation across the BLS disciplines (i.e., relatively more even 

distribution of discipline weights). For example, components 1 and 16 had non-zero weights for 

the majority of BLS disciplines. These components had high weights for both summary statistics 

and null-hypothesis testing methods. Interestingly, component 1 had higher weights for null-

hypothesis testing concepts (e.g., p value, statistical significance) compared to component 16. In 

addition, component 1 was more associated with life science disciplines. Instead, component 16 

was more associated with the engineering, chemistry and material science disciplines. Another 

cross-discipline method grouping was component 7: a group of unsupervised cluster analysis 

methods/metrics - primarily hierarchical clustering (e.g., average linkage, dendrogram). This 

component was most associated with the biochemical, animal/plant and immunological 

disciplines. Another cross-discipline method grouping was component 8: a group of regression 

approaches that represent particular instances of generalized linear models, including output 

distributions following logistic, Poisson, and truncated (e.g., Cox regression) laws. This 

component was most associated with the categories of population genetics, oncology, 

earth/environmental sciences and immunology disciplines.  

 

 We subsequently focused attention on the discipline-specific method groupings: method 

groupings with almost exclusive use in one or a small subset of BLS disciplines. One example 

was component 6, a method grouping with exclusive use in ecology and animal/plant/insect 

disciplines. This set of methods included ANOVA-based methods, manifold learning (e.g., 

multidimensional scaling), and distance matrix analyses (e.g., Mantel test). As noted above, 

manifold learning and distance-matrix methods are uniquely suited to analyses of species 

composition and other types of data regularly collected in these disciplines. The appearance of 

ANOVA-based methods in this seemingly unrelated group of methods may seem surprising, but 

owes to the fact that variance partitioning of distance matrices is a historically common practice 

in the ecological disciplines (26). Another, perhaps surprising, discipline-specific method 

grouping is component 15: a set of methods/concepts, including the general linear model, T-tests 

and family-wise error correction. This method grouping belonged exclusively to the discipline of 

neuroscience. This neuroscience-specific method grouping owes its existence to the development 

of statistical parametric mapping of neuroimaging data developed in the late 1990’s and early 

2000’s, which rely heavily on the concept of a general linear model and random field theory for 

family-wise error correction of statistical maps (27, 28).  
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Figure 6. Co-occurrence Patterns in Method Usage Across BLS Disciplines. To understand what research 

methods are frequently used together in the same study, we conducted a tensor decomposition of a method co-

occurrence by discipline tensor. The tensor decomposition analysis simultaneously models the co-occurrence 

between research methods, as well as their frequency of usage in each discipline. This figure displays the discipline 

and method entity weights from the tensor decomposition analysis. Components from the tensor decomposition are 

referred to as ‘method groupings’, or groups of research methods that frequently occur together in study method 

sections. The top left panel provides a visual illustration of the tensor decomposition (non-negative CANDECOMP 

decomposition) of the entity co-occurrence by discipline tensor. The first two dimensions of the tensor represent the 

logged sum of co-occurrences between each pair of research methods. The third dimension splits out the research 

method co-occurrences by discipline (i.e., the research method co-occurrences of articles within each discipline).  

For each component, or ‘method grouping’, a stem plot illustrates the weights for each discipline, as well as the top 

5 method entity strings, in terms of their weights (sized by their weight). For each component, the discipline weights 

represent the frequency of usage of that component across each discipline. Some sets of methods are represented 

across all BLS disciplines (e.g., component 2), while others are concentrated within one or two disciplines (e.g., 

component 15). 

 

Discussion  

 It was famously stated that “Data science will become the sexiest job in the 21st century” 

(Hal Varian, Google). We offer an automated 10-year survey of ~3.5 million open research 

papers. This study aimed to detect and expose the trajectory of usage patterns that characterize 

distinct BLS disciplines. Our grass-roots approach provides a sociological snapshot of the 

ongoing methodological shifts in a variety of scientific communities. We find that multivariate 

algorithms have become rapidly embraced in response to the expanding data deluge. Our results 
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provide valuable pointers for how university curricula should be revised to meet the urgent need 

for training a new generation of quantitatively literate scientists. 

 

 ‘Multivariate and machine learning approaches’ is a broad label, referring to a wide 

variety of quantitative methods. These methods are often taught in advanced statistics and 

computer science courses: principal component analysis, partial least squares, support vector 

machines, random forest classification algorithms, graph theory and artificial neural networks. 

While some of these methods are quite old (e.g., principal component analysis was first 

developed in the early 20th century), others are relatively new and still developing (e.g., artificial 

neural networks have only seen broad use in the past decade). The increase in adoption of 

advanced analytic methods could be due to several reasons: 1) the collection of larger and more 

complex datasets, 2) the recent popularity of data science as a tool in academia and industry, or 

3) an increasing realization among researchers that manuscripts containing advanced analytics 

are more likely to impress reviewers and editors. Either way, our findings reinforce the concern 

that statistics and research method education in the BLS sciences is falling behind and struggling 

to ‘keep up’ with the rapid pace of contemporary research in the age of big data, machine 

learning and open source software (2, 3). To prepare future practitioners in their disciplines, 

introductory research methods and statistics courses in the BLS sciences may need to be 

reimagined around a ‘data science’ focus (4, 29). 

 

Our survey demonstrates that research methods for data analysis can vary widely across 

BLS disciplines. Several explanations can be offered for the distinct usage of data analysis 

methods between BLS disciplines. Perhaps the primary driver of a discipline’s adoption of 

research methods is the simple observation that the subject matter lends itself to the assumptions 

and goals of select research methods. For example, consider the observed disproportionate use of 

structural equation modeling in the discipline of psychology (Figure 5 and Figure 6 – 

Component 10). Psychological research, since the advent of cognitive psychology (30), routinely 

relates observable behavior such as task performance or questionnaire responses to unobserved 

or latent variables. The desire to explore causal structure among these latent variables has led to 

the systematic adoption of structural equation modeling – a technique to specify and test causal 

structures among latent and observable variables (31, 32). Similar explanations can be offered 

for other method-discipline pairs such as survival models and oncology. Other differences may 

arise from historical contingency, with no necessary connection between an analysis method and 

the subject matter it is applied to. For example, consider the predominant use of Fisher’s Exact 

Test in immunology vs. the Chi-square Test in clinical research (Figure 5). Both are statistical 

significance tests of the association between two categorical variables. The appropriate context 

for each test is controversial among statisticians (33, 34). Despite this controversy, our analysis 

indicates Fisher’s Exact Test is generally preferred over the chi-square test in the field of 

immunology, and vice versa in clinical research. Thus, the usage of one research method over 

another in a BLS discipline can be due to principled statistical reasons, and sociological or 

historical contingency.  

 

 Differences in analytic method usage have concrete implications for the direction of 

research in each BLS discipline. The choice of experimental/observational design often entails 

the subsequent analytic method used to analyze the data, but a reverse influence occurs as well: 

the researcher’s knowledge of available analytic methods informs their experimental or 
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observational design. For example, ANOVA models for analysis of group means have a 

historically close relationship with experimental design in social and life science research (35). 

In other words, the influence between the choice of data analysis method and how data is 

collected operates in both directions. This observation underlies the potential for cross-

fertilization and mutual inspiration between BLS disciplines by the discovery of new methods 

for data analysis, as well as novel ideas around data collection. While many advocates of cross-

disciplinary collaboration have emphasized the joining together of different theoretical and 

subject-matter expertise (36), our findings emphasize a further methodological benefit of 

collaboration, which affords practitioners access to novel methods of data analysis not widely 

known in their own disciplines. 

  

It should be noted that the corpus used in this analysis is limited in many respects. First, it 

only contains open-access articles made available by an open-access journal or an NIH-funded 

author. Thus, a sizable collection of peer-reviewed research in the past decade is systematically 

missing from this analysis. However, we assume that the type of publisher - open-access or 

subscription-based – is not a significant determiner of the methods used within a discipline. 

Second, some scientific disciplines are missing from this survey, including experimental and 

theoretical physics, anthropology, astronomy, cosmology, economics, sociology, and geology. 

Future studies with a more comprehensive corpus of scientific publications will provide deeper 

insight into the historical and cross-disciplinary trends in scientific data analysis.  

 

Our survey of peer-reviewed literature reveals the rapid pace of change in research 

methods in as few as 10 years. A comparable pace of change will be required in education of 

budding scientists. Equally important is the observed analytic diversity of BLS sciences of the 

past 10 years. The diverse analytic toolsets across BLS disciplines promises large pay-offs for 

cross-disciplinary collaboration. In this vein, the recent advent of ‘big data’ and open-source 

science is at least as much an opportunity for adequately training the next generation of 

researchers, as a challenge. 

 

 

Methods 

 

Peer-Reviewed Literature Corpus 

 

Two sources of peer-reviewed literature were used for this analysis: the Pubmed Central 

Open Access Subset (PMC OAS) (N=2,869,889 articles at time of study); and the Pubmed 

Central Author Manuscript (PMC AM) collection (N=659,133 articles). The PMC OAS provides 

access to full-texts from a total of 14,722 open access peer-reviewed journals (at time of study). 

The PMC AM collection provides access to full texts of manuscripts made available in PMC by 

authors in compliance with the NIH Public Access Policy. Both sources form part of PMC’s 

open access collection (37) (https://www.ncbi.nlm.nih.gov/pmc/tools/textmining/). Bulk 

downloads of the full OAS and AM collection articles were conducted using the PMC FTP 

service. Overall, a total of 3.5 million articles were downloaded and screened for our analysis.  

 

Article Parsing and Method Section Identification 
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 Both OAS and AM text corpora are openly available in a structured and standardized 

form to the public on PMC’s webpage. Both corpora were downloaded in XML format. Each 

XML article file is organized into article metadata and article text separated into article sections 

(e.g., Introduction, Methods & Materials, Results, etc.). As the primary interest of this study was 

exploring usage patterns of research methods in this pool of articles, we retrieved sections of the 

XML articles that correspond to the methodology section of the article (e.g., ‘Methods and 

Materials’). Given that methodology sections have no standardized title, we pulled any sections 

of text from each XML article that contained in any of the following sequence of strings: 

‘method’, ‘material’, ‘measure’, ‘analysis’, and ‘statistical’. As we were interested in original 

studies, XML articles not containing any of these section search strings were excluded from 

analysis, such as literature reviews, book reviews, commentaries, etc. Of the total XML articles 

in the peer-reviewed literature corpus, Ntext = 1,276,452 articles with the above section search 

strings were retrieved. 

 

Named Entity Recognition of Research Method Entities 

 

 In the resulting corpus of 1,276,452 methodology section texts, it would be infeasible to 

manually tag each research method phrase in every section text. Thus, we opted for an automated 

recognition method for the purpose of detecting research method phrases. We used a combined 

phrase-matching/rule-based and machine-learning approach. First, we developed a large list of 

phrases (Nphrase=700) corresponding to commonly used research methods across BLS disciplines. 

These were used as a rule-based matching approach to detect research method phrases in the 

section texts. To ensure that the discovered research method phrases were not biased towards our 

list of pre-specified phrases, we selected 2,625 random method section texts with tagged phrases 

from our rule-based approach and fed them as training examples to a statistical named entity 

recognition (NER) algorithm. The objective of the NER algorithm is to utilize the rule-based 

training samples as context ‘clues’ for detecting research method phrases more generally (i.e., 

those outside the original phrase list). To perform NER on our full corpus, we used the 

convolutional neural network (CNN) algorithm provided by the open-source spaCy python 

package (38), with standard parameters for training (100 iterations, 0.2 dropout, mini-batch 

training). The trained NER model was applied to the entire corpus of methodology section texts 

to generate the final list of detected research method phrases, or entities. Of the total corpus of 

1,276,452 methodology section texts, at least one research method entity was detected in 

approximately half of the texts (Ntext=662,482). In the main text, we refer to the detected research 

method phrases from the trained NER model as method entities. The total number of unique 

method entities (before pre-preprocessing) discovered from the NER algorithm was 

Nentity=16,020. 

 

Research Method Entity Pre-processing 

 

 The NER algorithm yielded a unique list of method entities, which was represented as a 

distinct sequence of characters. Different entities (i.e., sequence of characters) can refer to the 

same research method: for example, one could refer to a T-test as ‘T-tests’, ‘T test’, ‘Ttest’, etc. 

To attempt to correct for small spelling differences such as these, each method entity string 

underwent a sequence of pre-processing steps for harmonization: 1) lowercase characters, 2) 

removal of non-alphanumeric or non-Greek characters (e.g., hyphenations, quotes, commas), 3) 
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lemmatization of words of the tokenized (i.e., separated into words) entity strings, and 4) 

converting entity strings that occur rarely (N < 5) to more commonly used spellings (within a 

max difference of two characters) using the SymSpell algorithm implemented in: 

https://github.com/wolfgarbe/symspell. As another measure of quality control, only pre-

processed entities with a minimum of 10 occurrences were included in the final method entity 

vocabulary. The final method entity vocabulary count after pre-processing was Nentity=1,218. 

Examination of journal article counts revealed that PloS One contained a disproportionate 

number of articles in the corpus (N ~ 80,000). The the next largest journal – Scientific Reports – 

contained N ~ 23,000 articles. To counteract this potential bias from the data, we only included a 

random subset of Plos One articles in the corpus (N ~23,000 – number of the next highest 

journal count). After pre-processing, the final pool of articles was Ntext= 585,362. 

 

 Before the 1) trends analysis and 2) discipline by method probability analysis, we 

manually disambiguated method entities belonging to the same class of methods. Many method 

entities in the final vocabulary were either the same method with different references (e.g., ‘cox 

regression’ and ‘cox proportional hazards regression’), or belonged to a more directly 

meaningful overarching category of analytic methods (e.g., ‘one-way analysis of variance’ and 

‘factorial analysis of variance’ – ANOVA methods, or ‘modularity’ and ‘betweenness centrality’ 

– graph theory). Thus, we manually classified each of the method entities denoting research 

methods (N = 1,218) into more parsimonious (superordinate) categories for understanding 

temporal and across-discipline trends in research method usage. We refer to these superordinate 

categories of research methods as method categories. Method entities were grouped together in a 

method category if their underlying mathematical/statistical models were similar (e.g., 

‘independent t-test’ and ‘paired t-test’ as belonging to T-test), or belonged to a commonly 

grouped class of models/metrics (e.g., ‘survival models’ or ‘structural equation models’).  The 

total number of method categories resulting from our manual classification was 126. However, 

of the 1,218 method entities in the final vocabulary, 413 method entities were unclassified due to 

ambiguity (e.g., ‘test score’). The 3) method grouping analysis (see below) used the pre-

processed method entities (N = 1,218) before the entity disambiguation step. This was because 

the method grouping analysis aimed at a data-driven grouping of frequently co-occurring 

research methods, as opposed to a categorization based on mathematical similarity or 

convention. 

 

Article Classification into Research Disciplines 

 

 One central objective of this study is to understand cross-disciplinary usage in research 

methods. This objective requires that the articles in the corpus are first classified into separable 

disciplines (e.g., biochemistry, epidemiology, psychology, etc.). A simple approach would be to 

manually classify each journal (or publication) in our corpus into a discipline, such that each 

article belonging to that journal would be classified with that discipline. While a much more 

manageable task than manually classifying each article, this approach runs into two problems: 1) 

not all articles in a domain-specific journal (e.g., PLOS Biology, Journal of Neuroscience, 

EMBO Journal) can be easily classified into one BLS discipline and 2) domain-general journals 

(e.g., PLOS ONE, Nature Communications, Science) cannot be classified into a single BLS 

discipline. Thus, we chose to use a machine-learning text classification approach to classify each 

single article into a set of pre-specified BLS disciplines. This approach allowed for more flexible 
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classification at the level of each journal article - allowing for different article classifications 

within the same journal.  

 

We chose a set of 15 BLS discipline categories for article classification: 

Biochemistry/Cellular Biology/Genetics (BIOCHEM), Clinical/Hospital Research (CLINIC), 

Computer Science/Informatics (CS), Chemistry/Material Sciences (CHEM), 

Environmental/Earth Science (ENVIRON), Evolution/Ecology (ECO), Immunology (IMMUN), 

Oncology (ONCO), Psychology (PSYCH), Neuroscience (NEURO), Public 

Health/Epidemiology (EPIDEM), Engineering/Biotechnology (ENG), Human 

Physiology/Surgery (PHYSIO), and Population Genetics (POPGENE). Importantly, we make no 

claim that this categorization represents the most optimal division of BLS disciplines – a 

potentially infinite number of categorizations could be more/less useful in certain contexts and 

overlap in research topics between the categories of any division will be prevalent. Rather, we 

make the claim that this categorization provides a useful/pragmatic division of BLS disciplines 

given the distribution of publications in our corpus. To classify articles in the corpus into the 15 

BLS disciplines, we input a bag-of-words feature-set (1-gram, 2-gram and 3-gram tokens), 

generated from the article abstract, title, and journal title, to a multinomial naïve Bayes (MNB) 

classification algorithm. We utilized a version of the MNB algorithm that corrects for unequal 

number of instances across categories (39), as was present in our corpus. To reduce the number 

of features input to the MNB algorithm and improve prediction accuracy we applied a chi-square 

feature selection approach. Specifically, we chose the top 15,000 features from the bag-of-word 

feature-set, where each feature was sorted by their chi-square statistic value with the 15 

discipline categories. The Chi-square Statistic is a measure of dependence between two 

categorical variables. The final MNB model for training involved 15,000 features, 15 discipline 

categories to be predicted, and 1,470 training samples. We assessed the model accuracy using a 

repeated K-fold cross-validation approach (#folds = 10, # of repeats = 10). The final MNB model 

achieved an accuracy of 74.9%. We found that the MNB approach performed better than other 

classification approaches (e.g., random forest decision tree classification, support vector 

machines, and logistic regression) on our dataset, in terms of classification accuracy. 

 

Discipline Similarity Analysis 

 

 To examine the similarity of research method usage between disciplines, we used a 

multidimensional scaling approach. First, we summed the counts of all method entities (N = 

1,218) per discipline.  We then computed the Euclidean distance between all pairs of z-score 

normalized count vectors (one vector per discipline). The distances were then projected to a 2-

dimensional space using a classical multidimensional scaling algorithm.  

 

 Method Trend Analysis 

 

 In order to understand temporal changes in research method usage across BLS sciences, 

we computed annual counts of method categories starting at the beginning of 2009 to the end of 

2019 (N = 11 time points). We chose an annual time-resolution for the following reasons: 1) 

some journals in our corpus published at a limited time-frequency (e.g., annually or bi-annually) 

and 2) it was reasoned that large-scale trends in research method usage within a discipline occur 

at a low-frequency (i.e., over years, as opposed to months). The annual article count in our 
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corpus increased at approximately a steady linear frequency from 2009 to 2019: 2009 - 21,440, 

2010 – 25,978, 2011 – 32,141, 2012 – 40,362, 2013 – 54,184, 2014 – 60,173, 2015 – 70,513, 

2016 – 78,966, 2017 – 83,337, 2018 – 87,361, 2019 – 64,492. To account for this increase in 

article frequency, we normalized the raw frequency counts of each method category by the total 

article counts per year – i.e., we computed the proportion of counts of each method category to 

the total article counts per year. Thus, all method category trends are displayed as proportions of 

the total number of articles per year. To estimate the statistical accuracy of the original 

proportions for a given method category and year, we obtained an estimate of the sampling 

variation by constructing 100 bootstrapped samples of all articles within a year and re-calculated 

the proportion by total article count for that method category. Standard errors were estimated 

from the standard deviation across the 100 bootstrapped proportions and displayed as shaded 

regions around the observed proportion trends. 

 

Discipline by Research Method Probability Analysis  

 

 In order to understand the unique clustering of method entities between disciplines, we 

used a chi-square contingency table approach. This approach provides a straightforward way to 

identify those categories of research methods that are used more frequently in a discipline 

relative to others. Specifically, we organized the data into a discipline by method category count 

matrix and calculated the Pearson chi-square standardized residual for each cell (i.e., discipline 

and method pair). The standardized residual is simply the Pearson residual (observed – expected 

frequency) divided by the square root of the expected frequency. The larger the positive value of 

the standardized residual, the greater than expected number of articles in a BLS discipline 

mentioning that method category (in its ‘Materials and Methods’ section). The top eight 

standardized residuals for each BLS discipline are displayed in Figure 5. 

  

Analysis of Usage Patterns of Research Method Groupings  

 

 For any given study, a variety of research methods are typically used to understand a 

dataset. We refer to groups of frequently co-occurring research methods as method groupings. 

We used a data-driven tensor decomposition approach to discover commonly used method 

groupings across BLS disciplines. The procedure was carried out as follows: 1) entity method by 

entity method co-occurrence matrices were computed by discipline, 2) co-occurrence values 

within each matrix were log-transformed to reduce the influence of frequently occurring method 

entities, 3) co-occurrence matrices for each discipline were L2 normalized to remove the effect 

of differing total article counts between disciplines, 4) the log-normalized co-occurrence 

matrices were arranged into a three-way tensor (XNND): method entity (N = 1,218) by method 

entity (N=1,218) by discipline (D=15), and 5) a non-negative PARAFAC/CANDECOMP 

decomposition was applied to the method entity co-occurrence by discipline tensor. The 

CANDECOMP decomposition factorizes a given tensor into a linear combination of R rank one 

tensors. In the present case, the 3-way entity co-occurrence by discipline tensor can be 

decomposed into a sum of R rank-one tensors, referred to as components, as follows (the sum of 

outer products of three vectors): 

𝑋 =  ∑ 𝑎𝑟 ∘  𝑏𝑟 ∘  𝑐𝑟

𝑅

𝑟=1
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For a given component, the elements of 𝑎 and 𝑏 correspond to the weights of each method entity 

on the component (in the case of a symmetric co-occurrence matrix, 𝑎 =  𝑏), and the elements of 

𝑐 correspond to the weights of each discipline on the component. As our entity co-occurrence 

matrices represent (log-normalized) counts, we add the additional constraint that the tensor is 

factorized as the additive linear sum of non-negative components. This has the benefit of 

enforcing sparsity on the components, and thus, increases the interpretability of the solution. 

There are no universally agreed upon criteria for the choice of R, the number of components. 

Analogous to some matrix factorization approaches (e.g., non-negative matrix factorization), the 

more components estimated, the finer details produced in the resulting solution. However, too 

many components estimated may result in redundancy, and/or modeling of noise. We chose a 

solution of 20 components, as this solution produced the most interpretable solution. Solutions 

with components around this number yielded similar solutions. 
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