
Active and machine learning-based approaches to rapidly enhance microbial 1 

chemical production 2 

Prashant Kumara,d,1, Paul A. Adamczyka,1, Xiaolin Zhanga,1, Ramon Bonela 3 

Andradea, Philip A. Romerob, Parameswaran Ramanathanc, and Jennifer L. Reeda 4 

 5 
Classification: Biological Sciences (major), Physical Sciences (minor) 6 
 7 
Affiliations: 8 
aDepartment of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 9 
Engineering Dr., Madison, WI 53706 10 
bDepartment of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 11 
53706 12 
cDepartment of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 13 
Engineering Dr., Madison, WI 53706 14 
dAnalysis Group, 111 Huntington Ave, Boston, MA 02199 15 
1Authors contributed equally 16 
 17 
Corresponding Authors:  18 
Parameswaran Ramanathan, 1415 Engineering Dr., 4615 Engineering Hall, Madison, WI 53706; 19 
1-608-263-0557; parmesh.ramanathan@wisc.edu 20 
 21 
 22 
Keywords: Design of Experiments | Active Learning | Classification | Metabolic Engineering | 23 
Machine Learning | Support Vector Machine 24 
 25 
Abbreviations: leave-one-out cross-validation (LOOCV), maximum theoretical (MT), ribosome 26 
binding site (RBS), Support Vector Machine (SVM), upper confidence bound (UCB) 27 
 28 

  29 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406439
http://creativecommons.org/licenses/by-nd/4.0/


ABSTRACT 30 
 31 

In order to make renewable fuels and chemicals from microbes, new methods are required 32 

to engineer microbes more intelligently. Computational approaches, to engineer strains for 33 

enhanced chemical production typically rely on detailed mechanistic models (e.g., 34 

kinetic/stoichiometric models of metabolism)—requiring many experimental datasets for their 35 

parameterization—while experimental methods may require screening large mutant libraries to 36 

explore the design space for the few mutants with desired behaviors. To address these limitations, 37 

we developed an active and machine learning approach (ActiveOpt) to intelligently guide 38 

experiments to arrive at an optimal phenotype with minimal measured datasets. ActiveOpt was 39 

applied to two separate case studies to evaluate its potential to increase valine yields and 40 

neurosporene productivity in Escherichia coli. In both the cases, ActiveOpt identified the best 41 

performing strain in fewer experiments than the case studies used. This work demonstrates that 42 

machine and active learning approaches have the potential to greatly facilitate metabolic 43 

engineering efforts to rapidly achieve its objectives.  44 

 45 

INTRODUCTION AND BACKGROUND 46 
 47 

In the near future, fuels and chemicals will have to be made renewably, and microbes are 48 

an attractive way to accomplish this due to their mild reaction conditions, product specificity, and 49 

product complexity. However, the number of commercial products made biologically is limited 50 

due to economic infeasibility and the incomplete understanding of biological systems resulting in 51 

numerous time-consuming iterations of the design-build-test cycle to optimize yields, titers, and/or 52 

productivities. While metabolic engineering aims to increase yield, titer, and/or productivities 53 
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through genetic manipulations, it is often difficult to identify which genetic modification(s) (e.g., 54 

gene deletions, gene additions, and/or gene expression changes) are needed to improve 55 

biochemical production. To address this challenge, a variety of experimental and computational 56 

approaches have been developed in order to facilitate metabolic engineering efforts. 57 

With a purely experimental approach, a large number of experiments may be needed to 58 

fully explore the potential genetic design space and find strategies that meet metabolic engineering 59 

objectives. Therefore, a number of high-throughput experimental approaches, including chemical 60 

genomics/BarSeq/TnSeq (that all quantify abundance of mutants in pooled libraries) (1)(2)(3), 61 

MAGE (Multiplex Automated Genome Engineering) (4), and TRMR (Trackable Multiplex 62 

Recombineering) (5) have been recently developed to improve metabolic engineering phenotypes, 63 

such as tolerance and chemical production. These experimental methods can rapidly generate large 64 

libraries of strains with high genetic diversity; however, these have only been applied to a relatively 65 

small number of microbial systems with metabolic engineering applications. Additionally, many 66 

of the techniques for identifying what genetic changes lead to desirable phenotypes rely on high-67 

throughput screens or selections. Screening a large library of strains can be time consuming and 68 

requires a high-throughput method to monitor chemical production (e.g., colorimetric assays), 69 

which do not exist for many biochemicals, limiting the applicability of this approach. On the other 70 

hand, selections require a metabolic engineering objective connected to cellular growth or fitness. 71 

Such selections have been used to improve tolerance (5), but it is more challenging to use them to 72 

find mutations that lead to greater metabolite production. Addressing these issues, experimental 73 

approaches such as multivariate modular metabolic engineering (MMME), which separates 74 

metabolic pathways into smaller modules that are varied simultaneously, can significantly reduce 75 

the design space to obviate the need for high-throughput screens. However, in doing so, valuable 76 
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information is potentially lost and MMME still requires a semi-trial-and-error combinatorial 77 

construction of strains on the order of 10s, relying on human intelligence to deconvolute possibly 78 

complex, nonlinear interactions from sparse datasets to inform the next design (6, 7)  Even so, 79 

most metabolic engineering projects still use a rational, iterative, trial-and-error approach that 80 

increases precursor and cofactor availability, alleviates bottlenecks, reduces flux through 81 

competing pathways, and expresses enzymes in biosynthesis pathways in order to increase desired 82 

production rate, product yield, or product titer.  83 

Along with the experimental methods, a multitude of computational methods have been 84 

used to study microbial metabolic and/or regulatory networks and identify the genetic 85 

interventions needed to increase production of desired chemicals from low-cost substrates. These 86 

computational methods rely on mechanistic models (including genome-scale metabolic, kinetic, 87 

and regulatory models) or statistical models. Computational methods like OptKnock (8), 88 

SimOptStrain (9), and OptORF (10) rely on a stoichiometric, genome-scale, metabolic model to 89 

identify gene knockout and/or gene addition strategies that couple growth and metabolite 90 

production to enhance biochemical yields using experimental selections. Additionally, OptORF 91 

can also use integrated metabolic and transcriptional regulatory models to identify strategies 92 

involving metabolic and transcription factor gene knockouts and metabolic gene over-expression 93 

(10). However, reconstructing a microbe’s transcriptional regulatory network is currently a major 94 

challenge and such integrated models exist only for well-studied organisms (11)(12)(13). 95 

Alternatively, kinetic models, which are much more detailed than stoichiometric metabolic 96 

models, can be used to increase flux through a pathway (14)(15)(16)(17)(18). However, due to the 97 

complexity of biological systems and incomplete datasets, there is much uncertainty attached to 98 

parameters within kinetic models. To address this, computational workflows such as ORACLE 99 
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and iSCHRUNK are being developed that utilize kinetic models, metabolic control analysis, and 100 

machine learning principles to minimize kinetic parameter uncertainty to suggest engineering 101 

strategies in the absence of complete information (19, 20). Nevertheless, these kinetic models 102 

require costly, time-consuming, and complex datasets (e.g., fluxomic, proteomic, and 103 

metabolomic), as well as a thorough understanding of substrate-level regulation, to accurately 104 

parameterize them, limiting kinetic modeling to well-studied organisms.  105 

In contrast to mechanistic models, which often require large datasets to build them, 106 

statistical models can be used instead. Design-of-experiments tools, such as JMP (21) and 107 

DoubleDutch (22), can be used to design an initial set of experiments that evaluate the impacts of 108 

genetic mutations on desired metabolic engineering objectives. However, design-of-experiments 109 

tools often lack capabilities to use these initial experimental results to design the next set of 110 

experiments. Recently, machine learning approaches have been used to optimize gene expression 111 

levels to enhance metabolic flux through desired pathways. Lee and colleagues used a categorical 112 

log-linear regression model to predict how different promoters, used to drive expression of 113 

biosynthetic genes, impacted violacein titers (23). Farasat et al., in addition to their mechanistic 114 

kinetic model, used non-mechanistic models (i.e., a geometric and two statistical linear regression 115 

models) to predict how different ribosome binding sites (RBSs), controlling expression of three 116 

different biosynthesis genes, affected neurosporene (14). While these non-mechanistic models 117 

could accurately predict the performance for new combinations of previously tested RBSs or 118 

promoters (referred to as exploration), they were unable to predict the performance of gene 119 

expression constructs containing new RBSs or promoters (referred to as extrapolation).  120 

Here, we developed an active and machine learning-based approach to design gene 121 

expression constructs for metabolic engineering—ActiveOpt—that overcomes many of the 122 
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aforementioned drawbacks. Although this is the first reported study that uses active learning-in 123 

metabolic engineering, active learning has been previously used in a wide range of other 124 

applications (24),(25),(26),(27),(28),(29),(30). ActiveOpt integrates computational and 125 

experimental efforts to improve metabolic engineering objectives using substantially fewer and 126 

simpler experiments (e.g., measuring biochemical yield or productivity) than many state-of-the-127 

art approaches. ActiveOpt combines active and machine learning techniques without the need for 128 

detailed mechanistic models of the underlying metabolic and regulatory networks or a large initial 129 

experimental dataset. ActiveOpt guides the search for effective genetic engineering strategies 130 

using a machine learning classifier with simple inputs (e.g., predicted RBS strengths) constructed 131 

from at least two experimental results. As more results from new experiments become available, 132 

a classifier is refined to improve the selection of the next set of experiments. This cycle between 133 

classifier refinement, biochemical yield or productivity prediction, and experimental testing stops 134 

when either the metabolic engineering objective stops improving substantially, or a maximum 135 

number of experiments has been performed.  136 

In this study, we show how ActiveOpt identified optimal combinations of genes and RBSs 137 

needed to increase biochemical yields or productivities for two different metabolic engineering 138 

case studies. Specifically, in the two case studies, we show that a simple machine learning classifier 139 

can accurately make qualitative predictions of product yield (i.e., low or high yield) from gene 140 

choices and RBS strength predictions (31),(32) using very few experiments, without requiring a 141 

detailed mechanistic model. Second, we show that ActiveOpt identifies combinations of RBSs and 142 

genes with the highest valine yields and neurosporene productivities in fewer experiments than a 143 

random trial-and-error approach. Third, four additional combinations of gene expression 144 

constructs predicted by ActiveOpt to have high valine yields were experimentally verified after 145 
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prediction from ActiveOpt. Finally, we show that ActiveOpt can be used to predict the outcomes 146 

of both exploration and extrapolation experiments, indicating that new combinations of previously 147 

tested and un-tested gene expression constructs can be selected in the experimental design process. 148 

Together, these results show the potential effectiveness of using ActiveOpt for metabolic 149 

engineering applications. 150 

RESULTS 151 
 152 

An active learning and machine learning approach (ActiveOpt) for designing experiments 153 

was developed and applied to two metabolic engineering cases studies, one of which is reported 154 

for the first time here. We evaluated the accuracy of a machine learning classifier to predict valine 155 

yields from RBS strength estimates—the same classifier used by ActiveOpt. Although most of the 156 

experimental dataset for this case study was generated without using ActiveOpt, no knowledge of 157 

the experiments or valine production except for the pathway was used to evaluate ActiveOpt’s 158 

performance. ActiveOpt’s performance at identifying the genetic parts that maximize yield or 159 

productivity in the fewest possible experiments was evaluated using three different methods for 160 

selecting experiments. Four new combinations of previously tested RBSs (i.e., exploration 161 

experiments) were suggested by ActiveOpt and tested experimentally; experimental results for 162 

these four new combinations were not available when ActiveOpt was used to make the prediction. 163 

Similarly, ActiveOpt was applied to enhance neurosporene productivity in E. coli using data from 164 

previously published experiments (14), and RBSs not used during ActiveOpt training (i.e., 165 

extrapolation experiments) were selected to improve neurosporene productivity. 166 

Metabolic Engineering of E. coli for Valine Production 167 
 168 
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Valine is an amino acid widely used as a nutritional supplement in several industries with 169 

a demand of about 500 tons annually (33). Amongst engineered E. coli valine production strains, 170 

the highest reported elemental carbon yield is 39% supplied C converted to valine (34); however, 171 

the strain requires supplementation with yeast extract, acetate, leucine, isoleucine, and D-172 

pantothenate. Our goal was to engineer an E. coli strain with higher valine yields but without 173 

complex media requirements. Plasmids expressing valine biosynthesis and exporter genes (either 174 

ilvBN*DE, ilvIH*C-ygaZH, or ilvIH*C*-ygaZH, Figure 1) were designed using rational 175 

approaches, such as performing carbon balances to identify bottlenecks, using engineered 176 

enzymes, and identifying trends and testing systems-level hypotheses based on collected data. 177 

However, computational approaches were not used to design experiments. The two plasmid 178 

backbones, promoters, gene number, and order were fixed throughout the study with variations 179 

allowed for one gene (ilvC or ilvC*) and individual enzyme RBS strengths. A total of 39 plasmids 180 

were constructed and tested in 89 pairwise combinations before the best strain was identified which 181 

achieved an elemental carbon yield of 45% (or 54.7% of the maximum theoretical (MT) yield from 182 

glucose and acetate) in a defined minimal medium—the highest carbon yield reported in E. coli 183 

(Figure 2A). A total of 49 pairwise combinations were tested before one of the top strains (reaching 184 

~90% of the best strains % of MTY); see supplementary information for details on the strategy 185 

employed for all 89 experiments.   186 

Machine Learning Algorithms Accurately Predict Valine Yields 187 
 188 

A total of 89 different valine production experiments were used to evaluate how well 189 

different machine learning classifiers could qualitatively predict valine yields (i.e., high or low 190 

yield) from RBS strengths and enzyme choices. All valine experiments were classified as either 191 

high yield (45 experiments) or low yield (44 experiments) using a fixed cutoff of 29% of the MT 192 
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yield of valine from glucose and acetate, so that a randomly chosen experiment has roughly a 50% 193 

chance of being high yield (Figure 2A). The input data used by the machine learning classifiers 194 

included the RBS strength predictions for 6 of the plasmid-expressed genes (i.e., the genes whose 195 

RBSs were varied across experiments, Figure 2B) and whether a native ilvC or mutated ilvC* (35) 196 

was used (encoding the NADPH and NADH-dependent enzymes, respectively). The resulting 197 

classifier’s qualitative output was either a high or low valine yield prediction for a given 198 

experiment from a set of inputs.  199 

To determine first if a linear Support Vector Machine (SVM) classifier (36) could 200 

accurately predict a valine experimental outcome correctly, we performed a leave-one-out cross-201 

validation (LOOCV). In this case, the results from 88 experiments were used to train an SVM 202 

classifier and the classifier was used to predict the final experimental outcome. This was repeated 203 

89 times, with each experiment being left out of the initial training dataset used to build the 204 

classifier. The precision (the fraction of experiments that were predicted to be high yield which 205 

were found to have high yields experimentally) and recall (the fraction of high yield experiments 206 

that were predicted to be high yield) were calculated from this LOOCV analysis and are shown in 207 

Figure 2C. The precision and recall was 0.80 and 0.89, respectively, across these 89 different linear 208 

SVM classifiers. The agreement between machine learning model predictions and experimental 209 

outcomes was statistically significant (p-value =1.35x10-10 using a Fisher Exact Test). 210 

Given the high level of accuracy for the linear classifiers, additional analyses were 211 

performed to evaluate whether fewer experiments could be used to train the classifier, if errors in 212 

predicted RBS strengths would impact accuracy, and if non-linear classifiers could improve 213 

predictions. In each case, the 89 possible experiments were randomly assigned to one of eight folds 214 

(or groups), with each fold including ~11 experiments. Each fold was used independently as a 215 
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training set to build a classifier, which was used to predict the outcomes for experiments in the 216 

seven other folds. The precision and recall values were calculated using predictions from all eight 217 

independent classifiers. This inverse eight-fold cross-validation was then repeated 1,000 different 218 

times and the resulting precision and recall values were averaged. When the number of 219 

experiments used to train the classifiers was lowered from 88 to ~11, the average precision (0.72) 220 

and recall (0.76) across 1000 inverse eight-fold cross-validations reduced only slightly (Figure 221 

2C). Additional fold sizes were also investigated, containing between ~5 and ~45 experiments, 222 

with precision ranging between 0.67 and 0.79 and recall ranging between 0.68 and 0.87 223 

(Supplementary Figure S1). Since the RBS Calculator (31) used to calculate the translation 224 

initiation rate may be inaccurate, it could potentially produce erroneous classifier input data. To 225 

evaluate the impact of potential errors in RBS strength predictions, the calculated RBS strength 226 

(31) was randomly changed up to +/- 20% for each of the 6 genes whose RBS sequence was varied. 227 

Once again, 1000 inverse eight-fold cross-validations were generated (by randomly assigning ~11 228 

experiments to one of eight folds) and the precision and recall were calculated across all eight 229 

folds. From this analysis, 20% errors in the predicted RBS strengths by the RBS calculator did not 230 

significantly affect the precision and recall rates (Figure 2C). Finally, a non-linear polynomial 231 

classifier was tested to see if it could improve machine learning model predictions, but the results 232 

were similar to the linear classifier with an average precision of 0.66 and recall of 0.66 (Figure 233 

2C). While precision and recall were not found to be very sensitive to fold-size, RBS errors, or 234 

classifier type, the precision and recall were sensitive to the cutoff used to classify experiments as 235 

high/low yield. In this case, the precision and recall of the classifier decreased as the fraction of 236 

experiments that were classified as high yield decreased (Supplementary Figure S1), since there 237 

are fewer high yield cases to learn from. Hence, we proceeded to use a linear SVM classifier, with 238 
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a cutoff that results in proportionately high and low yield cases, and without any RBS strength 239 

errors for all subsequent analyses. 240 

Comparison of Different Active Learning Approaches 241 
 242 

In total, 89 valine experiments were performed initially; however, if the study was repeated, 243 

could we identify the highest yielding strains in fewer, more intelligently selected experiments? 244 

To answer this, two active learning algorithms—ActiveOpt and Upper Confidence Bound (37) 245 

(UCB)—were applied to maximize valine yields in fewer experiments. For ActiveOpt, a small 246 

number of starting experiments (e.g., 2 or 3) were selected (Figure 3B) and an initial high/low 247 

yield cutoff was calculated (equal to the average of the highest and lowest yield across the set of 248 

selected experiments). Results from these experiments were used to train an initial linear SVM 249 

classifier (in the case of ActiveOpt) or a Gaussian process regression model (in the case of UCB). 250 

To identify the “next experiment” to be conducted and added to the training set used to generate 251 

subsequent classifiers and yield cutoffs (Figure 3A), we investigated three approaches with 252 

ActiveOpt (referred to as next-experiment selection approaches): 253 

1) Closest-to-the-Hyperplane: with this approach, the closest experiment to the SVM 254 

hyperplane that is predicted to be high yield and has not been performed yet is chosen. This 255 

active learning approach could potentially generate accurate classifiers more quickly 256 

because experiments with the most uncertainty in their outcome (since they are close to the 257 

SVM hyperplane) are performed first. 258 

2) Farthest-from-the-Hyperplane: with this approach, the farthest experiment from the 259 

hyperplane that is predicted to be high yield and has not been performed yet is chosen. This 260 
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active learning approach could potentially reach the highest yielding strains in the fewest 261 

number of experiments. 262 

3) Farthest-then-Closest-to-the-Hyperplane: with this approach each next experiment 263 

alternates between either being farthest from the classifier’s hyperplane or closest to the 264 

hyperplane on the high yield side. This active learning approach could attempt to achieve 265 

two objectives: reaching the highest yielding strains and building an accurate classifier.  266 

We then compared ActiveOpt and UCB performances to a random trial-and-error approach (where 267 

the next experiment was randomly chosen from the set of remaining unperformed experiments). 268 

While ActiveOpt (Figure 3) and UCB are active learning algorithms, the random selection 269 

approach is not an active learning approach since current information is not used to inform 270 

selection of the next experiment. 271 

To avoid biasing the comparisons by only selecting a single initial experiment, we ran the 272 

random scenario 1000 times, where each time an initial experiment was randomly chosen and then 273 

each of the 88 remaining experiments were randomly selected one by one. ActiveOpt was run with 274 

each of the 89 experiments used as the initial experiment for each of the three next-experiment 275 

selection approaches described above. At each iteration, ActiveOpt used the updated linear SVM 276 

classifiers from the previous round of data to select the next experiment (Figure 3A). ActiveOpt 277 

selected experiments to perform until no unperformed experiments were predicted by the SVM 278 

classifier to be high yield (i.e., all remaining potential experiments were predicted to be low yield). 279 

For the random selection approach, another experiment was performed until no additional 280 

experiments were available from the set of 89 experiments. 281 

For each run, we first determined how many total experiments had to be performed before 282 

a satisfactory strain was found that had at least 95% of the highest observed valine yield across all 283 
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89 experiments (the highest observed elemental carbon yield was 45%, which is 54.7% of the MT 284 

yield). Figure 4A-C shows histograms of the total experiments needed to find a satisfactory strain 285 

across the ActiveOpt runs using different next-experiment selection approaches (see 286 

Supplementary Figure S2 for farthest-then-closest-to-the-hyperplane results). It is possible to 287 

identify that the farthest-from-the-hyperplane approach frequently finds a satisfactory valine 288 

production strain in fewer experiments than the other approaches (although farthest-then-closest-289 

to-the-hyperplane and closest-to-the-hyperplane approaches are still an improvement over random 290 

sampling, a non-active learning approach). In 59 out of 89 cases, fewer than 10 expression 291 

constructs had to be tested before a satisfactory strain was found using the farthest-from-the-292 

hyperplane approach compared to 475 out of 1000 or 41 out of 89 cases for the randomly chosen 293 

or closest-to-the-hyperplane approaches, respectively (Supplementary Table S3). This result 294 

shows that an active learning approach (where continually updated information is used to design 295 

the next experiment) can reduce the amount of time and effort needed to generate high yield strains.  296 

Another way to evaluate the performance of the different approaches is to identify, at each 297 

iteration (i.e., new experiment selection), the highest observed yield across the subset of currently 298 

performed experiments. This highest observed yield can then be averaged across the 89 runs with 299 

different starting experiments. From Figure 4D, it can be seen that the farthest-from-the-300 

hyperplane approach steeply increases the valine yield per experiment, as compared with other 301 

next-experiment selection approaches. The slope of the plot in Figure 4D can also be used as an 302 

indicator to decide whether to perform more experiments or not (e.g., after 7 experiments the curve 303 

plateaus for the farthest-from-the-hyperplane approach). The final classifiers (when no more 304 

experiments were predicted to be high yield) at the end of each of the 89 ActiveOpt runs were 305 

more accurate when closest-to-the-hyperplane approach was used (with average precision and 306 
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recall of 0.91 and 0.69 for all 89 experiments, respectively; and with standard deviations for 307 

precision and recall of 0.03 and 0.18, respectively), compared to the other next-experiment 308 

approaches (Supplementary Table S3).  309 

In addition to using ActiveOpt with an SVM classifier, the UCB active and machine 310 

learning algorithm was evaluated, which allows tradeoffs between exploration and exploitation 311 

(37). UCB uses a regression model’s predictions and confidence intervals to maximize an 312 

unknown function, in this case valine yield. Here, UCB used a Gaussian process regression model 313 

to predict valine yields, as compared to the SVM classifier used by ActiveOpt, which predicts 314 

high/low yield. Both UCB and ActiveOpt, on average, would take 8 experiments to find a 315 

satisfactory strain (Figure 2D). For a small number of valine experiments (between 3 and 6) 316 

ActiveOpt performs slightly better than UCB, while UCB performs slightly better than ActiveOpt 317 

after 8 experiments (Figure 2D). These results show that ActiveOpt and UCB can very accurately 318 

and efficiently identify high yield strains using results from a small number of experiments (e.g., 319 

~8 in the valine case), nearly an order of magnitude less than the total 89 experiments originally 320 

performed to achieve the same yield. 321 

Significant Features from Resulting Machine Learning Classifiers 322 
 323 

Machine learning classifiers can also be used to identify feature weights, a relative measure 324 

of the sensitivity of the linear SVM classifier output (in this case yield) to changes in feature value 325 

inputs (e.g., RBS strengths). Figure 4E shows the distribution of weights for the final classifiers 326 

(i.e., when no more high yield experiments are predicted for each of the 89 runs with unique initial 327 

experiments) when the farthest-from-the-hyperplane approach is used by ActiveOpt. From Figure 328 

4E, it can be seen that ilvB and ilvD have strong negative weights in most of the runs, while ilvC*, 329 
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ilvN* and ygaZ have positive weights. Increasing the RBS strengths of the genes with positive 330 

weights and decreasing the RBS strengths of the genes with negative weights should result in 331 

strains with high valine yields. Multinomial logistic regression (which fits binary outcomes to 332 

continuous input features) was also used to compare features from the valine dataset (Table 1). It 333 

can be seen that only the coefficients for ilvB, ilvN*, ilvD were significant, with a p-value less than 334 

0.05. However, the signs of the weights were similar to those predicted by ActiveOpt, further 335 

supporting the utility of the machine learning approach. 336 

Newly Designed Valine Experiments by ActiveOpt 337 
 338 

ActiveOpt suggested four new exploration experiments, using new plasmid combinations 339 

of previously tested RBSs, which were farthest from the hyperplane using a linear SVM classifier 340 

trained on all 89 previous experiments. Figure 4F shows that the valine yields in all four new 341 

experiments were correctly predicted to be high yield (>=29% MT yield), with one combination 342 

being 53.4% MT yield, very close to the highest yield (54.7% MT yield) from the original 89 343 

experiments. Therefore, if distance from the hyperplane is indicative of valine yield, then no 344 

additional experiments, using combinations of existing plasmids (exploration), are predicted by 345 

ActiveOpt to increase yields above those found in the 93 experiments performed. Similarly, UCB 346 

predicted no untested plasmid pair combinations would have greater valine yields than those 347 

already tested.  348 

Application of ActiveOpt to Enhance Neurosporene Production  349 
 350 

Farasat et al. (14) recently reported a neurosporene productivity dataset in E. coli that used 351 

a designed RBS sequence library to vary expression of three neurosporene biosynthesis pathway 352 

genes (crtEBI) (Figure 5A). The authors initially designed 73 expression constructs for crtEBI, 353 
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transformed them into E. coli, and measured the specific neurosporene productivity (exploration 354 

experiments, Figure 5B). Next, a kinetic model (capable of extrapolating designs) was built for the 355 

24 elementary reactions in the neurosporene biosynthesis pathway to design 28 new expression 356 

constructs (extrapolation experiments), increasing neurosporene productivity from 196.3 to a 357 

maximum of 286 µg/gCDW/hr.  358 

This initial exploration dataset was used by ActiveOpt to test whether the most productive 359 

strains could be identified in fewer than 73 experiments. Figure 5C shows the average highest 360 

observed neurosporene productivity as a function of the chosen number of exploration experiments 361 

for several next-experiment ActiveOpt approaches. In this case, ActiveOpt was run with each of 362 

the 73 exploration experiments performed by Farasat et al. as the initial experiment. This figure 363 

also indicates that ActiveOpt identified strains with at least 95% of the best productivity from the 364 

exploration experiments in much fewer experiments than the 73 experiments performed by Farasat 365 

and colleagues. On average, a satisfactory strain (with a productivity of >186.5 µg/gCDW/hr) 366 

would have been found with ~10 experiments for the closest-to-the-hyperplane and farthest-then-367 

closest-to-the-hyperplane approaches and ~13 experiments for the farthest-from-the-hyperplane 368 

approach (Supplementary Table S4). Notably, ActiveOpt does not require any kinetic information 369 

to optimize expression constructs for the biosynthesis pathway. Furthermore, Farasat and 370 

colleagues found that high neurosporene productivity requires high crtE activity, agreeing with the 371 

final average ActiveOpt classifier weights of 1.07, -0.03, and 0.09 for crtE, crtB, and crtI, 372 

respectively, for the farthest-from-the-hyperplane approach (Supplementary Figure S3 and 373 

Supplementary Table S5). 374 

The first 73 exploration experiments performed by Farasat et al. explored the design space 375 

for RBSs controlling neurosporene production. Using a kinetic model, the authors designed new 376 
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RBSs predicted to further increase neurosporene production resulting in 28 new extrapolation 377 

experiments (since the RBSs were previously untested). The 73 final ActiveOpt classifiers (when 378 

no more high productivity exploration experiments were predicted) generated from the exploration 379 

experiments were each used to choose an extrapolation experiment with the farthest-from-the-380 

hyperplane approach. ActiveOpt was then allowed to continue selecting new extrapolation 381 

experiments, by updating the cutoff and classifier, until no remaining extrapolation experiments 382 

were predicted by ActiveOpt to have high productivity. The final recall for the extrapolation 383 

experiments across all 73 runs (when ActiveOpt was started with final classifiers from the 384 

exploration experiments) had an average of 0.70 and standard deviation of 0.17 (Figure 5D and 385 

Supplementary Table S4). Of the 73 ActiveOpt runs, 47 would have found the highest productivity 386 

extrapolation experiment (286 µg/gCDW/hr), 58 would have found one of the top two 387 

productivities, and 70 would have found a satisfactory strain with >271 µg/gCDW/hr neurosporene 388 

productivity (Figure 5E). Slightly more runs identified a satisfactory strain when the closest-to-389 

the-hyperplane and farthest-then-closest-to-the-hyperplane approaches were used with ActiveOpt 390 

(Supplementary Table S4). The average number of extrapolation experiments needed to find a 391 

satisfactory strain was 2, 4, and 6 when closest-to-the-hyperplane, farthest-then-closest-to-the-392 

hyperplane, and farthest-from-the-hyperplane approaches were used, respectively (Supplementary 393 

Figure S4). This is substantially less than the total 28 extrapolation experiments performed by 394 

Farasat and colleagues. Together, these results show that ActiveOpt can be applied to extrapolation 395 

experiments involving previously untested RBSs. 396 

DISCUSSION 397 
 398 

Machine learning uses statistical models to identify non-intuitive patterns between input 399 

features and experimental outcomes and has been applied to a wide range of fields; however, its 400 
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use in metabolic engineering has been limited. We evaluated whether machine learning could be 401 

used in an active learning framework (ActiveOpt) to accelerate development of biochemical 402 

production strains. ActiveOpt was applied to two separate datasets, a published dataset for 403 

neurosporene productivity and a new valine dataset reported here—the latter of which achieved 404 

the highest reported E. coli valine yield in a defined minimal medium. We showed that a linear 405 

classifier is able to qualitatively predict yields with high precision and recall using only predicted 406 

RBS strengths and gene choices (ilvC or ilvC*) as inputs. When this machine learning classifier 407 

was integrated into an active learning framework, satisfactory strains could be identified in 408 

significantly fewer design iterations than the original experimental studies. In particular, there does 409 

not seem to be a need for a non-linear classifier. 410 

ActiveOpt is a method for efficiently exploring the design space to identify the subset of 411 

gene expression constructs which give rise to strains with higher yields or productivities. Since 412 

ActiveOpt does not rely on high-throughput selections or screens to identify these optimal 413 

expression constructs, this approach could be applied to enhance production of a larger number of 414 

biochemical targets. ActiveOpt has low upfront requirements, in terms of data and understanding 415 

of the metabolic pathway, only requiring predicted RBS strengths and measured 416 

yields/productivities. Since ActiveOpt does not rely on detailed mechanistic or kinetic models it 417 

does not require large, complex ‘omics datasets to parameterize them. An important advantage of 418 

ActiveOpt, relative to most other supervised machine learning applications, is its ability to predict 419 

experimental outcomes outside the training set design space (i.e., extrapolation experiments) to 420 

achieve better results.  421 

ActiveOpt also identifies the features that most significantly affect the metabolic 422 

engineering objective (in our case RBS strengths), which might be useful in further shrinking the 423 
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design space for future studies on a similar pathway or narrowing the focus of the current study. 424 

Feature selection can direct our attention to portions of the pathways where a more detailed model 425 

or mechanistic insights into the system might be necessary to fine tune yields/productivities. 426 

Analysis of these features was useful in both case studies, and in the neurosporene study the feature 427 

weights for the genes found by ActiveOpt were consistent with conclusions drawn from a more 428 

detailed kinetic model of the pathway.  429 

 This work shows how machine and active learning can be used to successfully streamline 430 

the development of high biochemical production strains. While machine learning models worked 431 

well for the two case studies evaluated in this work, it is possible that optimizing flux through 432 

other metabolic pathways might require other types of classifiers and/or regressors to achieve 433 

accurate predictions. Future work should evaluate ActiveOpt’s performance on other metabolic 434 

engineering targets and investigate whether design decisions can include other types of gene 435 

expression control elements (e.g., promotors and terminators). The performance and validation of 436 

ActiveOpt opens avenues for its implementation to guide projects with a defined parameter design 437 

space from inception to outcome. While not explicitly tested here, this would be a true test for 438 

method robustness and would validate machine learning algorithms as a useful tool for metabolic 439 

engineers.  440 

 441 

METHODS 442 
 443 

ActiveOpt: Active Learning using a SVM classifier 444 
 445 

ActiveOpt uses a SVM classifier (36) to perform active learning (25). The built-in 446 

MATLAB SVM classifier function (‘svmtrain’) was used for binary classification (“high” and 447 
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“low”) of biochemical yield or productivity data obtained from experiments. For both the valine 448 

and neurosporene cases the predicted RBS strengths for the individual genes in the biosynthesis 449 

pathways were used as features for classification and the set of all possible RBS strength values 450 

defines the feature space. For the valine dataset, if a gene was not included on a plasmid (i.e., ilvC 451 

or ilvC*) then the associated RBS strength was set to zero. The predicted RBS strengths (from the 452 

RBS Calculator (31)) were standardized for each gene by subtracting the mean RBS strength and 453 

dividing by the standard deviation across all the values in the design space.  454 

A machine learning classifier finds a decision boundary, a hyperplane in the 455 

multidimensional feature space, to predict whether a collection of feature values would result in 456 

either “high” or “low” yield/productivity. The linear SVM classifier requires experiments from 457 

each group be included in the training set. In the event that a fold was created that included 458 

experiments from only one group, then data from all other assigned folds were excluded from the 459 

analysis and the MATLAB ‘crossvalind’ function was used again to randomly assign all 460 

experiments to the specified number of folds. This random process was repeated for the inverse 461 

fold cross-validation until 1,000 appropriately assigned folds were found (i.e., each fold has both 462 

and high and low yield experiments). 463 

ActiveOpt needs few starting data points to train the initial classifier and then ActiveOpt 464 

predicts all other experimental outcomes. For the initial set of experiments, ActiveOpt selects one 465 

experiment and then chooses another initial experiment from the available experiments which has 466 

maximum Euclidean distance in the feature space from the first chosen experiment (Figure 3A-B). 467 

This process of choosing initial experiments continues until the absolute difference between the 468 

maximum and the minimum yields/productivity is greater than a user-defined initial cutoff (5% 469 

MT yield was used for the valine dataset and 10 µg/gCDW/hr was used for the neurosporene 470 
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dataset). These chosen initial experiments can be then labeled into two classes, “high” and “low”, 471 

based on their yield/productivity and the classifier is trained on these experiments and proposes 472 

subsequent experiments with predicted high chemical yield/productivity. The flowchart of the 473 

entire process is shown in Figure 3. The suggested subsequent experiment is the farthest or closest 474 

point on the “high” labeled side of the hyperplane, as certainty about the experimental outcome 475 

increases with distance from the decision boundary. After conducting the proposed experiment, 476 

the result is used to update the high/low cutoff used to classify all performed experiments (cutoff 477 

equals the average of the maximum and minimum yield/productivity across the previously selected 478 

experiments) and to train the next iteration’s SVM classifier. The SVM hyperplane might not 479 

change in each iteration as it depends on the support vectors. The process of suggesting 480 

experiments stops when there is no significant improvement in the yield (Figure 3C.i) or when no 481 

additional high yield/productivity experiments are predicted. Additionally, feature selection 482 

(Figure 3C.ii) can be performed by analyzing the weights of individual features. Classification 483 

using the MATLAB multinomial logistic regression function (mnrfit) was also performed on the 484 

valine dataset to identify the significance of each feature. 485 

Strains and plasmids 486 
 487 

To evaluate how expression of different valine biosynthesis and exporter genes (Figure 1) 488 

impacts valine production, a derivative of E. coli strain PYR003 (BW25113 aceE::kan ∆gdhA 489 

∆poxB ∆ldhA) with genotype BW25113 ∆aceE∆gdhA∆poxB∆ldhA∆recA (PYR003a) was used as 490 

a background strain. PYR003 produces high yields of pyruvate from glucose and acetate (0.75 g 491 

pyruvate/g substrate) (X. Zhang and J.L. Reed, unpublished data). The valine biosynthesis genes 492 

(ilvBN*DEIH*C/C*) and valine exporter (ygaZH (38)) genes were cloned onto two separate 493 

plasmids to allow combinatorial testing with varying expression levels. Valine production genes 494 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406439
http://creativecommons.org/licenses/by-nd/4.0/


were either cloned from the E. coli K-12 MG1655 chromosome (in the case of ilvBDEIC and 495 

ygaZH) or were generated via overlap extension PCR (in the case of ilvC*, ilvN*, and ilvH*). The 496 

ilvC* gene (containing mutations A71S, R76D, S78D, and Q110V and referred to previously as 497 

ilvC6E6-his6 (35)) prefers NADH instead of NADPH as a cofactor. The ilvN* gene (containing 498 

mutations G20D, V21D, and M22F and referred to previously as ilvNmut (34)) and ilvH* gene 499 

(containing mutations G14D and S17F, referred to previously as ilvHG41A,C50T (34)) are feedback-500 

resistant mutants of ilvN and ilvH, respectively. The pTrc99A plasmid backbone (39) was used to 501 

express ilvBN*DE, while another plasmid backbone, pACYCtrc, was used to express ilvC/C*, 502 

ilvIH* and ygaZH (40).  503 

Multiple RBS sequences were used to generate different expression levels for the valine 504 

production genes (see Supplementary Table S1 for plasmid details). Specifically, RBS sequences 505 

were taken from either: 1) de novo designs from the RBS Calculator (31); 2) published literature 506 

of characterized synthetic RBS sequences (41); 3) chromosomal RBS sequences upstream of the 507 

gene’s genomic locus; or 4) RBS sequences already present on the plasmid backbones. RBS 508 

sequences generated by the RBS Calculator used the following input parameters: 1) Organism: E. 509 

coli K-12 MG1655; 2) free energy model v1.1; 3) 100 bp of the coding sequence; and 4) 20 bp 510 

upstream of the start codon. 511 

Media and culture conditions 512 
 513 

All valine yield experiments were performed in 250 mL, baffled shake flasks containing 514 

50 mL of MOPS-buffered minimal media (42) supplemented with 0.1 g/L sodium acetate, 2 g/L 515 

glucose, 100 µg/L thiamine hydrochloride, 100 mg/L of ampicillin, and 34 mg/L of 516 

chloramphenicol. Electro-competent PYR003a cells were prepared, double electroporated with 517 
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two plasmid combinations, and incubated overnight at 37°C on Luria-Bertani broth (43) agar plates 518 

supplemented with 4 g/L glucose, 100 mg/L of ampicillin, and 34 mg/L of chloramphenicol. 519 

Subsequently, a minimum of two biological replicate colonies were picked for all experiments and 520 

sub-cultured in 10 mL of supplemented MOPS-buffered minimal media (as detailed above) for 24 521 

hours at 37°C in a shaker at 225 RPM. Cells were then centrifuged, washed, and used to inoculate 522 

the 250 mL flasks to a starting OD600 of 0.01. Shake flasks were capped and wrapped with paraffin 523 

film to prevent evaporation and incubated for 48 hours. No isopropyl β-ᴅ-thiogalactopyranoside 524 

(IPTG) was added to the media, so transcription of the valine production genes from the plasmids 525 

was based on leaky expression 526 

Glucose and valine quantification 527 
 528 

Prior to valine quantification, complete glucose utilization was verified for all experiments 529 

via an enzymatic assay (Glucose (GO) Assay Kit, Sigma-Aldrich) to ensure accurate yield 530 

calculations. Valine was quantified with a [1-13C]valine internal standard (Cambridge Isotope 531 

Laboratories) using an isotope-ratio method and gas chromatography-mass spectrometry (GC-MS) 532 

(44). A known amount of a [1-13C]valine was added to samples containing unlabeled valine, dried 533 

at 90°C, and derivatized with N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide plus 1% tert-534 

butyl-dimethylchlorosilane at 90°C for 30 minutes to increase volatility and thermal stability 535 

required for GC-MS analysis. Samples were then run on a single quadrupole GC-MS QP2010S 536 

(Shimadzu) in electron ionization mode equipped with an Rtx-5ms (Restek) low-bleed, fused-537 

silica column for separation with helium as a carrier gas operating under linear velocity control 538 

mode with a split ratio of 0.50 and a column flow of 1.50 mL/min. The temperature program for 539 

valine separation began with holding the oven temperature at 100°C for 5 minutes, ramping up at 540 

25°C/min to 300°C, and holding for 5 minutes. Operating parameters included an injection 541 
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temperature of 240°C, ion source temperature of 260°C, interface temperature of 240°C, and a 542 

mass scan range of 100-450 m/z. Then, an appropriate fragment (45) containing the labeled carbon 543 

from the internal standard was used to calculate the 12C/13C ratio and, subsequently, the 544 

concentration of the sample after correcting for isotopic impurity of the internal standard and for 545 

natural abundance of 13C using a freely available software, IsoCor (46). This method was tested on 546 

samples with known concentrations of unlabeled valine ranging from 0.5 mM to 80 mM; predicted 547 

values were plotted against known values with a fit of y=0.9987x (with y=x being the most 548 

accurate). Measured valine yields were compared to the MT yield (0.644 g valine/g carbon source), 549 

the latter calculated from flux balance analysis (47) of the iJR904 E. coli genome-scale metabolic 550 

model (48) using the amounts of glucose (2 g/L) and acetate (0.072 g/L) present in the 551 

supplemented MOPS minimal medium. 552 

  553 

 554 
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FIGURE CAPTIONS 744 
 745 

 746 

Figure 1: Biosynthesis pathway for branched chain amino acids in E. coli. There are nine 747 
genes involved in valine export and biosynthesis from pyruvate. The dashed arrow indicates the 748 
need of multiple reactions to convert acetyl-CoA and 3-methyl-2-oxobutanoate to leucine. 749 
Metabolites that regulate branched chain amino acid biosynthesis enzyme activity or levels are 750 
shown in red. Metabolites that are toxic are shown in green. Enzymes that are regulated by 751 
branched chain amino acid metabolites are boxed in grey. 752 
 753 
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 754 
 755 
Figure 2: Machine learning approaches applied to the valine experimental dataset. Panel (A) 756 
shows a histogram of the valine yield in all 89 experiments and whether they were classified as 757 
high (white bars, 46 experiments) or low (grey bars, 45 experiments) yield. (B) Shows a violin 758 
plot (where the outer shape width is proportional to frequency of occurrence and the black and 759 
yellow bars indicates the mean and median values, respectively) of the standardized RBS strengths 760 
(see Methods for details) for each gene whose RBS varied across the experiments. The precision 761 
and recall are shown in panel (C) for four different cases with different training (and testing) set 762 
sizes, added RBS strength errors, and with linear (Lin.) or non-linear (Non-Lin.) classifiers. 763 
Precision (red bars) is the ratio of true positives (i.e., correctly predicted high yield experiments) 764 
to the total predicted positives (i.e., total predicted high yield experiments), whereas, recall (blue 765 
bars) is the ratio of true positives to the total actual positives (i.e., total actual high yield 766 
experiments). The bar represents the average and the error bars show the standard deviation across 767 
1,000 inverse eight-fold cross-validations.  768 
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 770 
 771 
Figure 3: Overview and Output of ActiveOpt. Panel (A) shows a Flowchart of the ActiveOpt 772 
method. Panel (B) shows the process for selecting the initial set of experiments on which the 773 
classifier is initially run. Panel (C) shows possible outputs generated by ActiveOpt, such as: 774 
maximum product yield found versus number of experiments performed or identification of 775 
important features affecting product yield. 776 
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 778 
 779 
Figure 4: ActiveOpt Applied to Enhance Valine Yield. Panels (A-C) show histograms for the 780 
number of total experiments needed by ActiveOpt to identify a satisfactory strain (i.e., a strain 781 
with a yield >95% of the highest observed valine yield across all experiments) using different 782 
“next experiment” selection approaches when 89 different first initial experiments were used to 783 
start the algorithm. Panel (A) used random selection. Closest-to-the-hyperplane was used in panel 784 
(B), and farthest-from-the-hyperplane in panel (C). In panel (D), the average from the 89 785 
ActiveOpt or UCB runs of the highest observed % valine yield is plotted as a function of the 786 
number of total experiments performed. Panel (E) shows the distribution (using violin plots where 787 
the outer shape width is proportional to frequency of occurrence and the bar indicates the average 788 
value) of the feature weights from the final classifiers generated from the 89 ActiveOpt runs using 789 
the farthest-from-the-hyperplane experimental selection approach. An SVM classifier was built 790 
from the original 89 experiments and used by ActiveOpt to identify four new experiments (not 791 
included in the original 89 experiments) that were farthest from the classifier’s hyperplane. In all 792 
four new experiments the valine yields were high (panel F) as predicted by ActiveOpt. 793 
 794 
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 795 
Figure 5: ActiveOpt Applied to Enhance Neurosporene Productivity. Panel (A) shows the 796 
neurosporene biosynthesis pathway. Panel (B) shows the neurosporene productivity measured by 797 
Farasat et al. in the exploration experiments. Panel (C) shows the average of the maximum 798 
observed neurosporene productivity found across the 73 ActiveOpt runs using different approaches 799 
for finding the next experiment (farthest-from-the-hyperplane = green, closest-to-the-hyperplane 800 
= blue, and farthest-then-closest-to-the-hyperplane = black). Panel (D) shows for each of the 73 801 
final extrapolation ActiveOpt cutoffs and classifiers (using first exploration then extrapolation 802 
experiments) what the recall was for the extrapolation experiments (using new RBSs not tested in 803 
the exploration experiments). Panel (E) shows for each ActiveOpt run (using first exploration then 804 
extrapolation experiments) with the farthest-from-the-hyperplane approach what the maximum 805 
observed neurosporene productivity would have been across selected extrapolation experiments.  806 
 807 
  808 
Table 1: Feature weights from Logistic Regression, ActiveOpt (using farthest-from-the-809 
hyperplane approach), and UCB. 810 
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RBS 
Strength 
for Gene  

Logistic Regression 
Coefficients  
(p-values) 

Average 
ActiveOpt 

(w/Furthest)W
eights 

ilvB -2.38 (0.017) -0.90 

ilvN* 3.50 (0.023) 0.42 

ilvD -4.03(0.001) -1.10 

ilvE 0.43 (0.490) 0.02 

ygaZ 0.16 (0.700) 0.77 

ilvC* 0.27 (0.545) 0.09 
 811 

 812 

 813 

 814 

SUPPLEMENTARY INFORMATION 815 
 816 
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 817 

Supplementary Figure S1: Sensitivity of the SVM Classifier to High/Low Cutoffs and 818 

Training Set Size. A cutoff was used to assign the valine experiments to one of two groups, either 819 

a high yield experiment or a low yield experiment. Panels (A) and (B) shows the sensitivity of the 820 

SVM classifier’s precision and recall, respectively, to the cutoff used to assign experiments to 821 

different groups. The cutoffs were varied so that 15%, 25%, 50%, 75%, or 85% of all the 822 

experiments were assigned to the low yield experiment group. Results in (A) and (B were 823 

generated by taking the average and standard deviation (error bars) of 1,000 inverse eight-fold 824 

cross-validations assuming no errors in the predicted RBS strengths. Panels (C) and (D) shows the 825 

sensitivity of the SVM classifier’s precision and recall, respectively, to the number of experiments 826 
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included in the training dataset (by varying the number of folds used in the inverse cross-827 

validation). The number of folds were varied (18, 10, 5, 3, and 2) so that the size of the training 828 

datasets were around ~5, ~9, ~18, ~30, and ~45. Numbers below each point indicate cutoff (% MT 829 

Yield) used to generate each result. Results in (C) and (D) were generated by taking the average 830 

and standard deviation (error bars) of 1,000 inverse fold cross-validations using a yield cutoff of 831 

29% MT yield (to assign experiments to separate groups) and assuming no errors in the predicted 832 

RBS strengths. The dashed lines in panels (C) and (D) show the precision and recall values from 833 

the LOOCV analysis (with a training set size of 90). Numbers below each point indicate number 834 

of folds used to generate each result.  835 

 836 

Supplementary Figure S2: Number of Valine Experiments Needed to Find a Satisfactory 837 

Valine Strain. The figure shows histograms of the number of experiments needed to find a 838 

satisfactory valine strain for 89 different ActiveOpt runs (using each valine experiment as a first 839 

initial experiment) using either the farthest-from-the-hyperplane (Panel A) and farthest-then-840 

closest-to-the-hyperplane (Panel B) approach. Panel A is the same as that shown in Figure 4C and 841 
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is repeated for comparative purposes. 842 

 843 

Supplementary Figure S3: Distribution of Feature Weights for Final ActiveOpt Classifiers. 844 

This figure shows a violin plot (where the outer shape width is proportional to frequency of 845 

occurrence and the black and red bars indicates the mean and median values, respectively) for the 846 

distribution of weights for the three features (standardized RBS strengths for crtE, crtB, and crtI) 847 

across the final 73 ActiveOpt classifiers generated using the farthest-from-the-hyperplane 848 

approach. Each ActiveOpt run was generated using a different exploration experiment (the first 73 849 

experiments reported by Farasat et al.) as a first initial experiment. The final classifier is when no 850 

more remaining experiments are predicted to be high yield. 851 
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 852 

Supplementary Figure S4: ActiveOpt Applied to Extrapolation Experiments from the 853 

Neurosporene Productivity Case Study. Panel (A) shows for different ActiveOpt next 854 

experiment selection approaches, the average from the 73 ActiveOpt runs of the highest observed 855 

neurosporene productivity as a function of the number of extrapolation experiments performed. 856 

The closest-to-the-hyperplane is shown in blue, the farthest-from-the-hyperplane is shown in 857 

green, and farthest-then-closest-to-the-hyperplane is shown in black. Panel (B) shows how the 858 

highest observed neurosporene productivity varies as a function of the number of extrapolation 859 

experiments performed using the farthest-from-the-hyperplane approach. Each of the 73 curves 860 

was generated by ActiveOpt starting from the final classifiers generated by ActiveOpt using the 861 

exploration experiments. 862 

 863 

  864 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406439
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Table S1. Plasmids and strains used in valine experiments. See Supplementary 865 
excel file. 866 

Supplementary Table S2. Measured valine yields using different combinations of plasmids in 867 
PYR003a. See Supplementary excel file. 868 

Supplementary Table S3. Performance of different techniques to select the next ActiveOpt 869 
experiment on the valine dataset. 870 
 871 
 Random Closest-to-the- 

Hyperplane 

 

Farthest-
from-the- 

Hyperplane 

Farthest-then-
Closest-to-the- 

Hyperplane  

# of ActiveOpt runs 1000 89 89 89 

# of ActiveOpt runs 
that found a satisfactory 
straina 

1000 83 76 81 

# of experiments to find 
a satisfactory strainb 

13 14 8 10 

# of ActiveOpt runs 
that found a satisfactory 
strain  in <10 
experimentsc 

475 41 59 55 

average # of expts until 
no predicted high yield 
experiments remaind 

NAg 54.0 24.3 38.6 

Average precisione NAg 0.91 0.95 0.92 

Average recallf NAg 0.69 0.35 0.54 
a Each run was started from a different first initial experiment 872 
b The total number of experiments needed for the average (across all 89 runs) highest observed valine 873 
yield to exceed 95% of the measured maximum yield 874 
c The number of runs that found a strain in less than 10 total experiments which had at least 95% of the 875 
measured maximum yield 876 
d The average number of experiments suggested by ActiveOpt to be performed until no additional 877 
experiments are predicted to have high yield (i.e., the number of experiments needed to generate the final 878 
ActiveOpt classifiers) 879 
e The average precision (across all 89 runs) for the final ActiveOpt classifiers when predictions were 880 
made for all 89 experiments 881 
f The average recall (across all 89 runs) for the final ActiveOpt classifiers when predictions were made for 882 
all 89 experiments 883 
g NA indicates not applicable since no classifier is generated using the random experiment selection 884 
approach. 885 
 886 
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 887 

  888 
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Supplementary Table S4. Performance of different techniques to select the next ActiveOpt 889 
experiment on the neurosporene dataset. In grey are results from the exploration experiments and 890 
in white the extrapolation experiments. 891 
 892 
 Random Closest-to-

the- 
Hyperplane 

Farthest-
from-the- 

Hyperplane 

Farthest-then-
Closest-to-the- 

Hyperplane  

# of ActiveOpt runs 1000 73 73 73 

# of ActiveOpt runs that found a 
satisfactory straina 

1000 71 64 73 

# of expts to find a satisfactory 
strainb 

19 10 13 10 

average # of exploration expts until 
no predicted high productivity expts 
remainc 

NAj 29.2 17.0 23.4 

Average precisiond NAj 0.83 0.83 0.84 

Average recalle NAj 0.44 0.27 0.40 

# of ActiveOpt runs that found a 
satisfactory strainf 

1000 73 70 71 

# of expts to find a satisfactory 
straing 

7 2 6 4 

average # of extrapolation expts until 
no predicted high productivity expts 
remainh 

NAj 16.2 21.7 18.8 

Average recalli NAj 0.47 0.70 0.54 
a Each run was started from a different first initial experiment in the exploration dataset. A satisfactory 893 
strain had at least 95% of the measured maximum productivity across the 73 exploration experiments. 894 
b The total number of experiments needed for the average (across all 73 runs) highest observed valine 895 
yield to exceed 95% of the measured maximum productivity in the 73 exploration experiments. 896 
c The average number of exploratory experiments suggested by ActiveOpt to be performed until no 897 
additional exploratory experiments are predicted to have high productivity (i.e., the number of 898 
experiments needed to generate the final exploration ActiveOpt classifiers) 899 
d The average precision (across all 73 runs) for the exploration experiments from the final ActiveOpt 900 
classifiers after using exploration experiments. Predictions were made for all 73 experiments and used to 901 
calculate precision for each classifier. 902 
e The average recall (across all 73 runs) for the exploration experiments from the final ActiveOpt 903 
classifiers after using exploration experiments. Predictions were made for all 73 experiments and used to 904 
calculate recall for each classifier. 905 
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f Each run was started from a different first initial experiment in the exploration dataset. Once no more 906 
predicted high productivity exploration experiments were available, ActiveOpt was allowed to select high 907 
productivity extrapolation experiments. A satisfactory strain had at least 95% of the measured maximum 908 
productivity across the 28 extrapolation experiments. 909 
g The total number of experiments needed for the average (across all 73 runs) highest observed valine 910 
yield to exceed 95% of the measured maximum productivity in the 73 extrapolation experiments 911 
h The average number of extrapolation experiments suggested by ActiveOpt to be performed until no 912 
additional extrapolation experiments are predicted to have high productivity  (i.e., the number of 913 
experiments needed to generate the final extrapolation ActiveOpt classifiers) 914 
i The average recall (across all 73 runs) for the extrapolation experiments from the final ActiveOpt 915 
classifiers after using extrapolation experiments. Predictions were made for all 28 experiments and used 916 
to calculate recall for each classifier. The precision was 1 for all classifiers since all extrapolation 917 
experiments were high productivity. 918 
j NA indicates not applicable since no classifier is generated using the random experiment selection 919 
approach. 920 
 921 
Supplementary Table S5. Average weights across final ActiveOpt classifiers generated from 922 
the 73 neurosporene exploration experiments, with each experiment chosen as a first initial 923 
experiment. 924 
 925 
Next Experiment 
Selection Approach crtE crtB crtI 

closest-to-the-
hyperplane 0.98 -0.04 0.11 

farthest-from-the-
hyperplane 1.07 -0.03 0.09 

farthest-then-closest-
to-the-hyperplane 0.96 0.03 0.07 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 
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