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Abstract

The mechanism underlying the emergence of seizures is one of the most important
unresolved issues in epilepsy research. In this paper, we study how perturbations,
exogenous of endogenous, may promote or delay seizure emergence. To this aim, due to
the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we
perform a theoretical analysis of the phase response of a generic relaxation oscillator. As
relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive
that perturbations of the non-seizing state with a suitable direction and amplitude may
cause an immediate transition to seizure. By contrast, and perhaps less intuitively,
smaller amplitude perturbations have been found to delay the spontaneous seizure
initiation. By studying the isochrons of relaxation oscillators, we show that this is a
generic phenomenon, with the size of such delay depending on the slow flow component.
Therefore, depending on perturbation amplitudes, frequency and timing, a train of
perturbations causes an occurrence increase, decrease or complete suppression of seizures.
This dependence lends itself to analysis and mechanistic understanding through methods
outlined in this paper. We illustrate this methodology by computing the isochrons, phase
response curves and the response to perturbations in several epileptic models possessing
different slow vector fields. While our theoretical results are applicable to any planar
relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms
of triggering and abating seizures, thus suggesting stimulation strategies with effects
ranging from mere delaying to full suppression of seizures.

Author summary

Despite its simplicity, the modelling of epileptic dynamics as a slow-fast transition between
low and high activity states mediated by some slow feedback variable is a relatively novel
albeit fruitful approach. This study is the first, to our knowledge, characterizing the
response of such slow-fast models of epileptic brain to perturbations by computing its
isochrons. Besides its numerical computation, we theoretically determine which factors
shape the geometry of isochrons for planar slow-fast oscillators. As a consequence, we
introduce a theoretical approach providing a clear understanding of the response of
perturbations of slow-fast oscillators. Within the epilepsy context, this elucidates the
origin of the contradictory role of interictal epileptiform discharges in the transition
to seizure, manifested by both pro-convulsive and anti-convulsive effect depending on
the amplitude, frequency and timing. More generally, this paper provides theoretical
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framework highlighting the role of the of the slow flow component on the response
to perturbations in relaxation oscillators, pointing to the general phenomena in such
slow-fast oscillators ubiquitous in biological systems.

Introduction 1

The dynamics underlying complex processes usually involve many different time scales 2

due to multiple constituents and their diverse interactions. When modelling such systems, 3

the general distinction of at least two time-scales (fast and slow) is a useful and common 4

conceptualization. Many examples of slow-fast dynamics can be found in cell modelling, 5

ecosystems, climate or chemical reactions [1–4] and more recently in epilepsy [5], of 6

particular interest for this paper. 7

Epilepsy is a chronic neurological disorder characterized by a marked shift in brain 8

dynamics caused by an excessively active and synchronized neuronal population [6, 7]. 9

Although several dynamical pathways have been proposed to explain the transition to 10

seizure [8–10], in general, epilepsy is modelled as a system having two stable states: one 11

corresponding to the low activity state and the other corresponding to high activity 12

(that is to seizure) [11]. Besides external perturbations or noise, transitions between 13

these two stable states can also be modelled considering the existence of a parameter 14

evolving on some slow time scale. Whereas on the fast time scale the system can be seen 15

as a bistable system, the variations of the slow parameter lead to bifurcations providing 16

transitions between states [12]. 17

During the last decade, there has been an increasing number of models approaching 18

epilepsy through slow-fast time scales [13–16]. Recently, the slow-fast dynamics has 19

been proposed to explain the role of the interictal epileptiform discharges (IEDs) in the 20

generation of seizures [17]. The IEDs can be thought of as endogenous inputs affecting 21

the target tissue. However, the effect of IEDs on the tissue activity is quite controversial: 22

where some studies show that IEDs can prevent seizures [18,19], other studies claim their 23

seizure facilitating role [20,21]. In the above mentioned work [17], the amplitude and 24

frequency dependence of the effect of perturbations in a simple epilepsy model switching 25

between seizure and non-seizure states due to a slow feedback variable, provided a 26

conceptual reconciliation of the pro-convulsive and anti-convulsive effect of IEDs. 27

In this paper we elucidate this phenomena in detail and provide theoretical foundations 28

of this apparent perturbation effect paradox by studying the phase response of a generic 29

relaxation oscillator. We perform this theoretical approach by means of the phase 30

reduction [22]. In addition to simplifying the dynamics, the usage of phase reduction 31

techniques allows the computation of its isochrons and phase response curves (PRCs), 32

which clarify the dependence of the effect of perturbations of the oscillator on the 33

perturbation timing, and also allows the study of possible synchronization regimes [23]. 34

By studying a generic slow-fast system displaying relaxation oscillations we show, 35

analytically, how the slow component of the vector field shapes their isochrons and 36

PRCs, thus ultimately determining its response to perturbations. Therefore, our results, 37

clarify the multifaceted effect of IEDs in epilepsy, and can be straightforwardly applied 38

to understand the temporal dependency of perturbations over any model belonging to 39

the wide family of models relying on slow-fast dynamics. 40

The paper is structured as follows. First, we present a general introduction to 41

relaxation oscillators introducing the basic notation which will be used throughout the 42

paper. Then, we describe the phenomenological epilepsy model and show how, through 43

its phase analysis, we can unveil the mechanism integrating the contradictory role of IEDs 44

in epilepsy. Next, we show, via a complete theoretical analysis, which factors determine 45

the geometry of isochrons of planar relaxation oscillators and study the response of 46

perturbations of relaxation oscillators. We support our theoretical findings studying the 47
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response of perturbations for a different reduced epileptor model and discuss our results 48

in the context of epilepsy. We conclude the paper by explaining the computational 49

techniques in the Methods section. 50

Results 51

Basic introduction to relaxation oscillations 52

The main aim of this Section is to introduce the reader to the basics of slow-fast systems 53

and in particular to relaxation oscillations. For further details we refer the reader 54

to [24–27]. We will consider systems in this form 55

ẋ = f(x, y),

ẏ = εg(x, y), 0 ≤ ε << 1
(1)

the flow of which will be denoted as φt(x, y). Notice that ˙ indicates the derivative 56

with respect to the time, t. As 0 ≤ ε << 1, the variables x and y evolve on different 57

time-scales, namely the fast time, t, and the slow time τ = εt. Next, we use this 58

distinction between time-scales to illustrate how a system in the form (1) with the extra 59

assumption of f(x, y) = 0 being a cubic manifold, generates a limit cycle (denoted as Γε) 60

showing relaxation oscillations [28] (see also Fig. 1). Consider a point p = (x, y). First, 61

since ε << 1, we can take the limit ε→ 0 and approximate the dynamics of system (1) 62

by the layer dynamics 63

ẋ = f(x, y),

ẏ = 0.
(2)

The trajectory of p will initially (approximately) follow the layer dynamics in (2) so it 64

will quickly converge to its set of equilibrium points, defined as the slow manifold S 65

S = {(x, y) ∈ R2 | f(x, y) = 0}, (3)

which in the limit ε→ 0 corresponds to the nullcline (ẋ = 0) of the fast variable. As we 66

considered the slow manifold S in (3) to be cubic, that is S-shaped, it will have two fold 67

points (given by ∂xf(x, y) = 0), which we denote as Sf+,S
f
− respectively, separating the 68

repelling and attracting branches, denoted as Sr and Sa, respectively 69

Sr = {(x, y) ∈ S | ∂xf(x, y) > 0},
Sa = {(x, y) ∈ S | ∂xf(x, y) < 0}.

(4)

Note that the attracting part of the slow manifold Sa in fact consists of a top and 70

bottom branch Sa±. Once the system has approached the slow manifold, its dynamics 71

are given by the slow variable 72

0 = f(x, y),

y′ = g(x, y),
(5)

where ′ denotes the derivative with respect to the slow time τ = εt. Furthermore, for 73

points in S satisfying ∂xf(x, y) 6= 0 we know from the implicit function theorem that we 74

can write a function x = m(y) from f(x, y) = 0, so we can express (5) as 75

y′ = g(m(y), y). (6)

Therefore, once the trajectory has converged to the slow manifold, S, the y variable 76

evolves following the dynamics in (6), while the x variable is given by x = m(y). So 77

trajectories slowly move along S until reaching the fold points Sf±. There, they become 78

November 19, 2020 3/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.02.407965doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.407965
http://creativecommons.org/licenses/by/4.0/


governed by the fast dynamics, and jump to the other stable branch. Indeed, as Fig. 1 79

shows, this is the mechanism underlying the generation of a stable periodic orbit Γε 80

showing relaxation oscillations, that is, the motion over Γε consists of the alternation of 81

long intervals of quasi-static behaviour (corresponding to the stable branches Sa± of S) 82

and almost instantaneous transitions between the branches [26]. 83

Fig 1. Phase space for relaxation oscillators. The slow manifold, S, is a S-shaped
curve having two stable branches Sa± (solid red line) and one repelling Sr (dashed red
line) (see Eq. (4)). Stable and unstable branches of S are separated by the fold points

Sf±. A given point, p, (see A) will quickly converge to the attracting branch of the slow
manifold Sa− (see B). Then, it evolves along Sa− following (6) until reaching the fold

point Sf− (see C) where it traverses fast to the other branch Sa+ (see D). Then, following

again the slow dynamics, the trajectory approaches Sf+ (see E) where it goes back to
Sa− (see F). Therefore, the system (1) in the singular limit (ε → 0) admits a singular
periodic orbit Γε (in blue) generating relaxation oscillations.

Phenomenological Epilepsy model 84

As we discussed in the introduction, the mechanism of relaxation oscillations (see Fig. 1) 85

has been recently used in [17] to explain the apparent contradictory role of IEDs in 86

epilepsy. In this work, the authors propose the following simple phenomenological 87

epilepsy model, further referred to simply as the phenomenor : 88

v̇ = −τx(v3 + v2 − a),

ȧ = τaf(h− v),
(7)

where v and a represent the firing rate and the excitability of a neuronal population, 89

respectively. The dynamical changes in the excitability depend on the difference between 90

v and h through the function f(x) = (tanh(cx) − a0), that is, an hyperbolic tangent 91

whose slope is given by c. When v values are below h, the excitability increases, whereas 92

when v values exceed h excitability decreases. Hence, h can be thought of as a threshold. 93

For this study, h = hma− hn. We keep fixed the particular set of parameters 94

Ppheno = {τx = 1, τa = 0.001, c = 1000, hn = 0.86, hm = 1.6, a0 = 0.5}, (8)

for which the system (7) displays a limit cycle denoted as Γpheno with a period of 95

T ≈ 508.42; although the qualitative behaviour of the model stays the same for a 96

wide range of parameters. Indeed, as τa << τx and the fast nullcline v̇ = 0 – which 97
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corresponds with the slow manifold S = 0 in (3) – describes a cubic curve, dynamics 98

over Γpheno consists of a periodic switching between the states of low and high activity 99

within relaxation oscillations. 100

The following Fig. 2 illustrates the mechanism proposed in [17] by which the phe- 101

nomenor (7) reconciles the antagonistic role of IEDs. Consider the IEDs as a random 102

train of pulses whose inter pulse interval distribution, ts, follows a normal distribution 103

with mean value, Ts, and standard deviation, σ: ts ∼ N (Ts, σ
2). Whether or not a 104

given perturbation causes an immediate transition to seizure depends on whether the 105

perturbation manages to make the trajectory cross from the lower branch above the 106

middle branch of the v-nullcline. If this happens, the trajectory rapidly converges to 107

the upper branch, i.e. transitioning to the seizure regime. However, the response of 108

the system dramatically changes depending on the amplitude, A, and mean inter pulse 109

interval, Ts, of IEDs (see panels A and B in Fig. 2). 110

The effect of a single pulse applied to the system, while on the lower branch, is either 111

to keep the trajectory on the lower branch or to cause a transition to the upper branch. 112

Therefore, the total effect of a train of pulses depends on the proportion of pulses causing 113

transitions. Indeed, this dependence can be seen by plotting the change in the seizure 114

rate ∆ as a function of both the amplitude, A, and the mean inter-perturbation interval, 115

Ts (Panel C). 116

Fig 2. The antagonistic effect of IEDs on the transition to seizure Panels A
and B show, in red, the v-nullcline whose stable branches correspond to the stable low
and high activity states of the system. The unstable part of the v-nullcline (dashed
red line) separates the basin of attraction of both branches. Whether the pulses make
the system cross the unstable part of the v-nullcline determines the opposite nature
of IEDs. For a random train with amplitude A = 0.25 and ts ∼ N (50, 32) the system
goes to seizure (panel A). By contrast, for a random train with amplitude A = 0.5 and
ts ∼ N (30, 22) the system avoids the seizure state (panel B). By plotting the change in
seizure rate ∆ as a function of both the amplitude,A, and the mean inter-perturbation
interval, Ts (panel C). We can distinguish between pro-convulsive regimes (yellow and
white areas) in which the transition is potentiated, and preventive regimes (red and
black areas) in which the transition is delayed or completely suppressed.

Phase Dynamics 117

Oscillations correspond to attracting limit cycles whose dynamics can be described by
a single variable: the phase. As we now expose, the study of the dynamics on a limit
cycle by means of the phase variable provides a more intuitive and simplified view of its
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synchronization properties. Consider an autonomous system of ODEs

ż = F (z), z ∈ Rd, d ≥ 2, (9)

whose flow is denoted by φt(z). Assume that F is an analytic vector field and that 118

system (9) has a T -periodic hyperbolic attracting limit cycle, Γ. This T -periodic limit 119

cycle, Γ, can be parametrized by the phase variable θ = t/T as 120

γ : T := R/Z→ Rd

θ 7→ γ(θ),
(10)

so that it has period 1, that is, γ(θ) = γ(θ + 1). While originally defined only on the
limit cycle, the phase can be extended to the whole basin of attraction of Γ (which
we will denote by W). Indeed, as we consider attracting limit cycles, any point in W
converges towards Γ as time tends to infinity. Therefore, we will say that two points p
and q ∈ W have the same asymptotic phase if

lim
t→∞

|φt(q)− φt(p)| = 0. (11)

We further define the isochron Iθ as the set of points having the same asymptotic phase 121

θ [29], that is, 122

Iθ = {z ∈ W | |φt(z)− φt(γ(θ))| = |φt(z)− γ
(
θ +

t

T

)
| → 0 as t→∞}. (12)

Let us now consider the effect of an instantaneous delta-like pulse over the T -periodic 123

limit cycle Γ, 124

p(z, t;A) = δ(t− ts). (13)

It is clear that the perturbation will just change the trajectory from one point z to
another point z̄. As we illustrate in Fig. 3, since the isochrons foliate the whole basin
of attraction W of Γ, we can say that the perturbation moved the trajectory from one
isochron Iθ to another isochron Iθ̄, thus causing a phase shift ∆θ = θ̄ − θ. However,
the phase shift will depend on the amplitude of the pulse and on the phase at which
it was applied. This dependency is captured by the Phase Response Curves (PRCs).
They are calculated by applying the same pulse to the limit cycle at different phases
and registering how much the phase is advanced (or delayed). Let z = γ(θ) be a point
on the limit cycle Γ. If we consider an instantaneous pulse as (13), it is clear that it will
move z to z̄ = z + ∆z. Thus, the PRC is defined as

PRC(A, θ) = θ̄ − θ. (14)

As Fig. 3 panel A shows, the isochrons Iθ of Γpheno portrait the distribution of phases 125

along the basin of attraction W. Whereas the isochrons for the upper branch of the 126

cycle are almost vertical, the isochrons for the lower branch of the cycle show a more 127

interesting geometry: they start vertical until crossing the a-nullcline, when they all 128

bend. The shape of the PRCs as the amplitude, A, of the pulse increases is determined 129

by this particular geometry of the isochrons. Since there is an almost constant distance 130

of 0.1 between the lower branch of Γpheno and the slow nullcline ȧ = 0, we can distinguish 131

between two cases. For perturbations of A < 0.1, the perturbed trajectories only reach 132

the part of isochrons consisting in almost vertical lines. Therefore, the corresponding 133

phase shift ∆θ for perturbations on the upper and lower branches of Γpheno is almost 134

negligible. Hence, the PRC for these phases will be close to zero. Indeed, only in the 135

vicinity of the jumping points the PRCs will show larger values (see zoom window in 136

Fig. 3C). 137
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Fig 3. Isochrons and PRCs
for the phenomenor. For
the phenomenor (7) with the
set of parameters Ppheno in
(8) we show: (A) Limit cy-
cle Γpheno and 16 equispaced
isochrons Iθ (left), the v and
a nullclines (dashed black and
green curves, respectively) and
the fixed point, P , at their in-
tersection. As panel (A) shows,
since the isochrons foliate the
whole phase space, a pulse am-
plitude, A, displaces the tra-
jectory from an isochron Iθ to
another isochron Iθ̄ thus caus-
ing a phase shift ∆θ = θ̄−θ be-
tween the perturbed and unper-
turbed trajectory (see panel B).
By applying the same pulses
for all the points (phases) at
the cycle and computing its re-
spective phase shift, one com-
putes the PRCs. The panel (C)
shows the PRCs for the phe-
nomenor for positive voltage
pulses of different amplitudes.

By contrast, for perturbations of A > 0.1, the change on the geometry of isochrons for 138

points on the lower branch remarkably changes the shape of PRCs. Perturbations on the 139

lower branch will have a delaying effect unless they bring trajectories above the middle 140

branch of the v-nullcline – which corresponds with Sr in (4) – so they advance phase. 141

The delaying or advancing effect of a given pulse of amplitude, A, is delimited across a 142

discontinuity for its corresponding PRC at the exact phase θ∗ for which γ(θ∗) +A ∈ Sr. 143

The isochrons and PRCs computed for the phenomenor provide insight about how the 144

combination of both the amplitude, A, and the mean inter pulse interval, Ts, generate 145

the different seizure propensity regimes in Fig. 2C. As isochrons in Fig. 3 show, positive 146

voltage pulses of amplitude, A, at a point, z = γ(θ), on the lower branch cause a delay 147

∆θ < 0. However, for large enough mean inter-pulse intervals Ts, although perturbations 148

delay the system, they are not frequent enough to stop it from eventually transitioning 149

to seizure (see Fig. 2 panels AB). Moreover, larger pulses are able to cause the trajectory 150

to cross the v-nullcline earlier through the cycle (way before the fold point). Thus, the 151

larger the amplitude of the pulse, the more common are these transitions. 152

By contrast, for small enough inter-pulse intervals, Ts,the transition to seizure can 153

be delayed or even stopped across the accumulation of the delays caused by each single 154

pulse. Thus we can conclude that the mechanism underlying the description of the 155

phenomenor of the role of IEDs, relies on the one hand on its cubic v-nullcline structure, 156

allowing for relaxation oscillations and on the other hand on the prevalence of delays for 157
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positive perturbations at points on the lower branch not crossing the middle branch of 158

the v-nullcline. 159

Phase analysis of relaxation oscillators 160

As explained in the previous Section, the accurate description of the role of IEDs provided 161

by the phenomenor is based on the prevalence of delays for perturbations in the ’non- 162

epileptic’ state, i.e. on the bottom branch of the cycle Γpheno. Since this determining 163

feature of the model - the prevalence of delays - is based on the bending in a particular 164

direction of the isochrons, we aim to identify which elements in the model are key to 165

cause this particular isochron geometry. As we show next, we perform this identification 166

by taking advantage of the dynamical properties underlying any relaxation oscillator. 167

The O(1) geometry of isochrons Iθ 168

Next, we discuss some generalities shaping the isochrons of planar relaxation oscillators. 169

To begin, it is worth recalling that if two points z̄ ∈ W and z = γ(θ) belong to the same 170

isochron, Iθ, they have to meet at the same point of the cycle after a large enough time, 171

t (see Eq. 12). For this reason, the determination of the shape of isochrons requires to 172

study the converging dynamics towards Γε which we recall that will consist of trajectories 173

covering O(1) distances in the fast direction and O(ε) distances in the slow direction. 174

Since we aim to study the isochrons for relaxation oscillators, we can take advantage 175

of the time-scale separation to be more precise concerning this convergence. Consider 176

a point z̄ ∈ W. In a first approximation one can assume that the convergence of z̄ is 177

achieved simply following the layer dynamics (2). If that was the case, since the layer 178

dynamics consider the variable y as frozen, the isochrons will always be lines of y constant 179

that we denote as Fy. However, for correctly determining the shape of isochrons, we 180

have to take into account that neither the convergence towards the limit cycle Γε is 181

instantaneous nor the dynamics on y during convergence are negligible. As a result, the 182

isochrons are expected to be O(ε) corrections of Fy. Indeed, it is worth to note that 183

generalities determining the sign of those O(ε) corrections will explain the prevalence of 184

delaying (or advancing) effects of delta-like pulses in the fast direction. 185

Regarding the time needed for solutions to converge to the limit cycle, although the 186

convergence towards a normally hyperbolic attracting limit cycle is ensured [30], for 187

the case of slow-fast dynamics we can give even more details about this convergence 188

by means of Tihonov’s theorem [31] (see also [32, 33]). Roughly speaking, Tihonov’s 189

theorem states that after a time th = O(ε| log ε|), all orbits starting in a neighbourhood 190

O(1) of the slow manifold S will have reached a neighbourhood of O(ε) of S. 191

Once we know the time, th = O(ε| log ε|), needed to converge, we can compute the 192

motion of the converging point z̄ ∈ W in the slow direction. The travelled distance in 193

the y direction by z̄ to approach a O(ε) neighbourhood of Γε is given by 194

∆ȳ = yth − ȳ = ε

∫ th

0

g(φt(x̄, ȳ))dt = ε

∫ th

0

g(ϕt(x̄), ȳ)dt+O(ε2), (15)

where ϕt(x̄) refers to the solution of the layer system (2). During the time, th, needed 195

to converge, the point z = γ(θ) on the limit cycle has travelled a distance ∆y given by 196

∆y = yth − y = ε

∫ th

0

g(φt(x, y))dt = ε

∫ th

0

g(m(γy(t/T )), γy(t/T ))dt, (16)

where in the second equality we utilize the fact that for points on the slow manifold we 197

can use Eq. (6). 198
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Now, let us illustrate how the difference between the distances travelled by the base 199

point and the converging point, ∆y −∆ȳ, will determine the sign of the O(ε) correction 200

for isochron Iθ at the point z̄. If we write the expression for ∆y −∆ȳ: 201

∆y −∆ȳ = ε

∫ th

0

g(m(γy(t/T )), γy(t/T ))dt− ε
∫ th

0

g(ϕt(x̄), ȳ)dt = O(ε), (17)

we can see that the difference ∆y −∆ȳ is directly determined by the difference between 202

the speeds in the slow direction for the base z and converging z̄ points during the time 203

th = O(ε| log ε|) needed for approaching Γε. Basically, since both points z and z̄ have to 204

meet at the same point after the same time, the one travelling slower, needs to travel 205

less distance. The difference, ∆y−∆ȳ, corresponds exactly to the O(ε) correction to Fy 206

(see Fig. 4).

Fig 4. The slow vector field shapes the isochrons for relaxation oscillators.
In the limit ε→ 0 isochrons are lines of y constant denoted by Fy. However, since ε 6= 0
but small, the isochrons are O(ε) perturbations of Fy. As we show in the right panel, the
sign of the O(ε) corrections depends on the difference of speeds between the converging
point z̄ and the base point z during the convergence time th. In this case, to approach
Γε, z̄ has to cross layers of x whose values are smaller than the ones surrounding Γε. For
this reason z̄ travels slower than z. Since z̄ and z have to meet after a time th at the
same point on Γε, but z̄ travels slower than z, then z̄ needs to travel a short distance.
This determines the sign of the O(ε) correction. Furthermore, if the slow vector field is
monotonous along the fast direction, the farther the point z̄, the slower (faster) it travels,
so the slope of the isochrons will have the same sign for all the points z̄ ∈ Iθ satisfying
fast convergence, thus determining the effect of perturbations in the fast direction.

207

However, at the moment we have a local argument just justifying the shape of 208

isochrons for a given point z̄ ∈ W. Nevertheless, we can globalize this argument by 209

assuming some conditions for g(x, y). In particular, as we show now, if the slow vector 210

field g(x, y) is monotonous in the fast direction, then the slope of the isochrons will have 211

the same sign for all the points z̄ ∈ Iθ satisfying fast convergence. 212

The asymptotic phase defined in (11) allows to assign a phase to any point z ∈ W, 213

by defining the following function Θ(z) 214

Θ : Ω ⊂ R2 → T = [0, 1),

x 7→ Θ(z) = θ if z ∈ Iθ,
(18)

whose level curves indeed correspond to the isochrons. Let us assume we can invert 215
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Θ(x, y), so we can define the following function 216

Iθ(x) : R→ R,
x 7→ Iθ(x) = y for Θ(x, y) = θ = const.

(19)

The slope of isochron Iθ, which we denote by Kθ, is then given by 217

Kθ = ∂x Iθ(x), (20)

as we also have 218

Iθ(x̄) = ȳ = ∆y −∆ȳ + y, (21)

we can write the following expression for the slope Kθ 219

Kθ = ∂xIθ(x) = ∂x (∆y −∆ȳ) . (22)

As the term ∆y −∆ȳ can be written in integral form (see Eq. (17)), the slope Kθ, can 220

be evaluated as the derivative of the difference of two sums (integrals) 221

Kθ = ∂x

(
ε

∫ th

0

g(m(γy(t/T )), γy(t/T ))dt− ε
∫ th

0

g(ϕt(x̄), ȳ)dt

)
. (23)

As we see, assuming that the vector field g(x, y) is strictly increasing (decreasing) function 222

with x it is easy to discuss the sign of Kθ. If the trajectory followed by the approaching 223

point, satisfies g(x̄(t0), ȳ(t0)) < g(x̄(t0 + δt), ȳ(t0 + δt)) for 0 < δt ≤ th, then, the second 224

integral will be smaller than the first one. Since this difference will increase with x̄, then 225

Kθ > 0 ∀ x̄ > γx(t/T ). Furthermore, the larger the changes in g(x, y), the larger the 226

slope. We remark that in the case g(x̄(t0), ȳ(t0)) > g(x̄(t0 + δt), ȳ(t0 + δt)), we can argue 227

identically to obtain Kθ < 0 ∀ x̄ > γx(t/T ). 228

In conclusion, we have illustrated the relationship between geometry of isochrons for 229

relaxation oscillations and the slow vector field. First, we have shown how the tilt of the 230

isochron Iθ at a given point z̄ depends on the difference of speeds between z̄ and the 231

base point z during convergence. Furthermore, we showed that if the monotonicity of 232

the vector field does not change, the tilt of the isochrons does not change sign as well. 233

We can illustrate these theoretical results by revisiting the isochrons for the phe- 234

nomenor. As Fig. 5 shows, the parameters Ppheno in (8) were chosen so that the tanh in 235

(7) acts almost as a step function. As a result, the speed in the slow direction dramatically 236

changes when crossing the slow nullcline. Since there are almost no differences between 237

speeds for points below the slow nullcline, the isochrons are almost vertical. By contrast, 238

this large difference of speeds once the slow nullcline is crossed, results in a remarkable 239

bending of the isochrons for points on the lower branch of Γpheno. 240

PRCs 241

Since the shape of PRCs is determined by the geometry of isochrons, next we discuss 242

the extensions of our previous analysis of isochrons to PRCs. First, we can consider 243

the limit ε→ 0. In this case the isochrons would be vertical lines. Therefore, for points 244

in the lower branch, unless the pulse brings trajectories above the mid-branch Sr of 245

the slow nullcline, its corresponding phase shift will be zero. For those points going to 246

the other branch, the phase shift will be proportional to the skipped segment of the 247

cycle, thus generating the characteristic shape of PRCs for relaxation oscillators [34] (see 248

black curve in Fig. 6 right). However, our knowledge of the geometry of isochrons can 249

extend this result. Without loss of generality we discuss the case g′x(x, y) < 0. In this 250

case, we know that perturbations acting over points on the lower branch not crossing 251

Sr will delay the system (see Fig. 4). As a consequence, the PRC will have negative 252
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Fig 5. Relationship between the curvature of isochrons and the values for
the slow vector field. For the phenomenological epilepsy model (7) with the set of
parameters Ppheno in (8) the figure shows: (A) Limit cycle Γpheno and its isochrons Iθ
(left). (B) Values of the slow vector field (corresponding to ȧ in (7)) for points z ∈ W.

values for all the phases θ in the lower branch such that θ < θ∗ where γ(θ∗) +A ∈ Sr. 253

Although the particular shape of the delaying segment of the PRC will depend on the 254

particular slow vector field chosen, in general, we expect the crossing of the slow and 255

fast nucllines to generate a single unstable fixed point (denoted by P ) inside Γε. It is 256

worth to mention that since isochrons will approach P through Sr [35], we expect the 257

bending of a particular isochron to increase as it approaches Sr. As a consequence, we 258

expect the maximal delay values of a PRC to concentrate near the jumping phase, θ∗. 259

Finally, if we consider perturbations over points in the upper branch, arguing similarly 260

as in Fig. 4, we can conclude that the effect of pulses of positive amplitude is to advance 261

trajectories.

Fig 6. PRC of pulses A > 0 for relaxation oscillators. Next we sketch the PRCs
for pulses of amplitude A > 0 for the case g′x(x, y) < 0. For phases θ < θ∗, where θ∗

satisfies γ(θ∗) + A ∈ Sr, due to the slope of isochrons the effect of the pulses will be
to delay trajectories. Since isochrons approach the unstable point P through Sr, the
near the phase θ to θ∗, the larger the bending of the isochrons and thus the larger the
corresponding delay value. For phases θ∗ < θ < θf−, there is an advancement proportional
to the fraction of cycle skipped. This prevalence of advancements is also seen for points
in the upper branch. For phases in a neighbourhood of the fold point θf−, we expect a
transition between advancement and delays not drawn because our analysis is only valid
for normally hyperbolic points.

262
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Phase locking 263

So far we have theoretically identified the factors shaping the isochrons for relaxation 264

oscillators. Furthermore, we have discussed how the particular geometry of the isochrons 265

for relaxation oscillators is reflected in the corresponding PRCs. Next, we aim to continue 266

extending our theoretical approach to determine generalities underlying the mechanism 267

by which external perturbations suppress the original oscillatory dynamics. We recall 268

that, in the particular case of epilepsy, we are studying the suppression of the original 269

oscillation through the accumulation of delays which causes the system to remain in the 270

lower activity state and thus to prevent the transition to seizure. 271

A delta-like pulse of amplitude, A, reaching the cycle at a phase, θ, will map it to a 272

new phase fA(θ) = θnew, where the map fA(θ) writes as 273

fA(θ) = θ + PRC(A, θ). (24)

If the perturbation was a train of periodic pulses with an inter stimulus interval given 274

by Ts, we can describe the phase dynamics of the system by 275

θi+1 = fA(θi) +
Ts
T

= θi + PRC(A, θi) +
Ts
T
, (25)

where θ0 = θ. The fixed points of the above map (25), which are given by 276

PRC(θ,A) = −Ts
T
, (26)

correspond to the phase locking states of the system. 277

As Eq. (26) shows, the PRC determines the asymptotic state of the perturbed 278

dynamics. However, not all the phase locking states predicted by Eq. (26) correspond 279

to the particular locking mechanism we are looking for. For example, if we consider 280

very small delay values ∆θ → 0−, it is clear that values of Ts ≈ T will correspond to 281

a phase locking state of the system which does not prevent the transition to seizure. 282

The particular mechanism we are looking for is depicted in Fig. 7. Consider a pulse 283

displacing a point z = γ(θ) to z̄. If we denote by th the time that z̄ needs to approach 284

Γε, we need φth(z̄) = γ(θ̄) with θ̄ < θ. That is, we need the perturbed trajectory to 285

reach the cycle at a previous phase. Assuming fast convergence, we can write 286

γy(θ̄)− γy(θ) = ε

∫ th

0

g(z̄)dt. (27)

Since we need θ̄ < θ as a necessary condition for phase locking, then, if we assume without 287

loss of generality that the motion over Γε is counter-clockwise, the above integral has to 288

be negative. For that to happen, the perturbation has to necessarily send trajectories 289

above the slow nullcline. Indeed, if we denote the by t∗ the time needed to cross the 290

slow nullcline, then, the particular class of locking we are interested in has to satisfy 291

γy(θ̄)− γy(θ) = ε

∫ th

0

g(z̄)dt = ε

∫ t∗

0

g(φt(z̄))dt+ ε

∫ th

t∗
g(φ(t∗+t)(z̄))dt < 0. (28)

Since the first integral is negative and the second is positive, above Eq. (28) shows that 292

the appearance of phase locking requires the perturbed trajectories to be sent to a point 293

such that the distance travelled during convergence in the negative direction overcomes 294

the distance travelled in the positive direction, so the total displacement is negative. 295

Then there is a time Ts = −T∆θ > 0 (with ∆θ = θ̄ − θ) for which the next pulse will 296

kick the system at the same initial point z = γ(θ) (see Fig. 7). The repetition of this 297

process keeps the trajectory on the lower branch, and prevents the seizure emergence 298
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by suppressing the original oscillatory dynamics. Importantly, we highlight the strong 299

influence of the slow vector field on the appearance of this locking mechanism. Indeed, 300

the smaller the distance between the slow nullcline and the lower branch, the smaller 301

the amplitude of perturbations needed for locking the system.

Fig 7. Mechanism preventing the
emergence of seizures. To suppress
the original oscillation and keep the sys-
tem in the lower branch of Γε the am-
plitude A of the pulse has to be large
enough so besides causing a delay ∆θ, it
displaces trajectories above enough the
slow-nullcline so the distance travelled
in the negative direction overcomes the
distance travelled in the positive direc-
tion, thus causing a negative net dis-
placement. The locking appears by re-
peating this mechanism after Ts = T∆θ
intervals so the new pulse always hits
the system at the same initial point.

302

We can check the validity of this result by revisiting the results for the phenomenor. 303

Fig. 8A shows the relative seizure rate increase ∆ due to a train of random perturbations 304

for a Ts periodic train of pulses. We can see how the locking preventing the transition to 305

seizure starts for values Ā ≈ 0.1, which is the approximate distance between the lower 306

branch and the slow-nullcline. Furthermore, for a fixed amplitude A > Ā, if we consider 307

the maximum delay value (denoted by ∆θ∗) of the corresponding PRC and compute the 308

inter pulse interval value given by T ∗s = T∆θ∗, it is clear that for inter-pulse intervals 309

Ts > T ∗s , the system is likely to jump because the delays are not large enough to stop 310

the system. Therefore, we expect the pair (A, T ∗s ) to delimit the locking regime. By 311

computing the PRCs for all the amplitude values satisfying A > Ā, we can calculate the 312

corresponding T ∗s values and thus generate a curve in the (A, Ts) space – which indeed 313

corresponds with the bifurcation curve of the map (25) – showing a nice agreement with 314

the boundaries of the locking area (see purple line in Fig. 8A). 315

Results for the random case in Fig. 8B can be interpreted by means of the periodic 316

case. The random dynamics can be computed as well by using a similar map to (25) but 317

substituting Ts for ts values in the distribution ts ∼ N (Ts, σ
2). In this case, the system 318

does not ’lock’ in the same way the deterministic system does, that is trough fixed points 319

in Eq. (26). However, one might try to interpret random dynamics by means of the 320

periodic case. By computing the maximum delay value ∆θ∗ of the PRC, we calculate 321

the characteristic value of T ∗s , corresponding to the phase θ∗ such that perturbations 322

Ts > T ∗s will jump. Therefore, the robustness of the deterministic locking states to 323

noise, will be determined by whether T ∗s is or not into the width σ of the inter pulse 324

distribution. 325

Epileptor model 326

One of the most known and widely accepted models in epilepsy is the epileptor model [13]. 327

This model consists of 5 differential equations (4 fast and 1 slow) so it can display a 328

wide range of dynamical regimes explaining many different pathways to seizure [36]. In 329

order to show the generality of the results derived from our theoretical approach and to 330

demonstrate their consequences in models of epilepsy, we will study the following 2D 331
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Fig 8. Response of perturbations for the phenomenor. We plot the change in the
seizure rate ∆ for a random train of pulses following a Gaussian distribution of mean time
Ts and standard deviation σ denoted as N (Ts, σ

2). Panels (A) and (B) correspond to the
deterministic periodic case N (Ts, 0) and to the random case N (Ts, 0.05Ts), respectively.
For panel (A) we plot a purple solid line corresponding to the bifurcation of the phase
map (25). We plot the same curve as a dashed purple curve in panel (B) illustrating the
resilience of the deterministic phase-locked states to noise.

reduction of the epileptor model [37]: 332

v̇ = 1 + Iapp − v3 − 2v2 − z,

ż =
τz
s

(c(v − v0) + z),
(29)

where v and z represent the firing rate and the permittivity of a neuronal population, 333

respectively. For this model we will work with the sets of parameters P+,P0 and P− in 334

Table 1.

τz x0 Iapp c s Lim. Cycle Period

P+ 1/2857 -2 3.1 -4 -1 Γ+ T+ ≈ 2181.6

P0 1/2857 -1.5 3.1 -16 -1 Γ0 T0 ≈ 695.7

P− 1/2857 -0.1 3.1 2.4 1 Γ− T− ≈ 7333.3

Table 1. Different parameters for the reduced 2D Epileptor model in (29). For the set
of parameters Pi, the system will display a limit cycle Γi of period Ti.

335

Identically as the phenomenor, since the time constant for the z variable is small 336

τz << 1, and v̇ = 0 describes a cubic curve, the three sets of parameters P+,P0 and P− 337

lead to relaxation oscillators denoted as Γ+, Γ0 and Γ− respectively. The three different 338

sets of parameters P+,P0 and P− were chosen to illustrate the influence of the slow 339

vector field on the response of perturbations of the system. Indeed, we denoted the 340

parameters as P+,P0 and P− because they set the nullcline to have positive, horizontal 341

and negative slope, respectively. Fig. 9 shows the isochrons and PRCs for the three sets 342

of parameters P+,P0 and P−. Since the slow vector field of the reduced epileptor is 343

monotonic in x, the slope of the isochrons does not change sign for any of the considered 344

cases, and again, it causes a prevalence of delays for perturbations of positive amplitude 345

over points on the lower branch which is captured by the PRCs (see Fig. 9). We remark 346

the similarity between the computed PRCs in Fig. 9 and the ones sketched in Fig. 6. 347
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Fig 9. Isochrons and PRCs for the reduced epileptor. For the sets of parameters
P+,P0 and P− in Table 1 we show: Limit cycle Γ+, Γ0 and Γ− and its isochrons Iθ
(left). The phase response curves in the v direction for different values of A (right). For
the three cases we plot 16 equispaced isochrons. Consistently with our previous analysis,
since the monotonicity of the slow vector field does not change, the slope of isochrons
does not change sign.

Response to perturbations 348

Next, we show how while the unperturbed behaviour of the cycles Γ+, Γ0 and Γ− remains 349

qualitatively identical, that is, they show relaxation oscillations, their response to the 350

same train of pulses will be completely different. As we will argue, these remarkable 351

differences can be explained by the different sets of parameters P+,P0 and P− causing 352

different slow vector fields for each cycle. Identically as in the phenomenor case, we 353

consider a random train of pulses whose inter pulse interval follows a normal distribution 354

of mean Ts and standard deviation σ, denoted by N (Ts, σ
2) and compute the change of 355

the seizure rate ∆ for a train with N (Ts, 0) and N (Ts, 0.05Ts). 356
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The simulation results are summarized in Fig. 10. Consistently with the theoretical 357

results, we can see a direct correspondence between the mean distance between the lower 358

branch and the slow nullcline and the appearance of areas suppressing the oscillation. 359

For this reason, Γ− locks for smaller amplitude values than for Γ0 and Γ+. Furthermore, 360

although the bending of the isochrons is small and so are the corresponding delays ∆θ, 361

because of its large T value (see Table 1), the range of Ts = −T∆θ values for which Γ− 362

shows locking is even larger than for Γ0 and Γ+. We also remark the good agreement 363

between the bifurcation curves of map (25) and the areas suppressing the transition to 364

seizure. 365

Regarding the interpretation of the random perturbation train scenario, we can 366

interpret results approximately by means of the results for the periodic perturbation 367

scenario. Similarly as we argued in the phenomenor case (see Fig. 8), the robustness of 368

a given locking state to noise will depend on whether the critical value of T ∗s = T∆θ∗, 369

(where ∆θ∗ corresponds with the maximal delay value of the PRC) is or not within the 370

width σ of the distribution ts ∼ N (Ts, σ
2). The higher the probability of occurrence of 371

ts > T ∗s values, the likely is the system to switch to the upper branch. The differences 372

in the resilience of the deterministic locking areas for Γ+, Γ0 and Γ− in Fig. 10, can be 373

explained by the different values of the period for the 3 cycles (see Table 1). Despite 374

the PRCs for the three cycles show a similar range of values for the delays ∆θ, the 375

differences come when these delays are transformed in inter impulse intervals through 376

Ts = T∆θ. The shorter the period T , the smaller the critical T ∗s = −T∆θ∗ value. Since 377

in the three cases the ts distributions have the same width, the smaller the critical T ∗s 378

value, the higher the probability of occurrence of ts > T ∗s values. As a consequence, the 379

resilience of locking states for Γ+ and Γ0 is weaker than for Γ− in which the distribution 380

Ts = −T∆θ is larger because of its larger period. 381

Comparison between the phenomenor and the reduced epileptor 382

Although both the phenomenor in Eq. (7) and the reduced epileptor in Eq. (29) model 383

seizure dynamics through relaxation oscillations, it is worth to mention the different 384

role of the slow variable in the models. In the phenomenor the variable a describes the 385

excitability of the tissue (the higher excitability, the more likely the spontaneous seizure 386

initiation), whereas in the (both original and reduced) epileptor the z variable (dubbed 387

as permittivity) has the opposite polarity: for its low values, the system switches to 388

seizure as its only stable state. As a consequence, although the dynamical mechanism 389

of the two models generate is virtually identical, the monotonicity of the slow vector 390

field and the rotation direction over the cycle is flipped (see Fig. 11). However, in both 391

models, the motion and the tilt of the isochrons are related in such a way that the 392

prevalent effect of positive voltage perturbations over the lower branch of the cycle is to 393

slow-down the oscillations, or in particular to delay the seizures. 394

From a mathematical perspective, the main differences between both models rely on 395

their different time constant τ values and the specific slow vector field functions g(x, y). 396

Because of the correspondence between τ << 1 and ε, we expect the isochrons to be 397

bounded in domains O(τ) (see Fig. 4). However, from our analysis it also follows that 398

the bending of the isochrons, although being contained in O(τ) domains, will be also 399

determined by dependence of g(x, y) on the fast variable x between the perturbed and 400

the base trajectories (see Eq. (23)). To illustrate these role of τ and g′x(x, y), let us 401

compare Γpheno with Γ−. In both cases, the slow nullcline was near the lower branch, 402

so we have a (qualitatively) similar geometry for both phase spaces. For this reason 403

the response to perturbations was qualitatively similar in both cases (compare Fig. 8 404

and Fig. 10C). However, the larger range of Ts values for which perturbations over 405

Γpheno avoid seizure can be explained by both the larger τ and the strong change in 406

the monotonicity of g(x, y) for the PE. The combination of both effects causes a larger 407
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Fig 10. Response of perturbations for the reduced epileptor (29). We show
the change in the seizure rate ∆ for a random train of pulses whose mean inter impulse
interval follows a normal distribution N (Ts, σ

2) with a mean time Ts and standard
deviation σ. Panels A, B, C correspond to the sets of parameters P+,P0 and P− in
Table 1. Left Figures correspond to the periodic case N (Ts, 0) and right figures to
the random case N (Ts, 0.05Ts). Consistently with our theoretical analysis there is a
direct correspondence between the mean distance between the lower branch and the slow
nullcline and the minimal pulse amplitude A for which perturbations may lead to lock
the system. Purple solid lines, bounding locking regimes, correspond to the bifurcations
of the map (25). By drawing the same curve for the random case, we illustrate the
resilience of locking states to noise.

bending of the isochrons and thus larger delays. Therefore, for (qualitatively) similar 408

geometries, the differences in both the time constants values and in the strength of 409

variations in the fast component of the slow-vector field have a substantial effect on the 410
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Fig 11. Slow vector
field for the reduced
epileptor and the phe-
nomenor. Each cycle is
depicted in purple, the v-
nullcline in black and the
slow nullcline in green. No-
tice that the direction of
the slow variable in both
models is flipped, and thus
is also the motion over
the cycles and the sign of
g′x(x, y).

amplitude of the phase response of the system to inputs. 411

Discussion 412

In this paper we applied a phase approach to analyse planar relaxation oscillators, 413

motivated by models of epileptic dynamics. Indeed, the study of neural oscillators by 414

means of the phase reduction has been extensively utilized in neuroscience from the 415

level of single neurons to the network scale [23,38–40]. In this work, the computation 416

of isochrons and PRCs of the phenomenological seizure dynamics model introduced 417

in [17] fully clarified the mechanism integrating the antagonistic potential effects of 418

IEDs. Furthermore, the theoretical analysis of the phase response of a generic planar 419

relaxation oscillator manifested the crucial role of the slow vector field on the geometry 420

of their isochrons. Due to the direct link between isochrons and PRCs, we have been 421

able to study the relationship between the slow vector field and the different response 422

behaviour a planar oscillator can display depending on the amplitude and frequency of 423

perturbations. For the cases considered, whereas the distance between the slow nullcline 424

and the bottom branch of the cycle indicated the minimum value of amplitude values 425

for suppression of the original oscillation, the minimum value of PRCs (that is, the 426

maximum delay) was related to the maximum interpulse intervals for which this locking 427

mechanism holds. Furthermore, besides confirming our results, the study of variants of 428

the reduced epileptor model [37] showed how vastly different responses to perturbations 429

can be exhibited by models differing only in the slow-nullcline position, but possessing 430

almost identical unperturbed behaviour, i.e. equivalent limit cycle oscillations, thus 431

demonstrating the key role of the slow vector field in the response of perturbations for 432

planar relaxation oscillators. 433

We acknowledge that due to the motivation by models of epilepsy, we showcased the 434

theory only on a small set of example dynamical systems previously used for modelling 435

the cyclical transition between an ictal and interictal state, which showed quite similar 436

dynamics, including having one linear and one cubic nullcline, and a monotonous slow 437

component of the flow field. A quick glance at other slow-fast relaxation oscillator models 438

however suggests, that these properties are far from uncommon in many other models. 439

Moreover, careful consideration of the theoretical arguments however shows, that the 440

specific linear or cubic shape is indeed not crucial for the general observations to hold. 441

Also, careful consideration of the theoretical arguments shows, that the monotonicity of 442

slow vector field is firstly quite natural (the function needs to change from positive to 443

negative values between the two stable branches of the stable manifold; the Occam’s 444

razor suggests that it will likely do so monotonically); and moreover not necessarily 445
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needed - if the change is not monotonic, the dependence of the PRC on the size of the 446

perturbation just becomes more complicated, however the (sign of) the PRC is still given 447

by the integral of the slow component along the recovery trajectory. 448

Another apparent limitation is that we focused on the effect of positive pulses acting 449

on the bottom branch of the cycle. However, the approach straightforwardly extends to 450

planar oscillators having more complex slow vector fields and to pulses of different sign 451

applied either to the lower or higher branch. Indeed, we suggest that for a given slow 452

vector field the applied geometrical approach is instrumental in providing an intuitive 453

insight concerning the isochrons and therefore the PRCs. In that sense, our analysis 454

extends previous results on PRCs and isochrons of planar relaxation oscillators beyond 455

the weak and singular limit [34, 41]. Theoretically more interesting, while also more 456

demanding, is the generalization to higher dimensional oscillators, providing richer 457

geometrical structure of the flow, perturbations and trajectories. However, previous 458

simulation-based results on the full Epileptor model [17] suggest that the potential dual 459

effect of perturbations on oscillatory behaviour is preserved even in higher dimensions, 460

although richer behaviour might show for other models or perturbation scenarios. 461

Regarding epilepsy, our results indicate the key influence of the slow vector field on 462

the propensity for seizure emergence. We acknowledge our analysis relied on reduced 463

planar models. However, we plan to make advantage of recent methodologies computing 464

isochrons of high dimensional systems [42] to extend our approach to different high 465

dimensional models as [13, 15, 16, 43, 44]. In general, the high dimensionality of these 466

models permits to describe more accurately seizures initiation and termination [12,45]. 467

We believe the continuation of this line of research may provide an alternative vision 468

to the questions these models approach. Furthermore, because of the usage of the 469

phase variable and the determination of PRCs, we think this approach can also help to 470

determine more accurately coupling functions for studies approaching epilepsy from the 471

coupling of different oscillatory units [46]. 472

Importantly, the quest for deeper and intuitive understanding of the effect of pertur- 473

bation on epileptic network dynamics is not a just an intriguing mathematical exercise, 474

but an indispensable part of an important while difficult journey to understand the 475

mechanisms of seizure initiation, and the possible ways to preclude this initiation by 476

therapeutic stimulation interventions [47]. Of course, while the general conceptual 477

insights are on their own relevant for general understanding the possible dynamical 478

phenomena in response to perturbations, the observed role of the slow component of the 479

field and in particular the nullcline suggests that any computational models of epilepsy 480

dynamics should also attempt to reasonably approximate these aspects (and not only 481

the unperturbed behaviour), if aspiring for providing relevant predictions concerning 482

treatment protocols or just outcomes of endogenous perturbations and inter-regional 483

interactions. This opens also the question of how to practically estimate these proper- 484

ties from experimental data, be it through stimulation protocols or purely observation 485

data; this seems to be a natural avenue for obtaining more realistic models of epileptic 486

dynamics. 487

In conclusion, we have outlined and carried out phase response analysis of planar 488

relaxation oscillator models of epileptic dynamics that opens not only a path in epilepsy 489

research with many interesting analytical, computational, experimental and potentially 490

clinical implications, but also provides a framework applicable to gain insight in the 491

plethora of other computational biology problems in which slow-fast relaxation oscillator 492

models are pertinent. 493
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Materials and methods 494

This section contains some technical details concerning the numerical implementation of 495

computations used to provide the presented results. Integration of ordinary differential 496

equations was done using a 8th-order Runge-Kutta Fehlberg method (rk78) with a 497

tolerance of 10−14. 498

Computation of Isochrons 499

To compute isochrons of slow-fast systems, we start by computing the parameterization 500

γ(θ) of Γ (see Eq. (10)). To do so, we construct a Poincaré section and use a Newton 501

method to find a fixed point of the corresponding Poincaré map. By doing this, we 502

obtain a point x0 ∈ Γ and the period T . Then we integrate the system (9) with initial 503

condition x(0) = x0 for a time T to obtain x(θT ) =: γ(θ) for θ ∈ [0, 1). 504

Next, we need to compute the linearization N(θ) of the isochrons around Γ. To that 505

aim typically one solves a variational-like equation [48]. However, in slow-fast systems 506

the cycle is very strongly attracting (indeed, its Floquet exponent is O(e−k/ε) where 507

k > 0) [49]. For this reason, obtaining N(θ) via numerical integration requires to deal 508

with very small numbers, so one needs high precision algorithms and large number of 509

decimals. 510

As an alternative to numerical integration we took advantage of the fact that ∇Θ(x) 511

is perpendicular to the level curves of Θ(x), which indeed correspond to the isochrons. 512

Therefore, we can use the infinitesimal PRC (iPRC), that is ∇Θ(γ(θ)), to compute N(θ) 513

through the following equation [48]: 514

∇Θ(γ(t/T )) =
N(θ)⊥

T 〈N(θ)⊥, X(γ(θ))〉
, (30)

where v⊥ refers to a perpendicular vector to v and < ·, · > to the usual dot product. 515

Instead of computing the iPRC ∇Θ(γ(t/T )) by integrating the adjoint equations (which 516

also display numerical instabilities) we compute it by means of the procedure described 517

in next subsection. 518

Finally, we globalise the isochrons via the backward integration of N(θ) (we refer the 519

reader to [48] for more details about the globalisation procedure). 520

Computation of PRCs 521

The PRCs in this paper were computed using a continuation method. The computation 522

of PRCs by direct integration of the perturbed trajectories, usually measures the phase 523

shift over the maxima of a certain variable. That is, they require a relaxation time Trel 524

large enough so the perturbed trajectories reach the maximal values over the cycle. By 525

contrast, as we now show, continuation methods just require the perturbed trajectories 526

to reach a point on the cycle. Therefore, one needs to integrate a shorter time Trel. 527

Specifically in slow-fast systems in which the periods of the system are large, the usage 528

of continuation methods saves a lot of computational effort. To compute PRCs, we have 529

used the continuation method introduced in [50], which we now briefly review for the 530

sake of completeness. 531

A pulse acting on a point z = γ(θ) ∈ Γ will displace the trajectory to z̄ = z + A. 532

Then, after a time Trel large enough, the trajectory will be again on the limit cycle but 533

with another phase θ̄. Mathematically 534

FA(γ(θ)) = γ(fA(θ)), (31)

where FA(z) = φTrel(z + A), and fA(θ) = θ̄. Then the PRC is PRC(θ,A) = fA(θ) − 535

(θ + Trel/T ). 536
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The idea of the method is to obtain fA(θ) by solving Eq. (31). To that aim, one can 537

use the following algorithm which computes the PRC for a perturbation of amplitude 538

A by means of a Newton method. The computation of PRCs via continuation is 539

achieved using the computed PRC as an initial seed for computing the PRC for a new 540

amplitude A′ = A+ ∆A. Given the parameterization of the limit cycle γ(θ), and fA(θ) 541

an approximate solution of equation (31), we perform the following operations: 542

1. Compute E(θ) = FA(γ(θ))− γ(fA(θ)). 543

2. Compute ∂θγ(fA(θ)) = TX(γ(fA(θ))). 544

3. Compute ∆fA = <∂θγ(fA(θ)),E(θ)>
<∂θγ(fA(θ)),∂θ(fA(θ))> . 545

4. Set fA(θ)← fA(θ) + ∆fA(θ). 546

5. Repeat steps 1-4 until the error E is smaller than the established tolerance. Then 547

PRC(A, θ) = fA(θ)− (θ + Trel/T ). 548

We refer the reader to [50] for the implementation of this methodology for not pulsatile 549

perturbations. To compute the iPRC by means of this algorithm one has to consider 550

perturbations of A small and fA(θ) = θ + Trel/T as initial seed. Then, ∇Θ(γ(θ)) = 551

PRC(A, θ)/A. 552
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