
1 
 

  1 

Competition between parallel sensorimotor learning systems 2 

 3 

Scott T. Albert1, Jihoon Jang1, Adrian M. Haith2, Gonzalo Lerner3, Valeria Della-Maggiore3, John W. 4 

Krakauer2,4,5, and Reza Shadmehr1,4 5 

 6 

1. Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 7 

2. Department of Neurology, Johns Hopkins School of Medicine, Baltimore MD 8 

3. Deparamento de Fisiología y Biofísia, Universidad de Buenos Aires, Buenos Aires, Argentina 9 

4. Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 10 

5. The Santa Fe Institute, Santa Fe, NM 11 

 12 

Correspondence: Scott Albert, 416 Traylor Building, Johns Hopkins School of Medicine, 720 Rutland Ave., 13 

Baltimore, MD 21205, USA. Email: salbert8@jhmi.edu. Phone: 410-614-3424. 14 

 15 

Acknowledgements: This work was supported by grants from the National Institutes of Health 16 

(R01NS078311, F32NS095706), and the National Science Foundation (CNS-1714623).  17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406777
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 18 

Sensorimotor adaptation benefits from learning in two parallel systems: one that has access to explicit 19 

knowledge, and another that relies on implicit, unconscious correction. However, it is unclear how these 20 

systems interact: does enhancing one system’s contributions, for example through instruction, impair the 21 

other, or do they learn independently? Here we illustrate that certain contexts can lead to competition 22 

between implicit and explicit learning. In some cases, each system is responsive to a task-related visual 23 

error. This shared error appears to create competition between these systems, such that when the explicit 24 

system increases its response, errors are siphoned away from the implicit system, thus reducing its 25 

learning. This model suggests that explicit strategy can mask changes in implicit error sensitivity related 26 

to savings and interference. Other contexts suggest that the implicit system can respond to multiple error 27 

sources. When these error sources conflict, a second type of competition occurs. Thus, the data show that 28 

during sensorimotor adaptation, behavior is shaped by competition between parallel learning systems. 29 

 30 

Introduction 31 

When we reach towards an object, unexpected perturbations to the arm engage multiple corrective 32 

systems. Some systems are reactive and respond online to counter the perturbation1–3, whereas others 33 

are predictive, changing their output to anticipate the perturbation4–6. When multiple predictive systems 34 

operate together, how do they coordinate their responses to error? 35 

 One possibility is that each learning system operates on a separate error source. For example, 36 

when people adapt to a visual perturbation and an inertial perturbation simultaneously, the brain engages 37 

parallel circuits7 that respond to each error separately without interference8. In other cases, however, 38 

separate corrective systems may respond to a common error. For example, current models suggest that 39 

a given sensory error simultaneously engages multiple adaptive systems, each with their own timescale 40 

of learning: some fast and others slow9,10. 41 

 Presence of multiple learning systems in the brain makes it crucial to understand how they are 42 

coordinated to seamlessly improve behavior. First, suppose two learning systems are driven by the same 43 

error and produce an output that reduces that error (Fig. 1A). In this case, when one system adapts, it 44 

reduces the error that is available to drive learning in the other system; thus, these two parallel systems 45 

will compete to “consume” a common error. Second, suppose two systems are driven by distinct errors, 46 

each producing an output to minimize its own error (Fig. 1B). In this case, when one system adapts to its 47 

error, the resulting action could increase the other system’s error, thus producing another type of 48 

competition where only one system can minimize its error. These ideas illustrate that a given system’s 49 

behavior will depend not only on its own error source, but the error sources that drive parallel learning 50 

systems. 51 

 Here we consider how these competitive interactions may couple together neural systems that 52 

respond to visual errors. Multiple lines of evidence suggest that the brain engages two parallel systems 53 

during motor learning: a strategic explicit system that can be guided by instruction11,12, as well as an 54 

implicit system that adapts without our conscious awareness12,13. How might these learning systems 55 

interact14–16 during sensorimotor adaptation? 56 

 The answer depends on their respective error sources. Current models suggest that implicit and 57 

explicit systems are differentially engaged by two distinct error sources: a task error17–19, and a prediction 58 

error4,12,20. One theory suggests that the explicit system acts to decrease errors in task performance, while 59 
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the implicit system acts to reduce errors in predicting sensory outcomes12,21,22. However, other models 60 

have suggested that both systems are at least partly engaged by errors in task outcome14,17,23,24. Here we 61 

show that both errors drive implicit learning, but their relative contributions vary across different 62 

experiments. Some experiments reveal how learning systems exhibit competition due to a common error 63 

source as in Fig. 1A, but in others, they interfere given a conflict between separate errors as in Fig. 1B. 64 

 Critically, one’s viewpoint can lead to contrasting interpretations of the same data. Consider the 65 

case where implicit and explicit systems share at least one common error source. Suppose some 66 

experimental condition facilitates explicit strategy. In this case, increases in explicit strategy will siphon 67 

away the error that the implicit system needs to adapt, thus reducing implicit learning without actually 68 

changing implicit learning properties. 69 

 Changes in implicit learning might occur not solely across two distinct environments, but across 70 

two moments in time. For example, when two opposing perturbations are learned in sequence, the rate 71 

of learning decreases due to interference25–27. On the other hand, when the perturbations are the same, 72 

the rate of learning increases due to savings28–32. If implicit and explicit systems share an error source, 73 

each system’s current response can be shaped not solely by past experience, but also by changes in the 74 

other system. This may explain a potential disconnect between studies that have suggested that 75 

experience-dependent increases in learning rate are subserved solely by flexible explicit strategies28,33–36, 76 

and studies that have pointed to concomitant changes in implicit learning systems17,37,38. 77 

 Here, we mathematically9,14,24,39,40 consider the extent to which implicit and explicit systems are 78 

engaged by common errors, or separate errors. The hypotheses make diverging predictions, which we 79 

then test in various contexts. In some contexts, the data suggest that the two systems are mostly driven 80 

by a common error. This shared error produces competition as in Fig. 1A, such that increases15,16 or 81 

decreases41,42 in explicit strategy indirectly exert the opposite effect on implicit learning. This competitive 82 

relationship suggests an alternate way that implicit systems may exhibit two hallmarks of learning: savings 83 

and interference. However, in other contexts, a single common error cannot explain implicit behavior. In 84 

these cases, the data are more consistent with the idea that multiple error sources (e.g., a prediction and 85 

a task error) drive comparable levels of implicit learning, leading to competition resembling Fig. 1B. 86 

  Together, our results illustrate that changes in behavior during sensorimotor adaptation are 87 

shaped by multiple types of competition between parallel learning systems. 88 

 89 

Results 90 

In visuomotor rotation paradigms, participants move a cursor with their hand (Fig. 1C), but experience a 91 

perturbation that changes the canonical relationship between hand motion and cursor motion. The 92 

perturbation induces adaptation, resulting in a change in reach direction. This adaptation is supported by 93 

both implicit and explicit processes11,12,21,43; participants can intentionally re-aim their reach angle (Fig. 1C, 94 

aim), and also change their reach via implicit recalibration (Fig. 1C, implicit). Together, these two systems 95 

determine the hand’s path (Fig. 1C, hand). 96 

 Suppose that a rotation r alters the cursor’s path (Fig. 1C, cursor). Current models suggest that 97 

this perturbation creates two distinct error sources. One error source is created by the deviation between 98 

the cursor and the target: a target error17–19. Notably, this target error (Fig. 1C, target error) is altered by 99 

both implicit (xi) and explicit (xe) adaptation: 100 
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 = − +( ) ( ) ( ) ( )( )n n n n
target i ee r x x   (1) 101 

Under normal circumstances, the brain expects that the cursor will move toward the aimed 102 

location. This expectation gives rise to a second error: a sensory prediction error (SPE)4,12,20. This SPE is 103 

created by the deviation between where we aimed our hand (the expected cursor motion) and where we 104 

observed the cursor’s actual motion (Fig. 1C, sensory prediction error). Critically, because this error is 105 

anchored to our aim location, it is altered solely by changes in the implicit system: 106 

 = −( ) ( ) ( )n n n
SPE ie r x   (2) 107 

 These errors create two different objective functions: (1) maximize success by eliminating target 108 

error, and (2) improve our predictions by eliminating SPE. How does the brain’s subconscious learning 109 

system respond to these disparate directives? State-space models describe implicit adaptation as a 110 

process of learning and forgetting9,14,24,39,40: 111 

 + = +( 1) ( ) ( )n n n
i ii ix a x b e   (3) 112 

Forgetting is controlled by the retention factor (ai) which specifies how strongly we retain the adapted 113 

state. Learning is controlled by one’s error sensitivity (bi) which determines the amount we adapt in 114 

response to an error – but which error? 115 

 To answer this question, consider how Eq. (3) behaves following an extended training period. Like 116 

adapted behavior23,37,44,45, Eq. (3) approaches an asymptotic limit when the processes of learning and 117 

forgetting balance each other (Fig. 1B, implicit). In the extreme case where the implicit system responds 118 

solely to target error, total implicit learning is determined by Eqs. (1) and (3): 119 

 = −
− +

( )
1

s i
e

i

s s

i

s
i

b
x r x

a b
  (4) 120 

Eq. (4) demonstrates a competition between implicit and explicit systems; the total amount of implicit 121 

adaptation (xi
ss) is related to the difference between the perturbation r and the total amount of explicit 122 

adaptation (xe
ss). 123 

On the other extreme, when the implicit system responds solely to SPE, total implicit learning is 124 

determined by Eqs. (2) and (3):  125 

 =
− +1

s

i

s i
i

i

b
x r

a b
  (5) 126 

Eq. (5) demonstrates an independence between implicit and explicit systems; the total amount of implicit 127 

adaptation depends solely on the rotation’s magnitude, not one’s explicit strategy. 128 

 In summary, the competition (Eq. (4)) and independence (Eq. (5)) equations make predictions that 129 

can answer a critical question: which errors drive implicit adaptation? If implicit learning is predominantly 130 

driven by SPE, the implicit system will depend only on the perturbation’s magnitude according to the 131 

independence equation (Eq. (5)). On the other hand, if implicit learning is predominantly driven by target 132 

error, the implicit system will compete with explicit strategies according to the competition equation (Eq. 133 

(4)). Here, we investigate these predictions across several experimental paradigms and explore their 134 

limitations in describing the behavior of the implicit learning system. 135 

 136 

Enhancement in explicit strategy reduces the amount of implicit adaptation 137 

Suppose that in one condition, participants adapt to a visual rotation with some fixed explicit strategy (Fig. 138 

1D, aim, solid magenta line). But in a second condition, the participant is coached about the 139 
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perturbation16,46, enhancing their explicit strategy (Fig. 1D, aim, dashed magenta line). If the implicit 140 

system learns only from SPE (Eq. (5)), then changes in explicit strategy will have no impact on implicit 141 

learning (Fig. 1D, H1, compare solid black and dashed blue implicit lines). On the other hand, if the implicit 142 

system learns only from target error, it competes with the explicit system (Eq. (4)). Coaching explicit 143 

strategy suppresses implicit learning (Fig. 1D, H2, compare dashed blue and solid black implicit lines). 144 

To test this prediction, we considered an experiment performed by Neville and Cressman15. 145 

Participants were exposed to either a 20°, 40°, or 60° visuomotor rotation (Fig. 1E), and separated into 146 

instructed and non-instructed conditions. Non-instructed groups (Fig. 1E, gray) adapted without any initial 147 

instruction regarding the perturbation. Instructed participants were briefed about the upcoming rotation 148 

and how they should compensate to hit the target (Fig. 1E, yellow). This instruction sharply increased the 149 

rate of adaptation over that of the non-instructed group (Fig. 1E, compare yellow and gray curves). 150 

 To determine how instruction accelerated adaptation, participants were asked to reach with and 151 

without explicit strategy (Fig. S1). The marginal effects of instruction (average across rotation magnitudes) 152 

and perturbation magnitude (average over instruction conditions) are shown in Figs. 1F and 1G 153 

respectively. Unsurprisingly, instructed participants learned faster due to an enhancement in explicit re-154 

aiming, which increased by approximately 10° across each rotation magnitude (Fig. 1F, explicit). 155 

 Curiously, while instruction enhanced explicit learning, it appeared to impair implicit adaptation, 156 

decreasing the total implicit aftereffect (Fig. 1F, implicit learning, data). Even more puzzling, whereas 157 

contributions of the explicit system increased with rotation magnitude (Fig. 1G, explicit), implicit learning 158 

did not, as one might intuitively expect (Fig. 1G, implicit learning, data). 159 

 To interpret the implicit response to awareness and perturbation magnitude, we fit both the 160 

competition (Eq. (4)) and independence equations (Eq. (5)) to the behavior across all groups, under the 161 

assumption that the implicit system’s sensitivity to error and retention (bi and ai) were identical across all 162 

rotation sizes, and across the instructed and non-instructed conditions.  163 

 The independence and competition models made contrasting predictions (see individual 164 

predictions in Figs. S1B&C). Because SPE does not depend on explicit aiming, Eq. (5) incorrectly predicted 165 

the same level of implicit learning irrespective of explicit awareness (Fig. 1F, implicit learning, indep.). 166 

Furthermore, because implicit adaptation is driven solely by the rotation magnitude in the independent 167 

model, Eq. (5) also incorrectly predicted that implicit learning should increase with rotation size (Fig. 1G, 168 

implicit learning, indep.). 169 

 The opposite was true of the competition model. Eq. (4) correctly predicted less implicit learning 170 

in instructed participants who used greater explicit strategy (Fig. 1F, implicit learning, competition). 171 

Remarkably, the competition model also predicted that the implicit aftereffect should remain similar 172 

across rotation magnitudes (Fig. 1G, implicit learning, competition). How was this possible? Critically, the 173 

competition equation suggests that the driving force for implicit learning is not solely the rotation, but the 174 

difference between the rotation and explicit strategy. Therefore, because the total amount of explicit re-175 

aiming increased as the rotation magnitude increased (Fig. 1G, explicit), their difference remained roughly 176 

constant across all perturbation sizes (Fig. S1D). Thus, Eq. (4) predicted similar implicit aftereffects 177 

irrespective of rotation size. 178 

 In summary, when explicit learning is enhanced through instruction, implicit learning is impaired. 179 

As perturbation magnitude increases, contributions of explicit learning increases, but not the 180 
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contributions of implicit learning. These observations are consistent with the competition model (Eq. (4)), 181 

suggesting that the implicit and explicit systems are primarily driven by a common target error. 182 

 183 

Suppression of explicit learning increases the amount of implicit adaptation 184 

The competition equation predicts that enhancing explicit strategy should decrease implicit learning (Fig. 185 

1). What should happen when explicit learning is suppressed? Suppose participants adapt with an explicit 186 

strategy (Fig. 2B, aim, solid magenta line), but this strategy is then suppressed (Fig. 2B, aim, dashed 187 

magenta line). Because SPE learning does not depend on explicit strategy, Eq. (5) predicts no change in 188 

implicit learning (Fig. 2B, H1, left, compare solid black and dashed blue implicit lines) (Eq. (5)). However, 189 

because target errors do depend on explicit strategy, Eq. (4) predicts that suppressing explicit aiming will 190 

increase implicit learning (Fig. 2B, H2, right, compare dashed blue and solid black implicit lines). 191 

 One way to suppress explicit learning is to make participants unaware by introducing the 192 

perturbation gradually. In an earlier experiment, Saijo and Gomi (2010)42 exposed participants to either 193 

an abrupt (Fig. 2A, abrupt) or gradual (Fig. 2A, gradual) perturbation. The abrupt perturbation was 194 

immediately set to 60°, but the gradual perturbation reached this magnitude over time. 195 

 Participants in the abrupt condition adapted rapidly to the perturbation, greatly decreasing their 196 

target error to about 5° over about 10 perturbation cycles (Fig. 2C, abrupt). Participants in the gradual 197 

group, experienced small target errors throughout training, but adapted less by the end of the rotation 198 

period, exhibiting a terminal error nearly 3 times greater than the abrupt condition (Fig. 2C, gradual). 199 

 At this point, the perturbation was abruptly removed, revealing large aftereffects in each group. 200 

However, even though participants in the gradual group had adapted less completely to the rotation, they 201 

paradoxically exhibited larger aftereffects (Fig. 2F, data), which remained elevated throughout the entire 202 

washout period (Fig. 2C, aftereffect). If these aftereffects reveal the total amount of implicit adaptation, 203 

given that strategies are rapidly disengaged when the perturbation is removed34 (Fig. S2), how could more 204 

complete adaptation in the abrupt group lead to less implicit adaptation? 205 

 To investigate this phenomenon, we considered how implicit and explicit systems might behave 206 

according to the independence (Eq. (5)) and competition (Eq. (4)) frameworks. To simulate these models, 207 

we estimated the explicit strategies in each group. Neville and Cressman15 had measured the explicit 208 

response to a 60° rotation, demonstrating that participants re-aimed their hand approximately 35° 209 

consistently over the adaptation period (see yellow points in Figs. 2D&E, explicit aim). This estimate 210 

agreed well with the data; participants in the abrupt condition adapted 55°, and exhibited an aftereffect 211 

of approximately 20° (Fig. 2F, data, abrupt), suggesting about 35° of re-aiming. In the gradual group, we 212 

assumed that little to no re-aiming occurred. This also seemed consistent with the data; participants in 213 

the gradual group adapted approximately 40°, and exhibited an aftereffect of approximately 38° (Fig. 2F, 214 

data, gradual) suggesting <5° of re-aiming. Using these estimates, we constructed hypothetical explicit 215 

learning timecourses, as shown in Figs. 2D&E, explicit aim).  216 

 We next used the state-space model to simulate the implicit learning timecourse, in cases where 217 

the implicit system learned solely due to SPE (Fig. 2D, implicit angle) or solely due to target error (Fig. 2E, 218 

implicit angle), under the assumption that participants in both the abrupt and gradual groups had the 219 

same implicit error sensitivity (bi) and retention factor (ai). The parameter sets that yielded the closest 220 

match to the measured behavior (Fig. 2C) are shown in Figs. 2D&E (directional error). In both cases, the 221 

models predicted abrupt and gradual learning timecourses that resembled the data. 222 
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 However, the implicit states predicted by SPE learning and target error learning possessed a 223 

critical difference. According to Eq. (4), the target error model predicted that the total extent of implicit 224 

learning would be suppressed by explicit strategy in the abrupt condition, yielding a smaller aftereffect 225 

(Fig. 2E, implicit angle). However, according to Eq. (5), the SPE model predicted that implicit learning 226 

should reach the same level, yielding identical aftereffects (Fig. 2D, implicit angle).  227 

 In summary, the differences in aftereffects across the abrupt and gradual conditions (Fig. 2F, data) 228 

were accurately predicted by the competition model (Fig. 2F, competition), but not the independence 229 

model (Fig. 2F, indep.). Suppressing the explicit strategy revealed competition between implicit and 230 

explicit systems which suggested that the implicit system predominantly responded to target error. 231 

 232 

Subject-to-subject correlations reveal competition between implicit and explicit systems 233 

Data in Figs. 1 and 2 suggested that the implicit system was altered by competition with explicit strategy. 234 

Is this competition observed at the level of individual participants? In other words, the competition model 235 

would predict that participants who use larger strategies will naturally exhibit less implicit adaptation. 236 

 To investigate this possibility, we considered earlier work where Fernandez-Ruiz and colleages41 237 

exposed participants to a 60° rotation (Fig. 3A). The large rotation appeared to induce substantial variation 238 

in strategic re-aiming. Consider for example Subjects A and B (Figs. 3B&C). Upon rotation onset, Subject 239 

A rapidly reduced their directional error (Fig. 3B, Subject A) and exhibited two characteristics that 240 

suggested the use of large explicit re-aiming angles: (1) their reach angle varied greatly from one cycle to 241 

the next14,44,47 and (2) their movement preparation time (Fig. 3C, Subject A) greatly increased upon onset 242 

of the perturbation18,28,37,47. On the other hand, Subject B reduced directional errors slowly and 243 

consistently (Fig. 3B, Subject B), with little to no increase in movement preparation time (Fig. 3C, Subject 244 

B). Thus, Subjects A and B appeared to engage explicit strategies to differing extents. How did differences 245 

in their explicit strategy impact implicit learning? 246 

 When the perturbation was removed, reaction time returned to baseline levels (Fig. 3C), revealing 247 

each participant’s aftereffect (Fig. 3B, aftereffect). Paradoxically, though Subject A adapted more 248 

completely to the rotation during the adaptation period, they exhibited a far smaller aftereffect (Fig. 3B). 249 

A possible explanation is that because Subject A used greater explicit strategy during adaptation, their 250 

implicit system adapted less due to competition, producing a smaller aftereffect. Indeed, although 251 

participants who increased their preparation time exhibited smaller reach errors (Fig. S3), engaging 252 

explicit strategies appeared to inhibit their implicit system, as revealed by a decrease in the aftereffect 253 

during the washout period (Fig. 3D; ρ=0.87, p<0.01). 254 

The competition model (Eq. (4)) provides a way to quantify these subject-to-subject correlations. 255 

The left-most term in this equation is a learning gain that varies between 0 and 1, which depends on 256 

implicit learning properties: retention (ai) and error sensitivity (bi). Thus, the competition equation 257 

predicts that implicit and explicit learning will negatively co-vary according to a line whose slope and bias 258 

are determined by the properties of the implicit learning system (ai and bi). To test the model’s accuracy, 259 

we exposed participants to a 30° visuomotor rotation (Fig. 3E) under two conditions (Experiment 1). In 260 

one group, we strictly limited preparation time to inhibit time-consuming explicit strategies41,47 (Fig. 3F, 261 

Limit PT). In the other group, we imposed no preparation time constraints (Fig. 3F, No PT limit). Our goal 262 

was to measure ai and bi in the Limit PT group which putatively relied on implicit learning, and use these 263 

values to predict the implicit-explicit relationship across No PT limit participants. 264 
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As expected, PT Limit participants dramatically reduced their reach latencies throughout the 265 

adaptation period, whereas No PT limit participants exhibited a sharp increase in movement preparation 266 

time after perturbation onset (Fig. 3G), indicating explicit re-aiming18,28,37,41,47. Consistent with suppression 267 

of explicit strategy, learning proceeded more slowly and was less complete with the PT Limit (Fig. 3F; two-268 

sample t-test on last 10 adaptation epochs: t(30)=2.14, p=0.041, d=0.77). 269 

Next, we empirically measured the putative implicit retention factor (ai) and error sensitivity (bi) 270 

associated with the PT Limit learning curve. We measured the retention factor during a terminal “no 271 

feedback” period (Fig. 3F, dark gray, no feedback) and error sensitivity (bi) during the adaptation period 272 

(see Methods). Together, this retention factor (ai=0.943) and error sensitivity (bi=0.35), produced a 273 

specific form of Eq. (4), namely, xi = 0.86 (30 – xe), which we could use to predict how implicit and explicit 274 

learning should vary across participants in the No PT limit group (Fig. 3H, blue line). 275 

To measure No PT limit implicit and explicit learning we instructed participants to move their hand 276 

through the target without any re-aiming at the end of the adaptation period (Fig. 3F, no aiming). The 277 

precipitous change in reach angle revealed the terminal amounts of implicit and explicit adaptation (post-278 

instruction reveals implicit; total drop reveals explicit). To verify the accuracy of this explicit measure, we 279 

asked participants to verbally report their re-aiming angles (see Methods). Participants that demonstrated 280 

greater explicit strategy indeed reported larger re-aiming angles at the end of adaptation (Fig. S4A, 281 

ρ=0.709) and also appeared to require greater movement preparation time (Fig. S4B, ρ=0.708). 282 

How did subject-to-subject variations in implicit and explicit learning compare to the model’s 283 

prediction? We observed a striking correspondence between the No PT limit implicit-explicit relationship 284 

(Fig. 1H, black dot for each participant; ρ=-0.95) and that predicted by the competition model (Fig. 3H, 285 

blue). The slope and intercept predicted by Eq. (4) (-0.86 and 25.74°, respectively) differed from the 286 

measured linear regression (Fig. 1H, black line, R2=0.91; slope = -0.9 with 95% CI [-1.16, -0.65] and 287 

intercept = 25.46° with 95% CI [22.54°, 28.38°]) by only about 5% and 1%, respectively. 288 

 Lastly, we tested two alternate explanations that could also explain the observed correlations 289 

between implicit and explicit learning. First, explicit (total adaptation minus no aiming probe) and implicit 290 

(no aiming probe) learning measures inherently share variance which could lead to spurious correlation. 291 

Second, in the event that participants exhibit nearly identical learning asymptotes, say approximately 26° 292 

in our experiment, these implicit and explicit learning measures could be trivially constrained to lie along 293 

the regression line: xi + xe ≈ C, where C = 26°. 294 

To test these possibilities, we conducted a control experiment (Experiment 2). Participants 295 

adapted to a 30° rotation again (Fig. 3I), but this time, we measured implicit adaptation using the no-296 

aiming instruction over an extended 20-cycle period (Fig. 3J, no aiming). We calculated early (first no-297 

aiming cycle; Fig. 3J, measure early implicit) and late (last 15 no-aiming cycles; Fig. 3J, measure late 298 

implicit) implicit learning measures. As in Fig. 3H, we calculated total explicit strategy as the difference 299 

between total adaptation and the first no-aiming cycle (Fig. 3J, measure explicit). 300 

Critically, our explicit measure and late implicit measure were now properly decoupled, as they 301 

depended on separate cycles. Remarkably, late implicit learning exhibited patterns that matched the 302 

group-level interventions observed by Neville and Cressman15 (Fig. 1) and Saijo and Gomi42 (Fig. 2). 303 

Namely, participants that compensated most for the perturbation utilized large explicit strategies (Fig. 3K; 304 

ρ=0.79, p<0.001). But enhancements in overall learning came at the cost of reductions in implicit 305 
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adaptation (Fig. 3L; ρ=-0.68, p=0.003), due to a competition between implicit and explicit learning (Fig. 306 

3M, ρ=-0.79, p<0.001). 307 

Secondly, we considered the relationship between explicit strategy and early implicit learning, 308 

and again observed a strong negative linear relationship (Fig. 3L, ρ=-0.79): xi + 0.6xe = 19.1. Notably, the 309 

explicit regression coefficient’s (0.6) 95% CI, [0.42,0.77] did not contain 1. Equivalently, this indicates that 310 

there was substantial variation in asymptotic learning across participants (range 16-29°), ruling out the 311 

trivial possibility that xi + xe = C, described above. To the contrary, participants who showed greater explicit 312 

learning had better overall compensation for the perturbation, but had less implicit learning. 313 

In summary, consistent with the idea that the two learning systems share a common error, we 314 

found that when a subject’s performance depends more on the contributions of the explicit system, their 315 

implicit system learns less. 316 

 317 

Competition predicts increases in both implicit and explicit error sensitivity during savings 318 

When participants are exposed to the same perturbation twice, they adapt more quickly the second time. 319 

This phenomenon is known as savings and is a hallmark of sensorimotor adaptation9,48,49. Multiple studies 320 

have attributed this process solely to changes in explicit strategy28,33,34,36,50. 321 

 For example, in an earlier work28, we trained participants (n=14) to reach to one of two targets, 322 

coincident with an audio tone (Fig. 4A). By shifting the displayed target approximately 300 ms prior to 323 

tone onset on a minority of trials (20%), we forced participants to execute movements with limited 324 

preparation time (Low preparation time; Fig. 4A, middle). On trials in which subjects had high preparation 325 

time, i.e. trials without a target switch (Fig. 4B, left), adaptation exhibited savings; the rate of learning 326 

increased across exposures (Fig. 4B, right, High PT; Wilcoxon signed rank, p=0.0085, Cohen’s d=0.683). 327 

Learning differences were most pronounced on the first 40 trials after perturbation onset (Fig. 4C, left; 328 

Fig. 4C, right, paired t-test, p=0.0044, Cohen’s d=0.920). 329 

 To test for changes in implicit learning, we focused on short PT trials where explicit strategy is 330 

suppressed41,47. Unlike the High PT trials, adaptation expressed on short PT trials was similar during the 331 

two exposures (Fig. 4B, middle); we found no difference in the rate of short PT learning (Fig. 4B, right, 332 

Wilcoxon signed rank, p=0.903). Similarly, the difference in learning curves for exposures 1 and 2 (Fig. 4C, 333 

middle) did not show any change after perturbation onset (Fig. 4C, right, Low PT, paired t-test, p=0.624). 334 

 These results suggested that savings relied solely on a time-consuming explicit strategy. Does this 335 

mean that implicit learning was completely unaltered by prior exposure to the perturbation? The answer 336 

depends on which errors drive implicit adaptation. 337 

 In the competition model, implicit learning is driven by target errors (Eq. (1)) that are also shared 338 

with the explicit system. We fit this model to the behavior of each participant under the assumption that 339 

the reach angle on low preparation time trials revealed the implicit state of adaptation, and the reach 340 

angle on high preparation time trials revealed the sum of the implicit and explicit states of adaptation. 341 

The model generated implicit (Fig. 4D, left and middle, blue) and explicit (Fig. 4D, left and middle, 342 

magenta) states that tracked the behavior well in high PT trials (Fig. 4D, left and middle, solid black line) 343 

as well as low PT trials (Fig. 4D, left and middle, dashed black line). 344 

 Unsurprisingly, given that High PT trials exhibited savings but Low PT trials did not, the model 345 

predicted that explicit error sensitivity increased across exposures, thus leading to an increased rate of 346 

adaptation (Fig. 4D, right, explicit; paired t-test, p=0.016, Cohen’s d=0.738). However, the model 347 
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unmasked a surprising possibility; even though the implicit system showed no increase in learning rate on 348 

Low PT trials (Figs. 4B&C, right), the model still indicated that the implicit system had increased its error 349 

sensitivity across exposures (Fig. 4D, right, implicit, paired t-test, p=0.023, Cohen’s d=0.686). 350 

 In contrast, when we fit the same data assuming that implicit adaptation was driven by SPE rather 351 

than target error (Eq. (2), learning depends on rotation but not explicit strategy), the model (not shown 352 

in Fig. 4) predicted that only explicit (paired t-test, p=0.026, Cohen’s d=0.673) but not implicit (paired t-353 

test, p=0.099) error sensitivity had increased. 354 

 In summary, when we reanalyzed our earlier data, Eqs. (4) and (5) suggested that the same data 355 

could be interpreted in two different ways. If we assumed that implicit learning is independent of explicit 356 

strategy (independence equation), then only explicit strategy contributed to savings. This is in fact what 357 

we had concluded in our original report. However, if we assumed that the implicit and explicit systems 358 

learned from the same error (competition equation), then both implicit and explicit systems contributed 359 

to savings. How can we determine which interpretation is more parsimonious with measured behavior? 360 

 361 

Competition with explicit strategy can alter measurement of implicit learning 362 

Suppose you arrive at your family dinner, but on this occasion are feeling particularly famished. Yet after 363 

the meal, you are surprised to find that you ate the same amount as last week despite feeling hungrier. 364 

Does this mean your hunger level was actually the same? No, not necessarily; because you are sharing the 365 

meal with others, changes in their consumption rates alter the food available to you. So, eating the same 366 

amount could mean that your sister sitting next to you was also hungrier than usual, taking more than 367 

their normal share, and thus leaving less for you. 368 

 The competition equation (Eq. (4)) presents an analogous scenario, except here the “family” in 369 

question is the implicit and explicit adaptive states, and the “food” that is available for consumption is 370 

error. The competition model provides the insight that when the explicit system learns faster than before 371 

(Fig. 4D, Day 2 vs. Day 1), it leaves less error to drive implicit learning. However, despite this reduced error 372 

for the implicit system, performance on Low PT trials on Day 2 was comparable to Day 1 (Fig. 4B, right). 373 

Thus, error sensitivity of the implicit system must also have increased from Day 1 to Day 2. 374 

 To understand how our ability to detect changes in implicit adaptation can be altered by explicit 375 

strategy we constructed a competition map (Fig. 5A). Imagine that we want to compare behavior across 376 

two timepoints or conditions. Fig. 5A shows how change in implicit error sensitivity (x-axis) and explicit 377 

error sensitivity (y-axis) both contribute to measured implicit aftereffects (denoted by map colors), based 378 

on the competition equation (Eq. (4)). The left region of the map (cooler colors) denotes combinations of 379 

implicit and explicit changes that decrease implicit adaptation. The right region of the map (hotter colors) 380 

denotes combinations that increase implicit adaptation. The middle black region represents combinations 381 

that manifest as a perceived invariance in implicit adaptation (<5% absolute change in implicit adaptation). 382 

 Practically, this map defines several distinct regions (Fig. 5B). In Region A, there is a “true 383 

decrease” in implicit adaptation; that is, implicit error sensitivity decreases between Timepoints 1 and 2 384 

as does the total amount of implicit learning. Region D is similar, but for simultaneous increases in implicit 385 

error sensitivity and total implicit learning (“true increase”). 386 

The other regions describe more surprising situations. In Region B, there is only a “perceived 387 

decrease” in implicit learning; that is, implicit learning decreases, even though the implicit error sensitivity 388 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406777
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

has actually increased or remained the same. In Region E, there is only a “perceived increase” in implicit 389 

learning; implicit learning increases, even though its error sensitivity decreased or remained the same. 390 

Indeed, we have already explored these phenomena in Figs. 1 and 2. In Fig. 1, enhancing explicit 391 

strategy decreased implicit learning without changing any implicit learning properties. The scenario is 392 

equivalent to moving up the y-axis of the map (Fig. 5C, top). The same implicit system will decrease its 393 

output (Fig. 5C, bottom) when normal levels of explicit strategy are increased (Fig. 5C, middle). On the 394 

other hand, suppressing explicit strategy by gradually changing the perturbation appeared to increase 395 

implicit learning without changing any implicit learning properties (Fig. 2). This scenario is equivalent to 396 

moving down the y-axis of the map (Fig. 5D, top). The same implicit system will increase its output (Fig. 397 

5D, bottom) when normal levels of explicit strategy are then suppressed (Fig. 5D, middle). 398 

Now, let us consider the savings task in Fig. 4. The target error-driven (Eq. (1)) state space model 399 

predicted (Fig. 3D) that explicit error sensitivity increased by approximately 70.6% during the second 400 

exposure, whereas the implicit system’s error sensitivity increased by approximately 41.5% (Fig. 5E, 401 

middle). These changes in implicit and explicit adaptation describe a single point in the competition map, 402 

denoted by the gray circle in Fig. 5E (top). This experiment occupies Region C, which indicates that despite 403 

the 41.5% increase in implicit error sensitivity, the total amount of implicit learning will increase by less 404 

than 5% (Fig. 5E, bottom). In other words, the competition equation suggests the possibility that savings 405 

could have occurred in the implicit system but was hidden by a dramatic increase in explicit strategy. 406 

To test this prediction, we can suppress explicit adaptation, thus eliminating competition (Fig. 5F, 407 

middle). Such an intervention would move our experiment from Region C to Region D (Fig. 5F, top) where 408 

we will observe greater change in the implicit process (Fig. 5D, bottom). Thus, we performed a new 409 

experiment to test this prediction. 410 

 411 

Savings in implicit learning is unmasked by suppression of explicit strategy 412 

The key prediction is that removal of explicit strategy will unmask savings in implicit learning (Fig. 5F). We 413 

exposed participants (Experiment 3) to two 30° rotations, separated by an intervening period of washout. 414 

To suppress explicit strategy, we forced participants to move under strict reaction time constraints on 415 

every trial. As a result, participants reached to each of the four targets with a latency of approximately 416 

200 ms (Fig. 6B, top), nearly 100 ms sooner than the Low PT condition used in our earlier experiment28 417 

(Fig. 6A). When reaction time was limited on all trials, the learning rate during the second exposure (Fig. 418 

6B, middle) exhibited a marked increase (Fig. 6C, no comp.; Wilcoxon signed rank, p=0.014, Cohen’s 419 

d=0.637). This enhancement in learning developed immediately after perturbation onset (Fig. 6B, bottom; 420 

Fig. 6C, bottom, no comp., paired t-test, p=0.008, Cohen’s d=1.06). 421 

 In summary, when explicit learning was suppressed, Low PT behavior exhibited savings (Fig. 6B). 422 

But when explicit strategies remained active, Low PT behavior did not exhibit any change in learning rate 423 

(Fig. 6A). One possible explanation for these observations is that an implicit system expressible at Low PT 424 

exhibits savings, but this can be masked by competition with explicit strategy. 425 

 426 

Impairments in implicit learning lead to anterograde interference 427 

When two opposing perturbations (say A and B) are experienced in sequence, exposure to perturbation 428 

A decreases the rate of learning in B (anterograde interference). Like savings29,32,48,49, we recently 429 
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suggested that impaired learning in B is caused by a change in error sensitivity26. Might this change in 430 

error sensitivity depend on the implicit learning system? 431 

We exposed two groups of participants to opposing visuomotor rotations of 30° and -30° in 432 

sequence (Experiment 4). In one group, the perturbations were separated by a 5-minute break (Fig. 7A). 433 

In a second group, the break was 24 hours in duration (Fig. 7B). We suppressed explicit strategies by 434 

strictly limiting reaction time. Under these constraints, participants executed movements at latencies 435 

slightly greater than 200 ms (Figs. 7A&B, middle, blue). These reaction times were approximately 50% 436 

lower than those observed when no reaction time constraints were imposed on participants, as in Lerner 437 

& Albert et al.26 (Figs. 7A&B, middle, green). 438 

 We found that implicit adaptation during the second rotation period was significantly impaired 439 

after a 5-minute break (Fig. 7A, bottom). The rate of implicit learning decreased by approximately 75% 440 

(Fig. 7C, 5min, limit). Passage of time partially improved this deficit (Fig. 7B, bottom). When the rotations 441 

were separated by a 24 hr break, implicit learning rate was impaired by only 55% (Fig. 7C, 24 hr, limit).  442 

Thus, we can conclude that suppression of explicit strategy revealed an anterograde deficit in 443 

implicit learning that did not completely resolve after 24 hours, perhaps even stronger than that observed 444 

when no reaction time constraints are imposed26 (Fig. 7C, Lerner et al. (2020), no limit; see Discussion). 445 

 446 

The implicit system may adapt to multiple target errors at the same time 447 

The idea that a single shared error drives both implicit and explicit learning is quite surprising. After all, in 448 

earlier work by Mazzoni and Krakauer12, it appeared that implicit learning was driven by outcome-449 

independent prediction errors (Eq. (2)) that were unaltered by explicit strategy. Yet, in Figs. 1-7, implicit 450 

learning clearly depended, at least in part, on target error, and exhibited clear interactions with explicit 451 

strategy. How does one reconcile the current results with the results of Mazzoni and Krakauer? 452 

 To explore this question, we revisited these earlier experiments. In Mazzoni and Krakauer, we 453 

tested two sets of participants. In the no-strategy group, participants adapted to a standard 45° rotation 454 

(Fig. 8A, blue, no-strategy, adaptation) followed by washout (Fig. 8A, blue, no-strategy, washout). In a 455 

second group, participants made two initial movements with the rotation (Fig. 8A, red, strategy, 2 456 

movements no instruction). Then we told participants to aim towards a neighboring target (45° away) 457 

which entirely compensated for the rotation. Unlike the experiments described in Figs. 1-7, in which only 458 

the primary target was visible, in Mazzoni and Krakauer both the primary target and the aiming target 459 

were always visible. Participants immediately adopted the aiming strategy, bringing error with respect to 460 

the primary target to zero (Fig. 8A, red, strategy, instruction). Surprisingly, after eliminating this error, 461 

their movement angles gradually drifted beyond the primary target, overcompensating for the rotation. 462 

These involuntary changes implicated an implicit process. 463 

 When we compared the rate of learning with and without strategy, we found that it was not 464 

different over the initial exposure to the perturbation (Fig. 8B, gray, compare learning rates; compare 465 

mean adaptation over first 24 movements, two-sample t-test, p=0.223). This suggested that implicit 466 

adaptation was unaltered by the abrupt change in explicit strategy, and equally importantly, was not 467 

driven by error between the cursor and target (Eq. (1)), but rather by a sensory prediction error (Eq. (2)). 468 

 However, there remained an unsolved puzzle. While the initial rates of adaptation were the same 469 

irrespective of strategy, adaptation diverged later in learning (Fig. 8B, compare strategy and no-strategy 470 

curves after the initial gray region; two-sample t-test, p<0.005), with the no-strategy group achieving 471 
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greater implicit learning (see aftereffect in Fig. 8C; two-sample t-test, p<0.005). Might these late 472 

differences have been caused by participants in the strategy group abandoning the explicit strategy as it 473 

led to larger and larger errors? This possibility seemed unlikely. When we asked participants to stop re-474 

aiming (Fig. 8A, do not aim rotation on) their movement angle changed by 47.8° (difference between 3 475 

movements before and 3 movements after instruction), indicating that they had continued to maintain 476 

the instructed explicit re-aiming strategy near 45°. 477 

 We wondered if interactions between implicit and explicit learning could help solve these puzzles. 478 

First, we considered the competition model that best described the experiments in Figs. 1-7. In this model, 479 

the implicit system is driven exclusively by error with respect to the primary target (Eq. (1)), which is 480 

shared with explicit strategy (Fig. 8D, top, e1). While this model predicted learning in the standard no-481 

strategy condition, it failed to account for the drift observed when participants were given an explicit 482 

strategy (Fig. 8D, no learning in strategy group). This was not surprising. If implicit learning is driven by the 483 

primary target’s error, it will not adapt in the strategy group because participants explicitly reduce target 484 

error to zero at the start of adaptation (note that -45° in Fig. 8D actually means a 0° primary target error). 485 

 We next considered the possibility that implicit learning was driven exclusively by error with 486 

respect to the aimed target (target 2, Fig.  8E, top, e2), as we concluded in our original study12. While this 487 

model correctly predicted implicit learning in both the no-strategy and strategy conditions, it could not 488 

account for any differences in learning that emerged later during the adaptation period (Fig. 8E, bottom). 489 

 Finally, we noted that participants in the strategy group were given two contrasting goals. One 490 

goal was to aim for the secondary target, whereas the other goal was to move the cursor through the 491 

primary target (both targets were always visible). Therefore, we wondered if participants in the strategy 492 

group learned from two distinct errors: cursor with respect to target 1, and cursor with respect to target 493 

2 (Fig. 8F, top). In contrast, participants in the no-strategy group attended solely to the primary target, 494 

and thus learned only from the error between the cursor and target 1. Thus, we imagined that implicit 495 

learning in the strategy group was driven by the two different kinds of target error: 496 
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These two modules then combined to determine the total amount of implicit learning (i.e., xi = xi,1 + xi,2). 498 

Remarkably, when we applied the dual target error model (Eq. (6)) to the strategy group, and the 499 

single target error model (Eqs. (1) & (3)) to the no-strategy group, the same implicit learning parameters 500 

(ai and bi) closely tracked the observed group behaviors (black model in Fig. 8B). These models correctly 501 

predicted that initial learning would be similar across the strategy and no-strategy groups (compare curves 502 

in gray region in Fig. 8F bottom), but would diverge later during adaptation. How was this possible? 503 

 In Fig. 8G (left), we show how the errors with respect to the primary target and the aiming target 504 

evolve as a function of time for the dual target model. Due to the instructed strategy, primary target error 505 

is reduced to zero at the start of adaptation (see Fig. 8G, original target error curve). Therefore, early in 506 

learning, the implicit system is driven predominantly only by one error source in both the strategy and no-507 

strategy groups, leading to similar adaptation rates. However, as the error with respect to the aimed 508 

target decreases, error with respect to the primary target increases but in the opposite direction (Fig. 8G; 509 

see schematic in Fig. 8F for intuition). Therefore, the primary target error opposes further adaptation to 510 
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the aiming target error. This counteracting force causes implicit adaptation to saturate prematurely. 511 

Hence, participants in the no-strategy group, who do not experience this error conflict, adapt more. 512 

 This re-analysis suggests that when people move a cursor to one visual target (Objective 1), while 513 

aiming at another visual target (Objective 2), each target appears to contribute a separate implicit error 514 

source. When these two error sources conflict with one another, the implicit learning system can exhibit 515 

an unintuitive attenuation in the total amount of adaptation. Thus, while explicit strategies can suppress 516 

implicit learning via competition (Figs. 1-7), a different type of suppression can occur when parallel implicit 517 

learning systems attempt to solve two conflicting objectives, as in Fig. 1B. 518 

 519 

The persistence of sensory prediction error, in the absence of target error 520 

Our re-analysis in Figs. 8A-G, suggested that when participants use a second target to aim their reach, this 521 

additional landmark creates a second implicit error source. To what extent does this error depend on the 522 

target’s physical presence in the workspace? Taylor & Ivry21 tested this idea, repeating the instruction 523 

paradigm used by Mazzoni and Krakauer, though with nearly 4 times the number of adaptation trials (Fig. 524 

8H, instruction with target, black). Interestingly, while the reach angle exhibited the same implicit drift 525 

described by Mazzoni and Krakauer, with many more trials participants eventually counteracted this drift 526 

by modifying their explicit strategies, bringing their target error back to zero (Fig. 8H, black). At the end of 527 

adaptation, participants exhibited large implicit aftereffects after being instructed to no longer aim (Fig. 528 

8H, right, aftereffect; t(9)=5.16, p<0.001, Cohen’s d=1.63). 529 

 However, in a second experiment, participants were taught how to re-aim their reach angles 530 

during an initial baseline period, but during adaptation itself, they were not provided with physical aiming 531 

targets (Fig. 8H, instruction without target). Thus, in this case, only an SPE could drive implicit adaptation 532 

towards the aimed location. Even without physical aiming landmarks, participants immediately eliminated 533 

error at the primary target after being instructed to re-aim (Fig. 8H, middle, yellow). Remarkably however, 534 

without the physical aiming target, these participants did not exhibit an implicit drift in reach angle at any 535 

point during the adaptation period, and exhibited only a small implicit aftereffect during the washout 536 

period (Fig. 8H, right, t(9)=3.11, p=0.012, Cohen’s d=0.985). In fact, the aftereffect was approximately 3 537 

times larger when participants aimed towards a physical target during adaptation than when this target 538 

was absent (Fig. 8H, right, aftereffect; two-sample t-test, t(18)=2.85, p=0.012, Cohen’s d=0.935). 539 

 Thus, these data suggested a remarkable depth to the implicit system’s response to error. While 540 

implicit adaptation was greatest in response to a target error, removal of the physical target still resulted 541 

in what appeared to be SPE-driven learning, albeit to a smaller degree. 542 

 543 

Discussion 544 

Sensorimotor adaptation benefits from learning in two parallel systems: one that has access to explicit 545 

knowledge11,51, and another that relies on implicit, unconscious correction12,13,45. Here we show that each 546 

system is responsive to task-related errors between the subject’s cursor and the target17,23. In such cases, 547 

when the error is shared competition occurs between these systems, such that when the explicit system 548 

increases its response, errors are more rapidly depleted, thus decreasing the driving force for implicit 549 

adaptation as in Fig. 1A. This model suggests that an explicit strategy can potentially mask changes in 550 

implicit error sensitivity (Fig. 4). Indeed, suppressing the explicit strategy unveiled strong increases (Fig. 551 
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6) and decreases (Fig. 7) in putative implicit adaptation that were consistent with two hallmarks of 552 

learning: savings and interference. 553 

 However, in various cases, this task error could not explain implicit adaptation by itself. For 554 

example, when participants aimed their hand to one visual target, but the cursor to another visual target, 555 

the implicit system appeared to balance two errors (Fig. 8): an error with respect to the primary target, 556 

and an error with respect to the aimed target, an SPE. These two errors were coupled together such that 557 

decreases in error with respect to the aimed target would increase error with respect to the primary 558 

target. Thus, the data suggested a second way that the implicit system can exhibit competition: two 559 

separate implicit learning modules can interfere with one another when they try to solve conflicting 560 

objectives (Fig. 1B). 561 

 Describing sensorimotor adaptation in terms of explicit and implicit contributions is important 562 

because these systems may rely on different neural structures. Explicit learning mechanism are likely 563 

dependent on cortical involvement43,52,53, whereas implicit learning mechanisms at least partly engage the 564 

cerebellum7,20,54–58. Our results suggest that in some learning contexts, these two systems can compete 565 

with each other, as they strive to respond to a common error. 566 

 567 

Flexibility in the implicit response to error and the properties of savings and interference 568 

When two similar sensorimotor perturbations are experienced in sequence, the rate of relearning is 569 

enhanced during the second exposure28,29,32,49,59. This hallmark of memory60,61 is referred to as savings. 570 

Savings is often quantified based on differences in the learning curves for each exposure28,34, or the rate 571 

of adaptation62. While these conventions are intuitive, they are based on an important underlying 572 

assumption: when one learning component’s properties change, its contribution to overall adaptation will 573 

also change. Here we describe why this intuition may not always be true. 574 

 The state space model9,39,40 quantifies behavior using two process: learning and forgetting. This 575 

model describes savings as a change in one’s sensitivity to error29,32,48. When similar errors are experienced 576 

on consecutive trials, the brain becomes more sensitive to their occurrence and responds more strongly 577 

on subsequent trials37,48,63. Generally, as error sensitivity increases, so too does the rate at which we adapt 578 

to the perturbation (e.g., High PT trials in Fig. 4). However, under certain circumstances, changes in one’s 579 

implicit sensitivity to error may not lead to differences in measured behavior (e.g., Low PT trials in Fig. 4). 580 

The reason is competition. If implicit systems adapt to target errors (Eq. (1)), they are altered not 581 

solely by the rotation but also explicit strategy. When strategy is enhanced, it reduces the error available 582 

for implicit learning. Therefore, although the implicit system may become more sensitive to error, this 583 

increase in sensitivity is canceled out by the decrease in error size. If true, this would mean that implicit 584 

processes can change in ways that are hidden within measured behavior. 585 

For example, recent lines of evidence have suggested that increases in learning rate depend solely 586 

on the explicit recall of past actions. Implicit adaptation does not seem to contribute to faster re-learning, 587 

whether its magnitude is measured through verbal reports34, or by restricting movement preparation 588 

time28,33 (Fig. 4). These data might suggest that the implicit system is unaltered by past experience. 589 

However, when reaction time is limited during both exposures, thus suppressing explicit contributions to 590 

behavior, we found that the implicit system exhibited savings (Fig. 6). This would be consistent with recent 591 

evidence that savings requires the presence of task-related errors17, which can be siphoned away by the 592 

explicit system. Thus, what appears to be a disconnect between studies that have detected increases in 593 
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only the explicit learning rate28,33–36, and studies that have detected increases in the implicit learning 594 

rate17,37,38, may actually be consistently described by the competition equation (Eq. (4)). 595 

This competition equation can be used to construct a map that describes how implicit adaptation 596 

should change based on the properties of implicit and explicit systems. When both implicit and explicit 597 

systems become more sensitive to error, the explicit response can hide changes in the implicit response 598 

(Fig. 5B, Region C). In fact, drastic enhancement in explicit adaptation could even lead to a decrease in 599 

implicit learning, even when implicit error sensitivity has increased (Fig. 5B, Region B). Indeed this 600 

prediction might explain cases whereby re-exposure to a rotation increases explicit strategies, but appears 601 

to attenuate implicit learning33,36,64. For example, a recent study by Huberdeau and colleagues33, seven 602 

exposures to a rotation led to caching of the explicit strategy, with a simultaneous decrease in the implicit 603 

aftereffect. However, such a mechanism cannot account for decreases in implicit learning seen in 604 

response to invariant error-clamp perturbations36, which presumably are free of explicit strategy. 605 

Recent studies have shown that with multiple exposures to a visuomotor rotation, the explicit 606 

response to the perturbation can be cached and expressed at lower reaction times33,47. Could caching of 607 

an explicit strategy have contributed to the savings we measured under reaction time constraints in 608 

Experiment 3 (Fig. 6)? This possibility seems unlikely. First, there appears to be little such caching after 609 

only two exposures to a rotation. Otherwise, Haith and colleagues28 should also have observed savings on 610 

Low PT trials. In addition, the rotation occurred at four separate targets in Experiment 3, but only one 611 

target in Haith and colleagues. Lastly, reaction time constraints in Experiment 3 induced shorter reach 612 

latencies (nearing 200 ms), than those used by Haith and colleagues (300 ms). These conditions would be 613 

expected to suppress explicit caching. Nevertheless, future studies are needed to better understand the 614 

conditions (e.g., number of targets, reaction time constraints) that permit caching of the explicit process, 615 

and how these cached responses interact with implicit learning. 616 

 Finally, it is important to distinguish between reductions in implicit adaptation which appear to 617 

be driven by explicit suppression, versus those that are caused by a direct impairment in the implicit 618 

response to error. For example, when two opposing perturbations are experienced sequentially, the 619 

response to the second exposure is impaired by anterograde interference9,25,27,65. Recently, we linked 620 

these impairments in learning rate to a transient reduction in error sensitivity which recovers over time26. 621 

Here, we limited reaction time to isolate the potential implicit contributions to this impairment. 622 

Impairments in the implicit system were large and long-lasting (Fig. 7C), persisting even after 24 hours. 623 

Interestingly, when we performed a similar experiment without restricting reaction time26, we 624 

found a smaller impairment in learning rate that almost fully recovered after 24 hours (Fig. 7C, no limit). 625 

These differences might suggest that uninhibited explicit strategies compensate for lingering deficits in 626 

implicit adaptation. In fact, Leow and colleagues17 recently demonstrated that prior exposure to task 627 

errors in one direction increases the rate at which participants explicitly adapt to a visuomotor rotation in 628 

the opposite direction, suggesting that explicit strategies might exhibit improvements rather than 629 

impairments during interference protocols. However, it is important to point out that our reaction time-630 

limited experiment in Fig. 7, differed from our earlier work26 (see Methods; reaching versus pointing as 631 

well as differences in trial count). Thus, our data motivate the need for future experiments to understand 632 

how explicit strategies contribute to adaptation during anterograde interference. 633 

 634 

Competition-driven enhancement and suppression of implicit adaptation 635 
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Our data caution that when implicit learning increases or decreases, this does not necessarily mean that 636 

the implicit system has altered its response to error. 637 

 For example, when participants are made aware of a visuomotor rotation before it is introduced, 638 

their explicit response is drastically enhanced15,16. These increases in explicit strategy are coupled to 639 

decreases in implicit adaptation. A similar phenomenon can be observed in other experiments where 640 

participants are provided with visual landmarks scattered on either side of the target. When participants 641 

use these landmarks to report their intended aiming direction, reporting frequency increases explicit 642 

strategy use, but decreases implicit adaptation66–68. Furthermore, participants themselves exhibit varying 643 

degrees of strategy, leading to negative subject-to-subject associations between implicit and explicit 644 

learning15,16,41 (Fig. 3). 645 

Given these changes in implicit adaptation, it may at first seem surprising that in some cases, 646 

implicit learning remains constant across large changes in perturbation magnitude15,69. For example, in 647 

Neville and Cressman15, while awareness decreased implicit adaptation, the implicit aftereffect was 648 

mostly invariant across each rotation size (Fig. 1). Notably, the competition equation (Eq. (4)) can again 649 

account for this observation. This equation shows that the driving force for adaptation is not the size of 650 

the rotation alone, but rather the difference between the rotation and explicit strategy (Fig. S1D). 651 

 This competition between implicit and explicit adaptation helps to reveal the errors which drive 652 

implicit learning. This competitive relationship (Eq. (4)) naturally arises when implicit systems are driven 653 

by errors in task outcome (Eq. (1)), but not errors between the cursor and intended aiming angle (Eq. (2)). 654 

We can observe these negative interactions not solely when enhancing explicit strategy, but also when 655 

suppressing re-aiming. For example, in cases where perturbations are introduced gradually, thus reducing 656 

conscious awareness, implicit “procedural” adaptation appears to increase38,42,70 (Fig. 2). Similarly, when 657 

participants are required to move with minimal preparation time, thus suppressing time-consuming 658 

explicit re-aiming28,41,47, the total extent of implicit adaptation also appears to increase37,41. 659 

 Lastly, competition may help to describe not only why implicit learning can vary across two 660 

experimental conditions, but also across individuals within a single experiment as in Fig. 3H. In one prime 661 

example, Miyamoto and colleagues14 exposed participants to a sum-of-sines rotation. Curiously, 662 

participants with more vigorous explicit responses to the perturbation exhibited less vigorous implicit 663 

learning. In a second example, Fernandez-Ruiz and colleagues41 observed that participants who increased 664 

their movement preparation time rapidly counteracted a rotation, but also exhibited smaller aftereffects 665 

during washout. And as a third example, when Bromberg et al.68 measured eye movements during 666 

adaptation, participants who tended to look towards their re-aiming locations not only exhibited greater 667 

explicit strategies, but less implicit adaptation. 668 

 In other words, participants that used cognitive strategies to adapt exhibited less procedural 669 

learning41. To explain these individual correlations, Miyamoto et al.14 suggested that there may be an 670 

intrinsic relationship between implicit and explicit sensitivity to error: when an individual’s explicit error 671 

sensitivity is high, their implicit error sensitivity is low. Here our results describe a different way to account 672 

for the same observation (Fig. 3H).  In Experiment 1, we used the competition equation (Eq. (4)) to predict 673 

each individual’s implicit adaptation from their measured explicit strategy, assuming each participant had 674 

the same sensitivity to error. This one equation accurately accounted for the inverse relationship between 675 

implicit and explicit aftereffects. Thus, negative individual-level correlations between implicit and explicit 676 
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adaptation can arise from subject-to-subject variation in strategy, even when implicit error sensitivity is 677 

invariant across participants. 678 

 Finally, it is important to consider how generalization may have altered our implicit learning 679 

measures. Earlier studies have shown that when participants are asked to report their aiming direction 680 

using a ring of visual landmarks, implicit learning generalizes around the reported aiming direction71,72. 681 

Thus, participants who aim further away from the target may show smaller implicit adaptation when 682 

asked to “move straight to the target” simply due to generalization. However, the expected magnitude of 683 

this effect (≈5°; see Fig. S5B for aim-target displacement71 of 22.5° and S3A for aim-target displacement72 684 

of 30°) does not seem large enough to account for the large variation we measured in implicit adaptation 685 

(ranges of 17° in Fig. 2F, 32° in Fig. 3D, 14° in Fig. 3H, 17° in Fig. 3L). In the studies considered here, 686 

participants trained at either 3 (Fig. 1), 4 (Figs. 3H&L), 8 (Fig. 3D), or 12 (Fig. 2) targets, as opposed to 1 687 

target in these earlier generalization studies71,72 (Figs. S3A and S3B). Thus, generalization-based decreases 688 

in implicit learning would likely be smaller in the current work, given that the generalization function 689 

widens with additional training targets73,74. 690 

Along these lines, Neville and Cressman15 asked whether implicit learning varied across their 3 691 

training targets, 2 of which corresponded with an “aim solution”, 1 of which did not; they did not find any 692 

change in implicit learning across each target. In addition to differences in training targets, the studies 693 

considered here did not use aiming reports to measure explicit learning, which were employed on each 694 

trial to measure aim direction in the earlier generalization studies. This may play another important role 695 

in the generalization function. For example, in these earlier generalization studies implicit learning 696 

measured via reporting was larger than that measured when reaching straight to the target (Fig. S5C), due 697 

to generalization. However, in Experiment 1, when we asked participants to report their aim at the end 698 

of adaptation, we found greater implicit learning on the straight-ahead reaching probes, than in the aim 699 

reports (Fig. S5E), opposite the generalization expectation. A similar phenomenon was noted recently 700 

when aim reports were used sparsely during adaptation75 (Fig. S5D). All in all, while it does not seem that 701 

generalization played a major role in our primary results, future studies are needed to measure how 702 

generalization may differ across tasks, as well as different types of error signals (e.g., target error vs. SPE).   703 

 704 

Error sources that drive implicit adaptation 705 

Mazzoni and Krakauer12 exposed participants to a visuomotor rotation, but also provided instructions for 706 

how to re-aim their hand to achieve success. While participants immediately used this strategy to move 707 

the cursor through the target, the elimination of task error failed to stop implicit adaptation. These data 708 

suggested that implicit systems responded to errors in the predicted sensory consequence of their 709 

actions20,76, rather than errors in hitting the target. 710 

 However, such a model, where implicit systems learn solely based on the angle between aiming 711 

direction and the cursor (Eq. (2)), could not account for the implicit-explicit interactions we observed in 712 

some of the data (Figs. 1-3). These interactions could only be described by an implicit error source that is 713 

altered by explicit strategy, such as the angle between the cursor and the target (Eq. (1)). For example, in 714 

Experiments 1&2, participants did not aim straight to the target, but rather adjusted their aiming angle 715 

by 5-20° (Fig. 3). These changes in re-aiming appeared to alter implicit adaptation via errors between the 716 

cursor and the target. This target-cursor error source (Eq. (1)) used in our state-space model (Eq. (3)) 717 
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appeared to provide an accurate account of short-term visuomotor adaptation across a number of 718 

studies14–16,24,37,41,42. 719 

 We do not mean to suggest however, that implicit adaptation is solely driven by a single target 720 

error. In fact, there are many cases where this idea fails11,12,21, beyond the Mazzoni and Krakauer study. 721 

We speculate that one feature which alters implicit learning is the simultaneous presence of multiple 722 

visual targets. In Figs. 1-7, there was only one visual target on the screen at a time. However, in Mazzoni 723 

and Krakauer (Fig. 8), there were two important visual targets: the adjacent target towards which 724 

participants explicitly aimed their hand, and the original target towards which the cursor should move. 725 

Thus, in theory there were two potential visual target errors. Interestingly, when we considered the 726 

possibility that the implicit system adapted to both errors at the same time, we could more completely 727 

account for these earlier data (Fig. 8F). 728 

 The idea that both kinds of visual error (cursor with respect to the primary target, and cursor with 729 

respect to the aimed target) drive implicit learning, could potentially help to describe other confounding 730 

observations. For example, in cases where landmarks are provided to report explicit aiming11,24,72, target-731 

cursor error is often rapidly eliminated, but implicit adaptation continues to increase over time. Our dual-732 

error model (Eq. (6)) would explain this continued adaptation based on persistent aim-cursor error. 733 

 However, the nature of this aim-cursor error remains rather uncertain. For example, while this 734 

error source generates strong adaptation when the aim location coincides with a physical target (Fig. 8H, 735 

instruction with target), implicit learning is observed even in the absence of a physical aiming landmark21 736 

(Fig. 8H, instruction without target), albeit to a smaller degree. This latter condition strongly implicates an 737 

SPE learning mechanism. Thus, it may be that the aim-cursor error is actually an SPE that is enhanced by 738 

the presence of a physical target. In this view, implicit learning is driven by a target error module and an 739 

SPE module that is enhanced by a visual target error17,23,77. These various implicit learning modalities are 740 

likely strongly dependent on both implicit and explicit contexts, in ways we do not currently understand. 741 

We speculate that the cerebellum might play an important role in this model of implicit 742 

adaptation55,57,78–80. Current models propose that complex spikes in Purkinje cells (P-cells) in the cerebellar 743 

cortex lead to LTD (Marr-Albus-Ito hypothesis). These complex spikes are reliably evoked by olivary input 744 

in response to a sensory error79,81,82. However, different P-cells are activated by different error directions, 745 

thus organizing P-cells into error-specific subpopulations81,82. Therefore, our model suggests that two 746 

different sources of error might simultaneously transduce learning in two different P-cell subpopulations, 747 

which then combine their adapted states into a total implicit correction at the level of the deep nuclei. 748 

Thus, errors based on the original target, and the aiming target, might simultaneously activate two implicit 749 

learning modules in the cerebellum (Fig. 8G). 750 

Alternatively, it is equally possible that these aim-cursor errors and target-cursor errors engage 751 

separate brain regions both inside and outside the cerebellum. In this view, an interesting possibility is 752 

that patients with cerebellar disorders may have learning deficits20,54,56,83,84 specific to one error but not 753 

the other. These possibilities remain to be tested. 754 

 755 

  756 
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Methods 757 

Here we describe the experiments and corresponding analysis reported in the main text. Much of this 758 

work involves reevaluation of earlier literature; this includes data from Haith and colleagues28 in Figs. 4&6, 759 

data from Lerner and Albert et al.26 in Fig. 7, data from Neville and Cressman15 in Fig. 1, data from Saijo 760 

and Gomi42 in Fig. 2, data from Fernandez-Ruiz et al.41 in Fig. 3, data from Mazzoni and Krakauer12 in Fig. 761 

8, and data from Taylor and Ivry21 in Fig. 8. Furthermore, some generalization data71,72 was considered in 762 

Fig. S5. The relevant details of these studies are summarized in the sections below alongside the new data 763 

collected for this work (Experiments 1-4). 764 

 765 

Participants 766 

A detailed description of participants in Haith and colleagues28 (n=14), Lerner and Albert et al.26 (n=34 for 767 

5 min and 24 hr groups), Neville and Cressman15 (n=63), and Mazzoni and Krakauer12 (n=18), Saijo and 768 

Gomi42 (n=9 for abrupt, n=9 for gradual), Fernandez-Ruiz et al.41 (n=9), and Taylor and Ivry21 (n=10 for 769 

instruction with visual target, n=10 for instruction without visual target) are described in their respective 770 

papers. All volunteers (ages 18-62) in Experiments 1-4 were neurologically healthy and right-handed. 771 

Experiment 1 include n=9 participants (5 Male, 4 Female) in the No PT limit group and included n=13 772 

participants (6 Male, 7 Female) in the PT Limit group. Experiment 2 included n=17 participants (10 Male, 773 

7 Female). Experiment 3 included n=10 participants (6 Male, 4 Female). Experiment 4 included n=20 774 

participants (10 Male, 10 Female). Experiments 1-4 were approved by the Institutional Review Board at 775 

the Johns Hopkins School of Medicine. 776 

 777 

Apparatus 778 

In Experiments 1, 3, and 4 participants held the handle of a planar robotic arm and made reaching 779 

movements to different target locations in the horizontal plane. The forearm was obscured from view by 780 

an opaque screen. An overhead projector displayed a small white cursor (diameter = 3mm) on the screen 781 

that tracked the motion of the hand. Throughout testing we recorded the position of the handle at 782 

submillimeter precision with a differential encoder. Data were recorded at 200 Hz. Protocol details were 783 

similar for Haith and colleagues28, Neville and Cressman15, Saijo and Gomi42, and Fernandez-Ruiz et al.41 in 784 

that participants gripped a two-link robotic manipulandum, were prevented from viewing their arm, and 785 

received visual feedback of their hand position in the form of a visual cursor. In Lerner and Albert et al.26, 786 

participants performed pointing movements with their thumb and index finger while gripping a joystick 787 

with their right hand. In Mazzoni and Krakauer12, participants rotated their hand to displace an infrared 788 

marker placed on the index finger. In Taylor and Ivry21, hand position was tracked via a sensor attached 789 

to the index finger while participants made horizontal reaching movements along the surface of a table. 790 

In Experiment 2, participants were tested remotely on their personal computer. They moved a cursor on 791 

the screen by sliding their index finger along the track pad. 792 

 793 

Visuomotor rotation 794 

Experiments 1-4 followed a similar protocol. At the start of each trial, the participant brought their hand 795 

to a center starting position (circle with 1 cm diameter). After maintaining the hand within the start circle, 796 

a target circle (1 cm diameter) appeared in 1 of 4 positions (0°, 90°, 180°, and 270°) at a displacement of 797 

8 cm from the starting circle (in Experiment 2, 8 targets were actually used, spaced in increments of 45°). 798 
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Participants then performed a “shooting” movement to move their hand briskly through the target. Each 799 

experiment consisted of epochs of 4 trials (or 8 trials for Experiment 2) where each target was visited once 800 

in a pseudorandom order. 801 

Participants were provided audiovisual feedback about their movement speed and accuracy. If a 802 

movement was too fast (duration < 75ms) or too slow (duration > 325ms) the target turned red or blue, 803 

respectively. If the movement was the correct speed, but the cursor missed the target, the target turned 804 

white. Successful movements were rewarded with a point (total score displayed on-screen), an on-screen 805 

animation, and a pleasing tone (1000 Hz). If the movement was unsuccessful, no point was awarded and 806 

a negative tone was played (200 Hz). Participants were instructed to obtain as many points as possible 807 

throughout the experimental session.  808 

Once the hand reached the target, visual feedback of the cursor was removed, and a yellow 809 

marker was frozen on-screen to provide static feedback of the final hand position. At this point, 810 

participants were instructed to move their hand back to the starting position. The cursor remained hidden 811 

until the hand was moved within 2 cm of the starting circle. 812 

Movements were performed in one of three conditions: null trials, rotation trials, and no feedback 813 

trials. On null trials, veridical feedback of hand position was provided. On rotation trials, the on-screen 814 

cursor was rotated relative to the start position. On no feedback trials, the subject cursor was hidden 815 

during the entire trial. No feedback was given regarding movement endpoint, accuracy, or timing. 816 

 As a measure of adaptation, we analyzed the reach angle on each trial. The reach angle was 817 

measured as the angle between the hand and the target (relative to the start position), at the moment 818 

where the hand exceeded 95% of the target displacement. 819 

 Experiments in Haith and colleagues28, Lerner and Albert et al.26, Neville and Cressman15, Taylor 820 

and Ivry21, Saijo and Gomi42, Fernandez-Ruiz et al.41, and Mazzoni and Krakauer12 were collected using 821 

similar, but separate protocols. For a full description of these paradigms, please consult the corresponding 822 

manuscripts. Important differences between these experiments and the rotation protocol mentioned 823 

above are briefly described in the sections below. 824 

 825 

Statistics 826 

Parametric (t-test) and nonparametric (Wilcoxon signed-rank test) tests were performed in MATLAB 827 

R2018a. For these tests, we report the p-value, and Cohen’s d as a measure of effect size. 828 

 829 

Competition Map 830 

To illustrate the way implicit and explicit systems might interact, we used a state space model (Eqs. (1-3)) 831 

where implicit and explicit learning were driven by target errors. Similar to the implicit system described 832 

in Eq. (3), we modeled explicit learning as a process of learning and forgetting14,24: 833 

 + = +( 1) ( ) ( )n n n
e e e ex a x b e   (7) 834 

Here, ae and be represent the explicit system’s retention factor and error sensitivity. Together Eqs. (3) and 835 

(7) describe how implicit and explicit systems adapt to error between the target and cursor (Eq. (1)). 836 

Because implicit and explicit systems share a common error source in this target error model, 837 

their responses will exhibit competition. That is, increases in explicit adaptation will necessarily be coupled 838 

to decreases in implicit adaptation. To summarize this interaction, we created a competition map. The 839 
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competition map describes common scenarios in which the goal is to compare two different learning 840 

curves. For example, one might want to compare the response to a 30° visuomotor rotation under two 841 

different experimental conditions. Another example would be savings, where we compare adaptation to 842 

the same perturbation at two different timepoints. In these cases, it is common to measure the amount 843 

of implicit and explicit adaptation, and compare these across conditions or timepoints. 844 

The critical point is that changes in the amount of implicit adaptation reflect the modulation of 845 

both implicit and explicit responses to error. To demonstrate this idea, we needed a way to quantify the 846 

amount of implicit adaptation. For this, we chose the steady-state amount of implicit learning. As 847 

described in the main text, the steady-state level of implicit adaptation can be derived from Eqs. (1-3). 848 

This derivation resulted in the competition equation shown in Eq. (4). Note that Eq. (4) predicts the steady-849 

state level of implicit learning from the implicit retention factor, implicit error sensitivity, mean of the 850 

perturbation, and critically, the steady-state explicit strategy. If the explicit system is also described using 851 

a state space model as in Eq. (7), it is easy to show that Eq. (4) can be equivalently expressed in terms of 852 

the implicit and explicit learning parameters according to Eq. (8): 853 
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a b b b
  (8) 854 

Eq. (8) provides the total amount of implicit adaptation as a function of the retention factors, ai and ae, as 855 

well as the error sensitivities, bi and be. We used Eq. (8) to construct the competition map in Fig. 5A, by 856 

comparing the total amount of implicit learning across a reference condition and a test condition. 857 

 For our reference condition, we fit our state space model to the mean behavior in Haith et al.28 858 

(Fig. 4B, Day 1, left). This model best described adaptation during the first perturbation exposure using 859 

the parameter set: as=0.9829, af=0.9278, bs=0.0629, bf=0.0632. Next, we imagined that implicit error 860 

sensitivity and explicit error sensitivity differed across the reference and test conditions. On the x-axis of 861 

the map, we show a percent change in bi from the reference condition to the test condition. On the y-axis 862 

of the map, we show a percent change in be from the reference condition to the test condition. The 863 

retention factors were held constant across conditions. Then for each condition we calculated the total 864 

amount of implicit learning using Eq. (8). The color at each point in the map represents the percent change 865 

in the total amount of implicit learning from the reference condition to the test condition. 866 

 As described in the main text, the competition map (Fig. 5A) is composed of several important 867 

regions (Fig. 5B). In Region A, there is a decrease in implicit error sensitivity (from reference to test) as 868 

well as a decrease in the total amount of implicit adaptation predicted by Eq. (8). In Region B, Eq. (8) 869 

predicts a decrease in implicit adaptation, despite an increase in implicit error sensitivity. In Region D, 870 

there is an increase both in implicit error sensitivity as well as steady-state implicit learning. In Region E, 871 

there is an increase in implicit adaptation, despite a decrease in implicit error sensitivity. Finally, Region C 872 

shows cases where there are changes in implicit error sensitivity, but the total absolute change in implicit 873 

adaptation (Eq. (8)) is less than 5%. To determine this region, we solved for the linear bounds that describe 874 

a 5% increase or a 5% decrease in the output of Eq. (8). 875 

 876 

Neville & Cressman (2018)15 877 

To understand how enhancing explicit strategy might alter implicit learning, we considered data collected 878 

by Neville and Cressman15. Here the authors tested how awareness of a visuomotor rotation altered the 879 
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adaptation process. To do this, participants (n=63) were divided into one of many groups. In the instructed 880 

groups (Fig. 1E, yellow) the nature of the perturbation as well as a compensatory strategy was provided 881 

to the participants prior to the introduction of the perturbation. In other groups, no instruction was 882 

provided (Fig. 1E, gray). During rotation periods, participants reached to three potential targets. Implicit 883 

and explicit contributions to behavior were measured at 4 different periods using “inclusion” and 884 

“exclusion” trials. During exclusion trials, the authors instructed participants to reach (without visual 885 

feedback) as they did during the baseline period prior to perturbation onset (without using any knowledge 886 

of the perturbation gained thus far). During inclusion trials, the authors instructed participants to reach 887 

(without visual feedback) using all knowledge gained about the perturbation. In this way, the aftereffect 888 

measured on exclusion trials served as a measurement of implicit adaptation, and the difference in 889 

aftereffects measured on inclusion and exclusion trials served as a measurement of explicit adaptation. 890 

 At the start of the experiment all participants performed a baseline period without a rotation for 891 

30 trials. Baseline implicit and explicit reach angles were then assayed using inclusion and exclusion trials. 892 

At this point, participants in the strategy group were briefed about the perturbation with an image that 893 

depicted how feedback would be rotated, and how they could compensate for it. Then all groups were 894 

exposed to the first block of a visuomotor rotation for 30 trials. Some participants experienced a 20° 895 

rotation (Fig. 1E, left), others a 40° rotation (Fig. 1E, middle), and others a 60° rotation (Fig. 1E, right). 896 

After this first block, implicit and explicit learning were assayed with inclusion and exclusion trials. This 897 

was followed by a second perturbation block, and another round of inclusion/exclusion trials. Finally, the 898 

experiment ended with a third perturbation block and a final round of inclusion/exclusion trials. 899 

 Here we focused on the measures of implicit and explicit adaptation obtained from inclusion and 900 

exclusion trials at the end of the final block. To obtain these data, we extracted the mean participant 901 

response and the associated standard error of the mean, directly from the primary figures reported by 902 

Neville and Cressman15 using Adobe Illustrator CS6. The implicit and explicit responses in all 6 groups are 903 

shown in Fig. S1. The marginal effects of instruction (average over rotation sizes) and rotation size 904 

(average over instruction conditions) are shown in Figs. 1F and 1G respectively. 905 

 Finally, we tested whether the competition equation (Eq. (4)) or independence equation (Eq. (5)) 906 

could account for the levels of implicit learning observed across rotation magnitude and awareness 907 

conditions. To do this, we used a bootstrapping approach. Using the mean and standard deviation 908 

obtained from the primary figures, we sampled hypothetical explicit and implicit aftereffects for 10 909 

participants. We then calculated the mean across these 10 simulated participants. After this, we used 910 

fmincon in MATLAB R2018a to find an implicit error sensitivity that minimized the following cost function: 911 
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This cost function represents the difference between the simulated level of implicit adaptation, and the 913 

amount of implicit learning that would be predicted for a given perturbation size and simulated explicit 914 

adaptation, according to our competition framework (Eq. (4)) or independence framework (Eq. (5)). For 915 

this process, we set the implicit retention factor to 0.9565 (see Measuring properties of implicit learning). 916 

Therefore, only the implicit error sensitivity remained as a free parameter. In sum, we aimed to determine 917 

if a single implicit error sensitivity could account for the amount of adaptation across the no instruction 918 

group, instruction group, and each of the three perturbation magnitudes (20, 40, and 60°). The 919 
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combination of instruction and perturbation magnitude yielded 6 groups, hence the upper limit on the 920 

sum in Eq. (9). We repeated this process for a total of 10,000 simulated groups. 921 

In Fig. 1F, we show the marginal effect of instruction on the implicit aftereffect. This was obtained 922 

by averaging across each of the 3 rotation magnitudes shown in Fig. S1, for each model. In Fig. 1G we 923 

show the marginal effect on rotation size on the implicit aftereffect. This was obtained by averaging across 924 

the instructed and non-instructed conditions for each rotation size shown in Fig S1, for each model. 925 

 926 

Saijo and Gomi (2010)42 927 

To understand how suppressing explicit strategy might alter implicit learning, we considered data 928 

collected by Saijo and Gomi42. In one of their experiments, the authors tested how perturbation onset 929 

altered the adaptation process. Subjects were divided into either an abrupt (n=9) or gradual group (n=9), 930 

and reached to 1 of 12 targets, which were ordered pseudorandomly in each cycle of 12 trials. After a 931 

baseline period of 8 cycles, a visuomotor rotation was introduced. The perturbation period lasted 32 932 

cycles. After this, the perturbation was removed for 6 cycles of a washout condition. Participants were 933 

exposed to either an abrupt rotation where the perturbation magnitude suddenly changed from 0° to 60°, 934 

or a gradual condition where the perturbation magnitude increased over smaller increments (10° 935 

increments that lasted 3 cycles each; Fig. 2A). 936 

 Here, we considered why participants in the abrupt perturbation condition achieved greater 937 

adaptation during the rotation period (smaller error in Fig. 2C) but exhibited a smaller aftereffect when 938 

the perturbation was removed. Our theory suggested that this may be due to competition. If the gradual 939 

condition suppressed explicit awareness of the rotation38, then Eq. (4) would predict increases in implicit 940 

learning which were observed in the aftereffects measured during the washout period (where explicit 941 

strategies were disengaged). However, the SPE model (Eq. (5)) would predict the same amount of implicit 942 

adaptation: the same aftereffect in each condition. 943 

 To test these hypotheses, we simulated implicit adaptation using the state-space model in Eq. (3). 944 

In Fig. 2D, we used an SPE for the error term in Eq. (3). In Fig. 2E, we used the target error for the error 945 

term in Eq. (3). We imagined that the total reach angle was determined based on the sum of implicit and 946 

explicit learning. However, these authors did not directly measure explicit strategies. Fortunately, Neville 947 

and Cressman15 measured explicit strategies using inclusion and exclusion trials during a 60° abrupt 948 

rotation (yellow points, explicit aim in Figs. 2D&E). 949 

We used these measurements in our abrupt simulations. Neville and Cressman observed that 950 

explicit strategies rapidly reached 35.5° and remained stable during adaptation. To approximate these 951 

data, we simulated abrupt explicit strategy using the exponential curve: xe = 35.5 - 10e-2t (Figs. 3D&E, 952 

explicit aim, black line). Note that the nature of this exponential curve is entirely inconsequential to our 953 

analysis, apart from its saturation level. Outside of the rotation period, we assumed explicit strategy was 954 

zero. This is consistent with data from Morehead et al.34 that showed almost immediate disengagement 955 

in aiming strategy during washout (Fig. S2). For the gradual condition, we assumed explicit strategy was 956 

zero throughout the entire experiment (Figs. 3D&E, explicit aim, gradual), as the participants remained 957 

largely unaware of the rotation. This seemed consistent with the data; gradual participants adapted 958 

approximately 40°, and exhibited an aftereffect of about 38°, indicating a re-aiming angle less than even 959 

5°. Note, our primary results (Fig. 2F) were unchanged in a sensitivity test where we assumed 10° of re-960 

aiming in the gradual group (not shown). 961 
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Thus, our simulations included two free parameters: error sensitivity (bi) and retention faction (ai) 962 

for the implicit system. In each simulation, we assumed that these parameters were identical across the 963 

gradual and abrupt groups. To fit these parameters, we minimized the following cost function: 964 

 
( ) ( ) 2 ( ) ( ) 2ˆ ˆargmin ( ) ( )n n n n

fit abrupt abrupt gradual gradual
n

e e e e


 = −+−     (10) 965 

Eq. (10) is the sum of squared errors between the directional errors predicted by the model (Figs. 2D&E, 966 

directional error) and observed in the data (Fig. 2C) across all trials in the abrupt and gradual conditions. 967 

Note that each simulation incorporated variability. We simulated noisy directional errors using the 968 

standard errors shown in the data in Fig. 2C. In the explicit state, we added variability to each trial using 969 

the standard error in explicit strategy reported by Neville and Cressman15. For the implicit state, we used 970 

20% of the explicit variability, given that aiming strategies are more variable than implicit corrections14. 971 

We repeated these simulations 20,000 times, each time resampling our noise sources and then fitting our 972 

parameter set (ai and bi) by minimizing Eq. (10) with fmincon in MATLAB R2018a. The mean implicit curve 973 

for the SPE learning model and target error learning model are shown in Figs. 2D and 2E respectively 974 

(implicit angle; mean ± SD). Critically, in each simulation we measured the aftereffect that occurred on 975 

the first cycle of the washout period (Figs. 2D&E, aftereffect). The mean and standard deviation in these 976 

aftereffects is reported in Fig. 2F. 977 

Finally, note that we obtained the directional errors in Fig. 2C used in our simulations, directly 978 

from the primary figure in the original manuscript (using the GRABIT routine in MATLAB R2018a). Please 979 

also note in the actual experiment, on some trials (7.1% of all trials), the perturbation was introduced 980 

midway during the reach to test feedback corrections at only 1 target location (the 0° target). These trials 981 

were not relevant for our current analysis. Otherwise, the visuomotor rotation was applied during the 982 

entire movement as in the standard paradigm. Also note that because the authors were also analyzing 983 

feedback responses, participants made 15 cm movements, with a 0.6 second movement duration at 984 

baseline. Here, we only wanted to consider the feedforward adaptive component. Fortunately, the 985 

authors reported initial movement errors 100 ms following movement onset that could not have been 986 

altered by feedback. Therefore, we used these early measures of adaptation in the current study. 987 

 988 

Fernandez-Ruiz et al. (2011)41 989 

In Figs. 3A-D, we show data collected and originally reported by Fernandez-Ruiz and colleagues41. In this 990 

experiment, participants made 10 cm reaching movements to 1 of 8 targets, pseudorandomly arranged 991 

in cycles of 8 trials. Here we report data from the unconstrained RT group described in the original 992 

manuscript. The experiment started with 3 cycles of null rotation trials, followed by 40 cycles of a 60° 993 

rotation. The experiment ended with a 20-cycle washout period (no rotation) where aftereffects were 994 

assessed. In Figs. 3B&C we show data from 2 example participants reported in the original manuscript. In 995 

Fig. 2D, the change in preparation time was calculated on the last cycle of the rotation period (relative to 996 

the baseline period). The aftereffect is the reach angle on the first cycle of the washout period. In Fig. S3, 997 

we report data from Fig. 3 of the original manuscript. Here the authors calculated the directional error 998 

and the change in preparation time across 5-cycle periods spanning the entire rotation. The points in Fig. 999 

S3 show individual subjects for the first 5 and last 5 rotation cycles. All lines show the linear regression 1000 

across individual subjects in each color-coded period. Note that each line has a negative slope, indicating 1001 

that participants who increased their reaction time more consistently exhibited smaller directional errors 1002 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406777doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406777
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

through the entire rotation period. These data were extracted directly from the primary figures reported 1003 

by Fernandez-Ruiz and colleagues41 using Adobe Illustrator CS6. The R2 value reported in Fig. 2D was 1004 

calculated from these extracted data. 1005 

 1006 

Experiment 1 1007 

To test whether changes in explicit strategy altered implicit learning, we recruited participants for two 1008 

experiments. In the first experiment, participants adapted to a visuomotor rotation without any limits 1009 

applied to preparation time (No PT limit), thus allowing participants to use explicit strategy. In a second 1010 

experiment, we strictly limited preparation time in order to suppress explicit strategy (Limit PT). 1011 

Participants in the No PT limit condition began with 10 epochs of null trials (1 epoch = 4 trials), 1012 

followed by a rotation period of 60 epochs. Other details concerning the experiment paradigm are 1013 

described in Visuomotor rotation. At the end of the perturbation period, we measured the amount of 1014 

implicit and explicit learning. To do this, participants were instructed to forget about the cursor and 1015 

instead move their hand through the target without applying any strategy to compensate for the 1016 

perturbation. Furthermore, visual feedback was completely removed during these trials. All 4 targets were 1017 

tested in a randomized sequence. To quantify the total amount of implicit learning, we averaged the reach 1018 

angle across all targets (Figs. 3F&H). To calculate the amount of explicit adaptation, we subtracted this 1019 

measure of implicit learning from the mean reach angle measured over the last 10 epochs of the 1020 

perturbation prior to the verbal instruction. 1021 

In the Limit PT group, we suppressed explicit adaptation for the duration of the experiment by 1022 

limiting the time participants had to prepare their movements. To enforce this, we limited the amount of 1023 

time available for the participants to start their movement after the target location was shown. This upper 1024 

bound on reaction time was set to 225 ms (taking into account average screen delay). If the reaction time 1025 

of the participant exceeded the desired upper bound, the participant was punished with a screen timeout 1026 

after providing feedback of the movement endpoint. In addition, a low unpleasant tone (200 Hz) was 1027 

played. This condition was effective in limiting reaction time (Fig. 3G, middle), even lower than the 300 1028 

ms threshold used by Haith and colleagues28. This experiment started with 10 epochs (1 epoch = 4 trials) 1029 

of null trials. After this, the visuomotor rotation was introduced for 60 epochs. At the end of the 1030 

perturbation period, we measured retention of the visuomotor memory in a series of 15 epochs of no 1031 

feedback trials (Fig. 3F, no feedback). 1032 

Our goal was to test whether the putative implicit learning properties measured in the Limit PT 1033 

group could be used to predict the subject-to-subject relationship between implicit and explicit 1034 

adaptation in the No PT limit group (according to Eq. (4)). To do this, we measured each participant’s 1035 

implicit retention factor and error sensitivity in the Limit PT condition (see Measuring properties of implicit 1036 

learning below). We then averaged each parameter across participants. Next, we inserted these mean 1037 

parameters into Eq. (4). With these variables specified, Eq. (4) predicted a specific linear relationship 1038 

between implicit and explicit learning (Fig. 3H, model). We overlaid this prediction on the actual amounts 1039 

of implicit and explicit adaptation measured in each No PT limit participant (Fig. 3H, black dots). We 1040 

performed a linear regression across these measured data (Fig. 3H, black line, measured). We report the 1041 

slope and intercept of this regression as well as the corresponding 95% confidence intervals. 1042 

The individual differences between implicit and explicit learning in Experiment 1 (Fig. 3H) could 1043 

have been due uncertainty in our empirical probe (move hand through the target without re-aiming). That 1044 
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is, some participants may not have understood the instruction to move their hand through the target, and 1045 

instead continued to aim. These participants would appear to have very little explicit strategy, and high 1046 

amounts of implicit learning. Therefore, to verify our explicit measures, we considered two additional 1047 

explicit markers: movement preparation time and reported strategies. In Fig. S4B, we compared explicit 1048 

re-aiming with movement preparation time. That is, we calculated how much participant changed their 1049 

movement preparation time after the perturbation turned on (the mean preparation time over 20 cycles 1050 

following rotation onset, relative to the mean preparation time over the 3 cycles preceding rotation 1051 

onset). Changes in preparation time are known to correlate with strategic re-aim41,47. 1052 

Lastly, we also asked participants to verbally report their explicit strategy. After the implicit probe 1053 

trials, we showed each target once again, with a ring of small white landmarks placed at an equal radial 1054 

distance around the screen24. A total of 108 landmarks was used to uniformly cover the circle. Each 1055 

landmark was labeled with an alphanumeric string. Subjects were asked to report the nearest landmark 1056 

that they were aiming towards at the end of the experiment in order to move the cursor through the 1057 

target when the rotation was on. The mean angle reported across all 4 targets was calculated to provide 1058 

an additional assay of explicit adaptation (Fig. S4A, explicit report angle). Explicit re-aiming is prone to 1059 

erroneous selections where the hand is mentally rotated in the wrong direction47 (errors of same 1060 

magnitude, opposite sign) Therefore, for individual targets where the participant reported an explicit 1061 

angle in the opposite direction, we used its absolute value when calculating their explicit recalibration. 1062 

These strategy report trials were used to calculate the implicit learning estimate shown in Fig. S5E. 1063 

 1064 

Experiment 2 1065 

Here, we remotely tested a very similar paradigm to the No PT limit condition in Experiment 1. Participants 1066 

controlled a cursor by moving their index finger across the track pad of their personal computer. The 1067 

experiment was coded in Java. To familiarize themselves with the task, participants watched a 3-minute 1068 

instructional video. In this video, the trial structure, point system, and feedback structure were described. 1069 

After this video, there was a practice period. During the practice period, the software tracked the 1070 

participant’s reach angle on each trial. If the participant achieved success on fewer than 65% of trials 1071 

(measured based on an angular target-cursor discrepancy ≤ 30°, reaction time ≤ 1 sec, and movement 1072 

duration ≤ 0.6 sec), they had to re-watch the instructional video and re-do the practice period. 1073 

After the practice period ended, the testing period began. This testing period was almost identical 1074 

to the No PT limit condition in Experiment 1. On each trial, participants reached to 1 of 4 targets (up, 1075 

down, left, and right). Each target was visited once pseudorandomly in a cycle of 4 targets. After an initial 1076 

10-cycle null period, a 30° visuomotor rotation was imposed that lasted for 60 epochs. At the end of the 1077 

rotation period, we measured implicit and explicit adaptation. The experiment briefly paused, and an 1078 

audiovisual recording was played that instructed participants to not use any strategy and to move their 1079 

hand straight through the target. After this, the experiment resumed, feedback was removed, and 1080 

participants performed 20 cycles of no-aiming, no-feedback probe trials (Fig. 3J, no aiming).  1081 

We measured subject-to-subject correlations between implicit and explicit adaptation. For this, 1082 

we calculated two implicit learning measures. The early implicit aftereffect was simply the aftereffect 1083 

observed on the first no-aiming, no-feedback probe cycle (Fig. 3L). The late implicit aftereffect was the 1084 

average aftereffect observed on the last 15 cycles of this no-aiming, no-feedback period (Fig. 3K). To 1085 

measure explicit learning, we calculated the difference between the total amount of adaptation (mean 1086 
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reach angle over last 10 cycles of the rotation period) and the first cycle of the no-aiming, no-feedback 1087 

period. We investigated the relationship between explicit adaptation and the early and late implicit 1088 

aftereffects via linear regression in Figs. 3L and 3K respectively. For the early implicit aftereffect, we 1089 

measured the 95% CI for the slope and intercept. Critically, this interval did not contain 1, indicating that 1090 

the subject-to-subject correlations cannot be described by the trivial case where all participants had 1091 

adapted the same amount by the end of the adaptation period (see main text). 1092 

 1093 

Haith et al. (2015)28 1094 

To understand how implicit and explicit processes contribute to savings, Haith and colleagues28 designed 1095 

a forced preparation time task. Briefly, participants (n=14) performed reaching movements to two targets, 1096 

T1 and T2, under a controlled preparation time scenario. To control movement preparation time, four 1097 

audio tones were played (at 500 ms intervals) and participants were instructed to reach coincident with 1098 

the 4th tone. On high preparation time trials (High PT), the intended target was displayed during the entire 1099 

tone sequence. On low preparation time trials (Low PT), the intended target was switched approximately 1100 

300 ms prior to the 4th tone. High PT trials were more probable (80%) than Low PT trials (20%). 1101 

 After a baseline period (100 trials for each target), a 30° visuomotor rotation was introduced for 1102 

target T1 only. After 100 rotations trials (Exposure 1), the rotation was turned off for 20 trials. After a 24 1103 

hr break, participants then returned to the lab. On Day 2, participants performed 10 additional reaching 1104 

movements without a perturbation, followed by a second 30° rotation (Target T1 only) of 100 trials 1105 

(Exposure 2). The experiment then ended with a washout period of 100 trials for each target. 1106 

 We quantified the amount of savings expressed upon re-exposure to the perturbation, on High 1107 

PT and Low PT trials. We measured savings using two metrics. First, we measured the rate of learning 1108 

during each exposure to the perturbation using an exponential fit. We fit a two-parameter exponential 1109 

function to both Low PT and High PT trials during the first and second exposure (we constrained the third 1110 

parameter to enforce that the exponential begin at each participant’s measured baseline reach angle). 1111 

We compared the exponential learning rate using a paired t-test (Fig. 4B, 3rd column). 1112 

We also quantified savings in a manner similar to that reported by Haith and colleagues28; we 1113 

calculated the difference between the reach angles before and after the introduction of the perturbation, 1114 

during each exposure (Fig. 4C, 1st and 2nd columns). For High PT trials, we then computed the mean reach 1115 

difference over the 3 trials preceding, and 3 trials following perturbation onset. Given their reduced 1116 

frequency, for Low PT trials, we focused solely on the trial before and trial after perturbation onset. To 1117 

detect savings, we compared the pre-perturbation and post-perturbation differences using a paired t-test 1118 

(Fig. 4C, 3rd column). 1119 

Finally, we also used a state-space model of learning to measure properties of implicit and explicit 1120 

learning during each exposure. We modeled implicit learning according to Eq. (3) and explicit learning 1121 

according to Eq. (7). In one model fitting procedure, we modeled error according to Eq. (1) for the 1122 

competitive framework. These results are shown in Fig. 4D. In a second model fitting procedure, we 1123 

modeled error according to Eq. (2) for the independent framework. These results are not shown in the 1124 

Fig. 4, but relevant statistical outcomes are reported in the main text. 1125 

In the model, behavior is described as the summation of implicit and explicit learning. Each system 1126 

possessed a retention factor and error sensitivity. Here, we asked how implicit and explicit error sensitivity 1127 

might have changed from Exposure 1 to Exposure 2. Therefore, we assumed that the implicit and explicit 1128 
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retention factors were constant across perturbations, but allowed a separate implicit and explicit error 1129 

sensitivity during Exposures 1 and 2. Therefore, our modeling approach included six free parameters. We 1130 

fit this model to the measured behavior by minimizing the following cost function using fmincon in 1131 

MATLAB R2018a: 1132 
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Here y1 and y2 represent the reach angles during the first and second exposure. These reach angles are 1134 

composed of High PT and Low PT trials. On Low PT trials, the reach angle is equal to the implicit adaptative 1135 

process. On High PT trials, the reach angle is equal to the sum of the implicit adaptive process and the 1136 

explicit adaptive process. 1137 

We fit this model to individual participant behavior, in the case where implicit learning was driven 1138 

by target errors (Eq. (1)), and also in the alternate case where it was driven by aim-cursor errors (Eq. (2)). 1139 

We report the implicit and explicit error sensitivities for the target-error learning case in Fig. 4D, right. For 1140 

this model, the predicted behavior is shown in the first two columns of Fig. 4D. We also fit the target-error 1141 

(Eq. (1)) model to the mean behavior across all participants in Exposure 1 and Exposure 2. We obtained 1142 

the following parameter set: as=0.9829, af=0.9278, bs,1=0.0629, bs,2=0.089, bf,1=0.0632, bf,2=0.1078. Note 1143 

that the subscripts 1 and 2 denote error sensitivity during Exposure 1 and 2, respectively. These 1144 

parameters were used for our simulations in Fig. 5 (see Competition Map). 1145 

 1146 

Experiment 3 1147 

In Haith et al. (2015)28, no savings was observed on trials where preparation time was limited (Low PT 1148 

trials), consistent with the possibility that implicit learning processes are not modulated by past 1149 

experiences. Here, we questioned if savings in implicit learning processes might have been suppressed by 1150 

competition with explicit learning processes (see Competition Map). That is, if implicit and explicit 1151 

processes share error sources, changes in explicit learning could mask changes in implicit learning. The 1152 

way to test this possibility would be to eliminate explicit learning on all trials, to ensure that the error on 1153 

each trial is expressly available for the implicit learning system. Experiment 3 tested this possibility using 1154 

a limited preparation time condition. 1155 

 Limiting reaction time is known to suppress explicit strategy17,41,47. To limit reaction time, we used 1156 

the same procedure described above for Experiment 2. This condition was effective in limiting reaction 1157 

time (Fig. 6B, top row), even lower than the 300 ms threshold used by Haith and colleagues28. 1158 

 Experiment 3 used the 4-target protocol reported in Visuomotor rotation. Apart from that, its trial 1159 

structure was similar to that of Haith et al.28. After a familiarization period, subjects completed a baseline 1160 

period of 10 epochs (1 epoch = 4 trials for each target). At that point, we imposed a 30° visuomotor 1161 

rotation for 60 epochs (Exposure 1). At the end of this first exposure, participants completed a washout 1162 

period with no perturbation that lasted for 70 epochs. At the end of the washout period, subjects were 1163 

once again exposed to a 30° visuomotor rotation for 60 epochs (Exposure 2). 1164 

 We quantified savings in a manner consistent with Haith et al.28. First, we fit a two-parameter 1165 

exponential function to the reach angle during Exposures 1 and 2 (third parameter was used to constrain 1166 

the fit so exponential curve started at the reach angle measured prior to perturbation onset). We analyzed 1167 

any change in the rate parameter of the exponential using a paired t-test (Fig. 6C, top). Second, we also 1168 
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tested for differences in the initial amount of learning. To do this, we calculated the difference between 1169 

reach angle during Exposures 1 and 2 (Figs. 6A&B, bottom row). We then calculated the difference in 1170 

reach angle (Exposure 2 - Exposure 1) during the 4 epochs preceding and 4 epochs following rotation 1171 

onset. We compared these differences for Exposures 1 and 2 using a paired t-test (Fig. 6C, bottom). 1172 

 1173 

Experiment 4 1174 

Lerner and Albert et al.26 demonstrated that anterograde interference slows the rate of learning after 5 1175 

min (also 1 hr), but dissipates over time and is nearly gone after 24 hr. Here we wondered if this reduction 1176 

in learning rate could at least be in part driven by impairments in implicit learning. Because Lerner and 1177 

Albert et al.26 did not constrain preparation time, one would expect that participants used both implicit 1178 

and explicit learning processes. In Experiment 2, we isolated the implicit component of adaptation by 1179 

limiting reaction time. We used the same technique to limit reaction time reported for Experiment 2. The 1180 

experiment paradigm is described in Visuomotor rotation above. With that said, we used 8 adaptation 1181 

targets as opposed to 4 targets, to match the protocol used by Lerner and Albert et al.26. 1182 

 The perturbation schedule is shown in Figs. 7A&B at top. We recruited two groups of participants, 1183 

a 5 min group (n=9), and a 24 hr group (n=11). After familiarization, all participants were exposed to a 1184 

baseline period of null trials lasting 5 epochs (1 epoch = 8 trials). Next participants were exposed to a 30° 1185 

visuomotor rotation for 80 cycles (Exposure A). At this point, the experiment ended. After a break, 1186 

participants returned to the task. For the 5 min group, the second session occurred on the same day. For 1187 

the 24 hr group, participants returned the following day for the second session. At the start of the second 1188 

session, participants were exposed to a 30° visuomotor rotation (Exposure B) whose orientation was 1189 

opposite to that of Exposure A. This rotation lasted for 80 epochs. 1190 

 We analyzed the rate of learning by fitting a two-parameter exponential function to the learning 1191 

curve during Exposures A and B (the third parameter was used to constrain the exponential curve to start 1192 

from the behavior on the first epoch of the rotation). For each participant we computed an interference 1193 

metric by dividing the exponential rate of learning during Exposure B, by that measured during Exposure 1194 

A (Fig. 7C, at right, blue). In addition, we also analyzed the reaction time of the participants during 1195 

Exposure B (Figs. 7A&B, middle, blue). 1196 

 1197 

Lerner and Albert et al. (2020)26 1198 

Recently, Lerner and Albert et al.26 demonstrated that slowing of learning in anterograde interference 1199 

paradigms is caused by reductions in sensitivity to error. Here, we re-analyze some of these data. 1200 

 Lerner and Albert et al.26 studied how learning one visuomotor rotation altered adaptation to an 1201 

opposing rotation when these exposures were separated by time periods ranging from 5 min to 24 hr. 1202 

Here we focused solely on the 5 min group (n=16) and the 24 hr group (n=18). A full methodological 1203 

description of this experiment is provided in the earlier manuscript. Briefly, participants gripped a joystick 1204 

with the thumb and index finger which controlled an on-screen cursor. Their arm was obscured from view 1205 

using a screen. Targets were presented in 8 different positions equally spaced at 45° intervals around a 1206 

computer monitor. Each of these 8 targets was visited once (random order) in epochs of 8 trials. On each 1207 

trial, participants were instructed to shoot the cursor through the target. 1208 

 All experiment groups started with a null period of 11 epochs (1 epochs = 8 trials). This was 1209 

followed by a 30° visuomotor rotation for 66 epochs (Exposure A). At this point, the experiment ended. 1210 
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After a break, participants returned to the task. For the 5 min group, the second session occurred on the 1211 

same day. For the 24 hr group, participants returned the following day for the second session. At the start 1212 

of the second session, participants were immediately exposed to a 30° visuomotor rotation (Exposure B) 1213 

whose orientation was opposite to that of Exposure A. This rotation lasted for 66 epochs. Short set breaks 1214 

were taken every 11 epochs during Exposures A and B. 1215 

 Here as in the earlier work26, we analyzed the rate of learning by fitting a two-parameter 1216 

exponential function to the learning curve during Exposures A and B (the third parameter was used to 1217 

constrain the exponential curve to start from the behavior on the first epoch of the rotation). For each 1218 

participant we computed an interference metric by dividing the exponential rate of learning during 1219 

Exposure B, by that measured during Exposure A (Fig. 7C, green). In addition, we also analyzed the reaction 1220 

time of the participants during Exposure B. The mean reaction time over the first perturbation block is 1221 

shown in Figs. 7A&B (middle, green traces). 1222 

 1223 

Mazzoni and Krakauer (2006)12 1224 

In this study, subjects sat in chair with their arm supported on a tripod. An infrared marker was attached 1225 

to a ring placed on the participant’s index finger. The hand was held closed with surgical tape. Participants 1226 

moved an on-screen cursor by rotating their hand around their wrist. These rotations were tracked with 1227 

the infrared marker. On each trial, participants were instructed to make straight out-and-back movements 1228 

of a cursor through 1 of 8 targets, spaced evenly in 45° intervals. A 2.2 cm marker translation was required 1229 

to reach each target. Note that all 8 targets remained visible throughout the task. 1230 

Two groups of participants were tested with a 45° visuomotor rotation. In the no-strategy group, 1231 

participants adapted as per usual, without any instructions. After an initial null period, the rotation was 1232 

turned on (Fig. 8A, blue, adaptation). After about 60 cycles of adaptation, the rotation was turned off and 1233 

participants performed another 60 of washout trials (Fig. 8A, blue, washout). The break between the 1234 

adaptation and washout periods in Fig. 8A, no-strategy, is simply for alignment purposes. 1235 

The strategy group followed a different protocol. After the null period, participants reached for 2 1236 

movements under the rotation (Fig. 8A, 2 cycles no instruction, red). At this point, the subjects were told 1237 

that they made 2 errors, and that they could counter the error by reaching to the neighboring clockwise 1238 

target (all targets always remained onscreen). After the instruction, participants immediately reduced 1239 

their error to zero (point labeled instruction in red, Fig. 8A). They continued to aim to the neighboring 1240 

target under the rotation throughout the adaptation period. Note that the direction errors became 1241 

negative. This convention indicates overcompensation for the rotation, i.e., that participants are altering 1242 

their hand angle by more than their strategy aim of 45°. Towards the end of the adaptation period, 1243 

participants were told to stop re-aiming, and direct their movement back to the original target (Fig. 8A, 1244 

do not aim, rotation on). Then after several movements, the rotation was turned off as participants 1245 

continued to aim for the original target during the washout period. 1246 

In Fig. 8A we show the error between the primary target (target 1) and cursor during the entire 1247 

experiment. In Fig. 8B we show the error between the aimed target (target 2) and cursor during the 1248 

adaptation period. Note that the aimed and primary targets are generally related by 45° when the strategy 1249 

group is re-aiming. We observed that initial adaptation rates (over first 24 movements, gray area in Fig. 1250 

8B) were similar, but the no-strategy group ultimately achieved greater implicit adaptation. These data 1251 
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were all obtained by using the GRABT routine in MATLAB 2018a to extract the mean (and standard error 1252 

of the mean) performance in each group from the figures shown in the primary article. 1253 

 To account for behaviors, we fit 1 of 3 models to the direction error during the adaptation period 1254 

shown in Fig. 8B. In all cases we modeled explicit re-aiming in the strategy group as an  1255 

an aim sequence that started at zero during the initial two movements, and then 45° for the rest of the 1256 

adaptation period (i.e., after the instruction to re-aim). In the no-strategy group, we modeled explicit 1257 

learning as an aim sequence that remained at zero throughout the adaptation period. 1258 

 In Fig. 8D, we modeled implicit learning based on the state-space model in Eq. (3) and target error 1259 

term defined in Eq. (1). This target error was defined as the difference between the primary target (i.e., 1260 

the initial target displayed associated with task outcome) and the cursor. In Fig. 8E, we modeled implicit 1261 

learning based on the state-space model in Eq. (3) and the aim-cursor error defined in Eq. (2). This aim-1262 

cursor error was defined as the difference between the aimed target (either 0° or 45°) and the cursor. Fig. 1263 

8F, shows our third and final model. In this model, implicit learning in the strategy group was modeled 1264 

using the dual-error system shown in Eq. (6). That is, there were two implicit modules, one which 1265 

responded to the target errors as in Fig. 8D, and the other which responded to aim-cursor errors as in Fig. 1266 

8E. The evolution of these errors is shown in Fig. 8G. In the no-strategy group, we modeled implicit 1267 

learning based on the primary target error alone and cursor.  1268 

 Each model in Figs. 8D-F were fit in an identical manner. We fit the implicit retention factor and 1269 

implicit error sensitivity to minimized squared error according to: 1270 

 



=

− += − ( ) )
- -

( ) 2 ( ( ) 2

1

ˆ ˆa )rgmi )n ( (
N

n
gstrategy strategy no strate y no st

n n n
fit rategy

n

y y y y    (12) 1271 

In other words, we minimized the sum of squared error between our model fit and the observed behavior 1272 

across both the strategy and no-strategy groups in Fig. 8B. In other words, we constrained that each group 1273 

had the same implicit learning parameters. In the case of our dual-error model in Fig. 8F, we assumed that 1274 

each implicit module also possessed the same retention and error sensitivity. In sum, all model fits had 1275 

two free parameters (error sensitivity and retention) which were assumed to be identical independent of 1276 

instruction. This fit was performed using fmincon in MATLAB R2018a. The predicted behavior is shown in 1277 

Figs. 8D-F at bottom. For our best model (Fig. 8F), the model behavior is also overlaid in Fig. 8B. 1278 

 1279 

Taylor and Ivry (2011)21 1280 

In Fig. 8H, we show data collected and originally reported by Taylor and Ivry21. In this experiment, 1281 

participants moved their arm at least 10 cm towards 1 of 8 targets, that were pseudorandomly arranged 1282 

in cycles of 8 trials. Only endpoint feedback of the cursor position was provided. The hand was slid along 1283 

the surface of a table while the position of the index finger was tracked with a sensor. After an initial 1284 

familiarization block (5 cycles), participants were trained how to explicitly rotate their reach angle 1285 

clockwise by 45°. That is, on each trial they were shown veridical feedback of their hand position, but were 1286 

told to reach to a neighboring target, that was 45° away from the primary illuminated target. After this 1287 

training and another null period, the adaptation period started where the cursor position was rotated by 1288 

45° in the counterclockwise direction for 40 cycles. The first 2 movements in the rotation exhibited large 1289 

errors (Fig. 8H, 2 movements no instruction). As in Mazzoni and Krakauer12, the participants were then 1290 
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instructed that they could minimize their error by adopting the aiming strategy they learned at the start 1291 

of the experiment. Using this strategy, participants immediately reduced their direction error to zero. 1292 

 Here we report data from two critical groups in this experiment. In the “instruction with target” 1293 

group (Fig. 8H, black, n=10) participants were shown the neighboring targets during the adaptation period 1294 

to assist their re-aiming. However, in the “instruction without target” group (Fig. 8H, yellow, n=10) 1295 

participants were only shown the primary target; the neighboring targets did not appear on the screen to 1296 

help guide re-aiming. Only participants in the “instruction with target” group exhibited the drift reported 1297 

by Mazzoni and Krakauer12. However, both groups exhibited an implicit aftereffect (Fig. 8H, aftereffect; 1298 

first cycle of washout period as reported in Fig. 4C of the original manuscript21). 1299 

These data were extracted directly from the primary figures reported by Taylor and Ivry21 using 1300 

Adobe Illustrator CS6. We used the means and standard deviations for our statistical tests on the implicit 1301 

aftereffect in Fig. 8H. 1302 

 1303 

Generalization studies 1304 

In our Discussion, we describe how generalization can alter measurements of implicit adaptation. Here 1305 

we report data from many earlier studies. In Fig. S5A, we show data collected by Day et al.72, reported in 1306 

Fig. 2 of the original manuscript. Here, participants were exposed to a 45° rotation while reaching to a 1307 

single target. On each trial they were asked to report their aiming direction, using a ring of visual 1308 

landmarks. In the “target” group in Fig. S5A, implicit aftereffects were periodically probed at the trained 1309 

target location, by asking participants to reach to the target without aiming. In the “aim” group in Fig. 1310 

S5A, implicit aftereffects were periodically probed at a target location 30° away from the trained target, 1311 

consistent with the direction of the most frequently reported aim. In Fig. S5A, we show the implicit 1312 

aftereffect measured on the first aftereffect trial at the end of the experiment. In Fig. S5C we again show 1313 

the implicit aftereffect measured at the trained target location in the “probe” condition. The “report” 1314 

condition shows the amount of implicit learning estimated by subtracting the reported explicit strategy 1315 

from the reported reach angle on the last cycle of the rotation. 1316 

 In Fig. S5B, we show data collected by McDougle et al.71, reported in Fig. 3A of the original 1317 

manuscript. Here participants were also exposed to a 45° rotation while reaching to a single target. At the 1318 

end of the experiment, participants were exposed to an aftereffect block where they reached 3 times to 1319 

16 different targets spaced in varying increments around the unit circle. In this aftereffect block feedback 1320 

was removed and participants were told to move straight to the target without re-aiming. This aftereffect 1321 

block was used to construct a generalization curve. In Fig. S5B we show data only from 2 relevant locations 1322 

on this curve. The “target” condition represents aftereffects probed at the training target. The “aim” 1323 

condition shows the aftereffect measured at 22.5° away from the primary target, which was the target 1324 

closest to the mean reported explicit re-aiming strategy of 26.2°. 1325 

 Lastly, in Fig. S5D we show data collected by Maresch et al.75, reported in Fig. 4b of the original 1326 

manuscript. This study was informative to our discussion because they report implicit aftereffects 1327 

measured using both exclusion trials (as in most of the data described in this manuscript) as well implicit 1328 

aftereffects measured using aim reports. In Fig. S5D we specifically show data from the IR-E group in the 1329 

original manuscript. We selected this group, because aim was only intermittently reported (4 trials for 1330 

every 80 normal adaptation trials), and also because there were many adaptation targets (8 total). Thus, 1331 

in most cases, participants only had to attend to a single target when reaching as in our primary results. 1332 
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The “probe” condition in Fig. S5D corresponds to the total implicit learning measured at the end of 1333 

adaptation by telling participants to reach without re-aiming. The “report” condition in Fig. S5D 1334 

corresponds to the total implicit learning estimated at the end of adaptation by subtracting the reported 1335 

aim direction from the measured reach angle. 1336 

Note that data in Figs. S5A-D were extracted directly from the primary figures reported in the 1337 

original manuscripts using Adobe Illustrator CS6. 1338 

 1339 

Measuring properties of implicit learning 1340 

Many of our model’s predictions depended on estimates of implicit retention factor and error sensitivity. 1341 

We obtained these using the Limit PT group in Experiment 2. To calculate the retention factor for each 1342 

participant, we focused on the no feedback period at the end of Experiment 2 (Figs. 8D, no feedback). 1343 

During these error-free periods trial errors were hidden, thus causing decay of the learned behavior. The 1344 

rate of this decay is governed by the implicit retention factor according to: 1345 

 =( )
s

n
s

n
iy a y   (13) 1346 

Here y(n) refers to the reach angle on the n-th no feedback trial, and yss corresponds to the asymptotic 1347 

behavior prior to the no feedback period. We used fmincon in MATLAB R2018a to identify the retention 1348 

factor which minimized the difference between the decay predicted by Eq. (13) and that measured during 1349 

the no feedback period. We obtained an epoch-by-epoch retention factor of 0.943 ± 0.011 (mean ± SEM). 1350 

Note that an epoch consisted of 4 trials, so this corresponded to a trial-by-trial retention factor of 0.985. 1351 

When modeling Neville and Cressman15 (Fig. 1), we cubed this trial-by-trial term because each cycle 1352 

consisted of 3 different targets (final retention factor of 0.9565). 1353 

 Next, we measured implicit error sensitivity in the Limit PT group during rotation period trials. To 1354 

measure implicit error sensitivity on each trial, we used its empirical definition: 1355 
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Eq. (14) determines the sensitivity to an error experienced on trial n1 when the participant visited a 1357 

particular target T. This error sensitivity is equal to the change in behavior between two consecutive visits 1358 

to target T, on trials n1 and n2 divided by the error that had been experienced on trial n1. In the numerator, 1359 

we account for decay in the behavior by multiplying the behavior on trial n1 by a decay factor that 1360 

accounted for the number of intervening trials between trials n1 and n2. For each target, we used the 1361 

specific retention factor estimated for that target with Eq. (13). 1362 

 Using this procedure, we calculated implicit error sensitivity as a function of trial in Experiment 2. 1363 

To remove any potential outliers, we identified error sensitivity estimates that deviated from the 1364 

population median by over 3 median absolute deviations within windows of 10 epochs. As reported by 1365 

Albert and colleagues37, implicit error sensitivity increased over trials. Eqs. (4)  and (5) require the steady-1366 

state implicit error sensitivity observed during asymptotic performance. To estimate this value, we 1367 

averaged our trial-by-trial error sensitivity measurements over the last 5 epochs of the perturbation. This 1368 

yielded an implicit error sensitivity of 0.346 ± 0.071 (mean ± SEM).1369 
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Figure 1. Enhancing explicit strategy suppresses implicit adaptation. A. Schematic showing competition between two 

cooperating parallel systems. Systems 1 and 2 receive the same error and produce outputs to reduce the error. 

Increases in one system’s output will decrease the error source for the partner system, suppressing its adaptation. 

B. Schematic showing competition between two parallel systems with differing objectives. Systems 1 and 2 receive 

different errors and produce an output that tends to increase the other system’s error. In this case, when one system 

is optimized, the other system is prevented from reducing its error. C. Schematic of visuomotor rotation. Participants 

move from S to T. Hand path is composed of explicit (aim) and implicit corrections. Cursor path is perturbed by 
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rotation. We explored two hypotheses: prediction error (H1, aim vs. cursor) vs. target error (H2, target vs. cursor) 

drives implicit learning. D. Prediction error hypothesis predicts that enhancing aiming (dashed magenta) will not 

change implicit learning (black vs. dashed cyan) according to the independence equation. Target error hypothesis 

predicts that enhancing aiming (dashed magenta) will decrease implicit adaptation (black vs. dashed cyan). E. Data 

reported by Neville and Cressman15. Participants were separated into 1 of 6 groups. Groups differed based on verbal 

instruction (instructed yellow; non-instructed gray) and rotation magnitude (20° left; 40° middle; 60° right). F. The 

marginal effect of instruction (average across 3 rotation sizes) shown for explicit adaptation at left and implicit 

learning at right. Learning predicted by the independence equation (green) and competition equation (blue) are 

shown. Models were fit assuming implicit error sensitivity and retention were identical across all 6 groups. G. The 

marginal effect of perturbation magnitude (average across instruction conditions) shown for explicit adaptation at 

left and implicit learning at right. Learning predicted by the independence equation (green) and competition 

equation (blue) are shown. Models were fit as in F. Error bars for data show mean ± SEM. Error bars for model 

predictions refer to mean and standard deviation across 10,000 bootstrapped samples. 
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 1 

Figure 2. Suppressing explicit strategy increases the total amount of implicit adaptation. Data reported from Saijo 2 

and Gomi42. A. Participants adapted to either an abrupt or gradual 60° rotation followed by a washout period. B. We 3 

explored two hypotheses: prediction error (H1, aim vs. cursor) vs. target error (H2, target vs. cursor) drives implicit 4 

learning. Prediction error hypothesis predicts that suppressing aiming (dashed magenta) through gradual 5 

perturbation onset will not change implicit learning (black vs. dashed cyan). Target error hypothesis predicts that 6 

suppressing aiming (dashed magenta) will increase implicit adaptation (black vs. dashed cyan). C.  Directional error 7 

during adaptation. Note that while the abrupt group exhibited greater adaptation during the rotation, they also 8 

showed a smaller aftereffect suggesting less implicit adaptation. D. We simulated a state-space model where the 9 

implicit system learned from SPE. The model parameters were selected to best fit the data in C. In the middle row, 10 

hypothetical abrupt explicit strategy was simulated based on data reported by Neville and Cressman15 (yellow 11 

points). The gradual explicit strategy was assumed to be zero because participants were less aware. At bottom, we 12 

show implicit learning predicted by an SPE error source. Note the identical saturation levels. E. Same as in D, but for 13 

implicit adaptation based on target error. Note greater implicit learning in gradual condition at the bottom row. 14 

Models in D and E were fit assuming that implicit error sensitivity and retention are identical across abrupt and 15 

gradual conditions. F. Here we show the implicit aftereffect on the first washout cycle (12 total trials). Model 16 

predictions for SPE learning (indep.) and target error learning (competition) are shown. Data show mean ± SEM 17 

across participants. Error bars for model are mean and standard deviation across 20,000 bootstrapped samples. 18 
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 19 

Figure 3. Strategy suppresses implicit learning across individual participants. A-D. Data are shown from Fernandez-20 

Ruiz et al.41. Participants were exposed to a 60° visuomotor rotation followed by a washout period. Paradigm shown 21 

in A. Two learning curves for individual participants shown in B. Preparation time (latency between reach onset and 22 

target presentation) shown in C. In D, participants with greater increases in preparation time (relative to baseline) 23 

showed smaller aftereffects, suggesting less implicit adaptation. E-F. In Experiment 1, participants adapted to a 30° 24 

visuomotor rotation. The paradigm is shown in E. Participants in the No PT limit group had no constraint placed on 25 

their movement preparation time. Participants in the Limit PT group had to execute movements with restricted 26 

preparation time. Learning curves for each group shown in F. Note that Limit PT adaptation ended with a no feedback 27 

period where memory retention was measured. Note that No PT limit adaptation ended with a cycle of exclusion 28 

trials where participants were instructed to reach straight to the target without re-aiming and without any feedback 29 

(no aiming, measure implicit). Movement preparation time for each group is shown in G. In H, we show the total 30 

implicit and explicit adaptation in each participant in the No PT limit condition. Implicit learning measured during 31 

the terminal no aiming probe. Explicit learning represents difference between total adaptation (last 10 rotation 32 

cycles) and implicit probe. The black line shows a linear regression. The blue line shows the theoretical relationship 33 

predicted by the competition equation which assumes implicit system adapts to target error. The parameters for 34 

this model prediction (implicit error sensitivity and retention) were measured in the Limit PT group. I-N. In 35 

Experiment 2, participants performed a similar experiment remotely using a personal computer. The paradigm is 36 

shown in I. The learning curve is shown in J. Implicit learning was measured at the end of adaptation over a 20-cycle 37 

period where participants were instructed to reach straight to the target without aiming and without feedback (no 38 

aiming seen in I and J). We measured explicit adaptation as difference between total adaptation and reach angle on 39 

first no aiming cycle (J, measure explicit). We measured early implicit aftereffect as reach angle on first no aiming 40 

cycle (J, measure early implicit). We measured late implicit aftereffect as mean reach angle over last 15 no aiming 41 

cycles (J, measure late implicit). In K we show how explicit adaptation varies with total adaptation. In L we show how 42 
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late implicit aftereffect varies with total adaptation. In M we show how explicit adaptation varies with late implicit 43 

aftereffect. In N we show how explicit adaptation varies with early implicit aftereffect. Points in I-N show individual 44 

participants. Lines indicate linear regressions. Error bars show mean ± SEM across participants. 45 

 46 
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 47 

Figure 4. Model predicts increase in implicit error sensitivity without any change in implicit learning rate. A. Haith 48 

and colleagues28 instructed participants to reach to Targets T1 and T2 (right). Participants were exposed to a 30° 49 

visuomotor rotation at Target T1 only. Participants reached to the target coincident with a tone. Four tones were 50 

played with a 500 ms inter-tone-interval. On most trials (80%) the same target was displayed during all four tones 51 

(left, High preparation time or High PT). On some trials (20%) the target switched approximately 300 ms prior to the 52 

fourth tone (middle, Low preparation time or Low PT). B. On Day 1, participants adapted to a 30° visuomotor rotation 53 

(Block 1, black) followed by a washout period. On Day 2, participants again experienced a 30° rotation (Block 2, blue). 54 

At left, we show the reach angle expressed on High PT trials during Blocks 1 and 2. Dashed vertical line shows 55 

perturbation onset. At middle, we show the same but for Low PT trials. At right, we show learning rate on High and 56 

Low PT trials, during each block. C. As an alternative to the rate measure shown at right in B, we calculated the 57 

difference between reach angle on Blocks 1 and 2. At left and middle, we show the learning curve differences for 58 

High and Low PT trials, respectively. At right, we show difference in learning curves before (black) and after (brown) 59 

the perturbation. D. We fit a state space model to the learning curves in Blocks 1 and 2 assuming that target errors 60 

drove implicit adaptation. Low PT trials captured the implicit system (blue). High PT trials captured the sum implicit 61 

and explicit system (green). Explicit trace (magenta) is the difference between the High and Low PT predictions. At 62 

right, we show error sensitivities predicted by the model. Error bars show mean ± SEM, except for the learning rate 63 

in B which displays the median. Paired t-tests are used in C and D. Wilcoxon signed rank test is used in B. Statistics: 64 

n.s. means no significant difference, *p<0.05, **p<0.01. 65 
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 66 

Figure 5. Changes in implicit adaptation depend on both implicit and explicit error sensitivity. A. Here we depict the 67 

competition map. The x-axis shows change in implicit error sensitivity between reference and test conditions. The 68 

y-axis shows change in explicit error sensitivity. Colors indicate the percent change in implicit adaptation (measured 69 

at steady-state) from the reference to test conditions. Black region denotes an absolute change less than 5%. The 70 

map was constructed with Eq. (8). B. The map can be described in terms of 5 different regions. In Region A (true 71 

increase), implicit error sensitivity and total implicit adaption both increase in test condition. Region D is same, but 72 

for decreases in error sensitivity and total adaptation. In Region B (perceived decrease) implicit adaption decreases 73 

though its error sensitivity is higher or same. In Region E (perceived increase), implicit adaptation increases though 74 

its error sensitivity is lower or same. Region C shows a perceived invariance where implicit adaptation changes less 75 

than 5%. C. Top: effect of suppressing explicit learning. Middle: implicit and explicit learning shown in Blocks 1 and 76 

2, where explicit error sensitivity increases 100%. Bottom: implicit learning change (Block 1 to 2). D. Top: effect of 77 

enhancing explicit learning. Middle: implicit and explicit learning shown in Blocks 1 and 2, where only difference is 78 

100% increase in explicit error sensitivity. Bottom: change in implicit learning (Block 1 to 2). E. Top: model simulation 79 

for Haith et al.28. Middle: implicit and explicit learning during Blocks 1 and 2 where implicit error sensitivity increases 80 

by 41.5% and explicit error sensitivity increases by 70.6%. Bottom: negligible change in implicit learning (Block 1 to 81 

2). F. Same as in E except here explicit strategy is suppressed during Blocks 1 and 2.   82 
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 83 

Figure 6. Removing explicit strategy reveals savings in implicit adaptation. A. Top: Low preparation time (Low PT) 84 

trials in Haith and colleagues28 used to isolate implicit learning. Middle: learning during Low PT in Blocks 1 and 2. 85 

Bottom: difference in Low PT learning between Blocks 1 and 2. B. Similar to A, but here (Experiment 3) explicit 86 

learning was suppressed on every trial, as opposed to only 20% of trials. To suppress explicit strategy, we restricted 87 

reaction time on every trial. The reaction time during Blocks 1 and 2 is shown at top. At middle, we show how 88 

participants adapted to the rotation under constrained reaction time. At bottom, we show the difference between 89 

the learning curves in Blocks 1 and 2. C. Here we measured savings in Haith et al. (20% of trials had reaction time 90 

limit) and Experiment 3 (100% of trials had reaction time limit). At top, we quantify savings by fitting an exponential 91 

curve to each learning curve. Bars show the rate parameter associated with the exponential. At bottom, we quantify 92 

savings by comparing how Blocks 1 and 2 differed before perturbation onset (black), and after perturbation onset 93 

(purple and yellow). Error bars show mean ± SEM, except for the learning rate at the top of C which shows the 94 

median. Paired t-tests are used at the bottom of C. Wilcoxon signed rank tests are used at the top of C. Statistics: 95 

n.s. means no significant difference, **p<0.01.96 
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 97 

Figure 7. Removing explicit strategy reveals anterograde interference in implicit adaptation. A. Top: participants 98 

were adapted to a 30° rotation (A). Following a 5-minute break, participants were then exposed to a -30° rotation 99 

(B). This A-B paradigm was similar to that of Lerner & Albert et al.26. Middle: to isolate implicit adaptation, we 100 

imposed strict reaction time constraints on every trial. Under these constraints, reaction time (blue) was reduced by 101 

approximately 50% over that observed in the self-paced condition (green) studied by Lerner & Albert et al.26 Bottom: 102 

learning curves during A and B in Experiment 4; under reaction time constraints, the interference paradigm produced 103 

a strong impairment in the rate of implicit adaptation. To compare learning during A and B, B period learning was 104 

reflected across y-axis. Furthermore, the curves were temporally aligned such that an exponential fit to the A period 105 

and exponential fit to the B period intersected when the reach angle crossed 0°. This alignment visually highlights 106 

differences in the learning rate during the A and B periods. B. Here we show the same analysis as in A but when 107 

exposures A and B were separated by 24 hours. C. To measure the amount of anterograde interference on the 108 

implicit learning system, we fit an exponential to the A and B period behavior. Here we show the B period exponential 109 

rate parameter divided by the A period rate parameter (values less than 1 indicate a slowing of adaptation). At left 110 

we show the results for the 5-minute group. At right we show the results for the 24-hr group. In green we show data 111 

from Lerner & Albert et al.26 where reaction time was unrestricted (no limit). In blue we show our new dataset 112 

(Experiment 4) where reaction time was limited to isolate implicit learning. A two-sample t-test was used to test for 113 

differences in the implicit impairment at 5 minutes and 24 hours. Error bars show mean ± SEM. Statistics: **p<0.01. 114 

 115 
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 117 
Figure 8. Two visual targets create two implicit error sources. A. Figure shows data reported in Mazzoni and 118 

Krakauer12. Blue shows error between primary target and cursor during adaptation and washout. Red shows the 119 

same, but in a strategy group that was instructed to aim to a neighboring target (instruction) to eliminate target 120 

errors, once participants experienced two large errors (2 cycles no instruction). B. Here we show the error between 121 

the cursor and the aimed target during the adaptation period. These curves are the same as in A except we use the 122 

aimed target rather than primary target, so as to better compare learning curves across groups. C. The washout 123 

period reported in A. Here error is relative to primary target, though in this case aimed and primary targets are the 124 

same. D. Here we modeled behavior when implicit learning adapts to primary target errors. The primary target error 125 

is shown in e1 at top. Note that no-strategy learning resembles data. However, strategy learning exhibits no drift 126 

because the implicit system has zero error. Note here that the primary target error of 0° is a 45° aimed target error 127 

in the strategy group. E. Similar to D, except here the implicit system adapts to errors between the cursor and aimed 128 

target. This error is schematized in e2 at top. Note that this model predicts identical learning in strategy and no-129 

strategy groups. F. In this model, the strategy group adapts to both the primary target error and the aimed target 130 

error (e1 and e2 at top). The no-strategy group adapts only to the primary target error. Learning parameters are 131 

identical across groups. G. At left, we show how aiming target and primary target errors evolve in the strategy group 132 

in F. At right, we imagine a potential neural substrate for implicit learning. The primary target error and aiming target 133 

error engage two different sub-populations of Purkinje cells in the cerebellar cortex. These two implicit learning 134 

modules combine at the deep nucleus. H. Figure shows data reported in Taylor and Ivry21. Participants performed a 135 

task similar to A. Before adaptation, participants were taught how to re-aim their reach angles. In the “instruction 136 

with target” group, participants re-aimed during adaptation with the aide of neighboring aiming targets (top-left). 137 
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In the “instruction without target” group, participants re-aimed during adaptation without any aiming targets, solely 138 

based on the remembered instruction from the baseline period. The middle shows learning curves. In both groups, 139 

the first 2 movements were uninstructed, resulting in large errors (2 movements no instruction). Note in the 140 

“instruction with target” group, there is an implicit drift as in A, but participants eventually reverse this by changing 141 

explicit strategy. There is no drift in the “instruction without target” group. At right, we show the implicit aftereffect 142 

measured by telling participants not to aim (first no feedback, no aiming cycle post-adaptation). Greater implicit 143 

adaptation resulted from physical target. Error bars show mean ± SEM. Statistics: *p<0.05, ***p<0.001. 144 
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 146 
Figure S1. Changes in implicit adaptation in response to awareness and rotation size. Data reported from Neville and 147 

Cressman (2018)15. A. Participants were separated into 1 of 6 groups. Groups differed based on verbal instruction 148 

(instructed yellow; non-instructed gray) and rotation magnitude (20° left; 40° middle; 60° right). Here we show 149 

implicit learning measured using exclusion trials (reach without re-aiming) at the end of adaptation. B. Here we show 150 

implicit aftereffects predicted by a model where implicit system learns from SPE only. C. Here we show implicit 151 

aftereffects predicted by a model where implicit system learns from target error only. D. The competition model 152 

(target error learning) predicts that implicit learning will be proportional to the difference between the rotation size 153 

and the total explicit strategy. Here we show this quantity for all 6 experimental groups. Note that model predictions 154 

in B and C assume that implicit error sensitivity and retention factor are the same across all 6 experimental groups. 155 

Error bars for data show mean ± SEM. Error bars for model predictions refer to mean and standard deviation across 156 

10,000 bootstrapped samples. 157 
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 159 
Figure S2. Explicit strategies are rapidly disengaged during washout. Data are reported from Morehead et al. 160 

(2015)34. Here participants adapted to a 45° rotation, followed by an extended washout period. Explicit learning was 161 

measured by asking subjects to report their aiming angle using a ring of visual landmarks. Implicit learning was 162 

measured as the difference between the observed reach angle and the direction of reported aim. In this task, 163 

participants reached on each trial to 1 of 4 targets. Note the sharp change in explicit angle to zero at the start of the 164 

washout period. The aftereffect during a washout period is thought to reflect implicit adaptation. This requires that 165 

explicit strategies are rapidly disengaged during washout, consistent with these data. Error bars show mean ± SEM. 166 
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 168 
Figure S3. Participants that increase their preparation time exhibit greater total adaptation. Data are reported from 169 

Fernandez-Ruiz and colleagues41. In this experiment, participants made 10 cm reaching movements to 1 of 8 targets, 170 

pseudorandomly arranged in cycles of 8 trials. Here we report data from the unconstrained RT group described in 171 

the original manuscript. The experiment started with 3 cycles of null rotation trials, followed by 40 cycles of a 60° 172 

rotation. The authors calculated change in movement preparation time (relative to baseline period) on each trial. 173 

Here the authors calculated the directional error and the change in preparation time across 5-cycle periods spanning 174 

the entire 40-cycle rotation. The points show individual subjects for the first 5 and last 5 rotation cycles. All lines 175 

show the linear regression across individual subjects in each color-coded period. Note that each line has a negative 176 

slope, indicating that participants who increased their reaction time more consistently exhibited smaller directional 177 

errors through the entire rotation period. 178 

 179 
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 180 
Figure S4. Alternate measures of explicit strategy. A. In the No PT limit participants in Experiment 1, we empirically 181 

measured explicit re-aiming at the end of adaptation. To do this, we instructed participants to move their hand 182 

through the target without any re-aiming. Reach angle precipitously dropped after this instruction. The total change 183 

in reach angle (averaged across all 4 targets) represented each participant’s strategic re-aiming (x-axis). To validate 184 

this empirical measure, we also asked participants to report their explicit strategies after the probe period. 185 

Participants were shown a ring of circles surrounding each target and asked to indicate which circle best represented 186 

their aiming during at the end of the experiment. This reported explicit measure averaged across all 4 targets is 187 

shown on the y-axis. Each dot represents one participant. B. Explicit strategies have also been shown to correlate 188 

with increases in movement preparation time. Here we show the total explicit strategy measured (via the no aiming 189 

probe trial in No PT limit in Experiment 1) as a function of change in preparation time for each individual participant. 190 

The change in preparation time was calculated as the difference between the mean preparation time over the first 191 

20 rotation cycles and the last 3 null period cycles. The solid lines in A and B show a linear regression across individual 192 

participants. 193 
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 195 
Figure S5. Differences in generalization across visuomotor rotation tasks. A. Data collected by Day et al.72, reported 196 

in Fig. 2 of the original manuscript. Here, participants were exposed to a 45° rotation while reaching to a single 197 

target. On each trial they were asked to report their aiming direction, using a ring of visual landmarks. In the “target” 198 

group, implicit aftereffects were measured at the trained target location. In the “aim” group, implicit aftereffects 199 

were probed at a target location 30° away from the trained target, consistent with the direction of the most 200 

frequently reported aim. Here we show data from the first aftereffect cycle after the rotation period. B. Similar to A 201 

except for data reported by McDougle et al.71 (Fig. 3A of the original manuscript). Participants were also exposed to 202 

a 45° rotation while reaching to a single target. At the end of the experiment, participants were exposed to an 203 

aftereffect block where participants were told to move straight to the target without re-aiming. Here we take two 204 

relevant points from the generalization curve measured at the end of learning. The “target” condition represents 205 

aftereffects probed at the training target. The “aim” condition shows the aftereffect measured at 22.5° away from 206 

the primary target, which was the target closest to the mean reported explicit re-aiming strategy of 26.2°. C. Data 207 

again from Day et al.72. The “probe” implicit learning measure is the same as A. The “report” condition shows the 208 

amount of implicit learning estimated by subtracting the reported explicit strategy from the reported reach angle 209 

on the last cycle of the rotation. D. Similar to C, but for the intermittent reporting (IR-E) group reported by Maresch 210 

et al.75 (Fig. 4b of the original manuscript). In this group aim was only intermittently reported (4 trials for every 80 211 

normal adaptation trials). Thus, in most cases, participants only had to attend to a single target when reaching. The 212 

authors also used 8 training targets (as opposed to 1 in A-C). The “probe” condition corresponds to the total implicit 213 

learning measured at the end of adaptation by telling participants to reach without re-aiming. The “report” condition 214 

corresponds to the total implicit learning estimated at the end of adaptation by subtracting the reported aim 215 

direction from the measured reach angle. E. Here we report implicit learning measured using the “probe” and 216 

“report” conditions in Experiment 1, analogous to the measures described in D. Error bars show mean ± SEM. 217 
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