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Abstract 
Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is 
essential for the development of successful therapies. Here, we present Phase 1 of a multi-
omics, multi-model data resource for FTD research which will allows in-depth molecular 
research into these mechanisms. We have integrated and analysed data from the frontal 
lobe of FTD patients with mutations in MAPT, GRN and C9orf72 and detected common and 
distinct dysregulated cellular pathways. Our results highlight that excitatory neurons are the 
most vulnerable neuronal cell type and that vascular aberrations are a common hallmark in 
FTD. Via integration of multi-omics data, we detected several transcription factors and 
pathways which regulate the strong neuroinflammation observed in FTD-GRN. Finally, using 
small RNA-seq data and verification experiments in cellular models, we identified several up-
regulated miRNAs that inhibit cellular trafficking pathways in FTD and lead to microglial 
activation. In this work we shed light on novel mechanistic and pathophysiological hallmarks 
of FTD. In addition, we believe that this comprehensive, multi-omics data resource will 
further mechanistic FTD research by the community. 
 

Introduction 

Frontotemporal Dementia (FTD) is a devastating pre-senile dementia characterized by 
progressive deterioration of the frontal and anterior temporal lobes 1. The most common 
symptoms include severe changes in social and personal behaviour as well as a general 
blunting of emotions. Clinically, genetically, and pathologically there is considerable overlap 
with other neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), 
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Progressive Supranuclear Palsy (PSP) and Cortical Basal Degeneration (CBD) 2. Research 
into FTD has made major advances over the past decades. Up to 40% of cases 3 have a 
positive family history and up to 60% of familial cases can be explained by mutations in the 
genes Microtubule Associated Protein Tau (MAPT), Granulin (GRN) and C9orf72 4 which 
has been key to the progress in our understanding of its molecular basis. Several other 
disease-causing genes have been identified that account for a much smaller fraction of 
cases 5. Mutations in MAPT lead to accumulation of the Tau protein in neurofibrillary tangles 
in the brain of patients while mutations in GRN and C9orf72 lead to the accumulation of 
TDP-43 6, as well as dipeptide repeat proteins (DPRs) and RNA foci in the case of C9orf72 7. 

As of today, no therapy exists that halts or slows the neurodegenerative process of FTD and 
in order to develop successful therapies there is an urgent need to determine whether a 
common target and therapy can be identified that can be exploited for all patients, or 
whether the distinct genetic, clinical and pathological subgroups need tailored treatments. 
Therefore, the development of remedies relies heavily on a better understanding of the 
molecular and cellular pathways that drive FTD pathogenesis in all FTD subtypes.  

Although our knowledge of FTD pathogenesis using molecular and cellular biology 
approaches has significantly advanced during recent years, a deep mechanistic 
understanding of the pathological pathways requires simultaneous profiling of multiple 
regulatory mechanisms. As neurodegenerative diseases develop over time, it is furthermore 
important to examine temporal changes. While post-mortem human brain tissue is not 
suitable for this aspect, well-defined rodent models can be used to address the temporal 
component. Lastly, experimental validation of derived hypotheses can be achieved in cellular 
systems, such as neurons derived from induced pluripotent stem cells (iPSCs) as well as in 
rodent models. To address these issues, the Risk and modifying factors in Frontotemporal 
Dementia (RiMod-FTD) consortium 8 generates a multi-model and multi-omics data resource 
with the focus on mutations in the three most common causal genes: MAPT, GRN and 
C9orf72. The data resource will consist of multi-omics datasets from multiple post-mortem 
human brain regions, and matching iPSC derived neurons and brain tissue of transgenic 
mouse models at different time points.  

Here, we report on the data of Phase 1 in which we have extensively analysed and 
integrated post-mortem human brain RNA-seq, CAGE-seq, smRNA-seq and methylation 
datasets from RiMod-FTD. We identified dysregulation of overlapping pathways in all 
disease groups that indicates converging disease mechanisms manifesting during disease 
progression. Using deconvolution analysis, we have identified changes in cellular 
composition that are either common or distinct to genetic subgroups. Through integration of 
smRNA-seq and CAGE-seq data, we could furthermore highlight potential regulatory 
molecules that might play important roles in FTD pathogenesis, within the identified 
functional gene modules and pathways. The RiMod-FTD data will be freely accessible to the 
scientific community through the European Genome-phenome Archive (EGA) and a dedicated 
RiMod-FTD web application thus enabling scientists to derive new mechanisms and 
hypotheses from the data. 
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Results 

Multi-omics Data Resource for Frontotemporal Dementia 
In an ongoing effort we have analysed data from brain tissue from diseased patients carrying 
mutations in the MAPT (n=17), GRN (n=11) or C9orf72 (n=17) genes and non-demented 
controls (n=16). As expected, the average age of FTD groups was lower than that of healthy 
controls (Table S1). We obtained tissue from up to 7 regions for each brain. The temporal 
and frontal lobes are the most affected areas in FTD, but we also obtained material from the 
occipital lobe, hippocampus, caudate, putamen and cerebellum for verification experiments. 
We performed CAGE-seq, smRNA-seq and quantitative proteomics (Miedema et al., 
manuscript in preparation) on tissue from frontal and temporal lobes, and additionally 
generated methylation and RNA-seq data for frontal lobe tissue. Additional data types such 
as ATAC-seq are planned for future releases. The resulting, comprehensive multi-omics 
data resource enables the study of disease mechanisms in FTD subtypes to greater detail 
than single genomics experiments (Fig. 1).  
 

 
Figure 1: Graphical overview of the RiMod-FTD project. A In phase 1, Human Post-
mortem brain tissue samples from multiple regions of patients with mutations in GRN, MAPT 
and C9orf72 have been collected and used for multi-omics data generation. The datasets 
have been integrated and analysed and published to be accessible as FTD resource. In 
subsequent phases additional datatypes will be added (i.e. ATACseq) and the resource will 
be extended with data from matching mouse models and iPSC derived celltypes. B The 
multi-omics approach allows to profile multiple regulatory features of gene expression, 
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including enhancer- and promoter-based regulation, epigenetic regulation, alternative 
splicing, post-transcriptional regulation (miRNAs) and regulation of translation (proteomics).  
 
In this study, we have integrated RNA-seq, CAGE-seq, smRNA-seq and methylation data 
from the Gyrus Frontalis Medialis (GFM) (Table S2), as this brain region is strongly affected 
in FTD. To validate observed transcriptomics dysregulation effects, we performed miRNA 
inhibition and mimic experiments in iPSC-derived neurons and microglia.  

Differential gene expression  analysis and cellular 
deconvolution of the GFM in FTD 
To identify general gene expression patterns in the GFM of patients with FTD, we performed 
differential gene expression (DGE) and principal component analysis (PCA) using the RNA-
seq data. The PCA indicates considerable heterogeneity between samples, as can be 
expected from post-mortem human brain tissue (Fig. 2A). However, a difference between 
FTD cases and control samples is clearly visible. Differentially expressed genes (DEGs) 
were calculated for all disease groups (FTD-MAPT, FTD-GRN, FTD-C9orf72) compared to 
controls while controlling for gender and pH-value (see Methods). We observed the largest 
number of DEGs (adj. P-value < 0.05) for FTD-GRN, followed by FTD-MAPT and FTD-
C9orf72 (Fig. 2B). DGE of smRNA-seq data yielded 78, 21 and 39 differentially expressed 
miRNAs in FTD-MAPT, FTD-GRN and FTD-C9orf72, respectively (Fig. 2C). As we detected 
relatively few DEGs for FTD-C9orf72, some analyses could only be performed for FTD-
MAPT and FTD-GRN. 
 
Due to the neurodegenerative nature of FTD, it is likely that there exists a systematic 
difference in cell composition between cases and controls which can affect DGE analysis 
due to differences in gene expression between cell types - a problem which has often been 
overlooked in tissue expression studies. Here, we tried to account for this problem by 
applying a conservative filtering approach and removing DEGs that are associated with 
changing cellular composition (see Methods). All further analyses were based on the filtered 
set of DEGs, unless otherwise specified. Note that this method could only be applied to the 
total RNA-seq dataset because similar cell type specificity data (here, single-cell RNA-seq 
data) was not available for other data types. 
 
Activation of extracellular matrix (ECM) associated pathways 
and circulatory system development. 
 
We next performed pathway enrichment analysis with DEGs from the RNA-seq data using 
go:Profiler9 to identify the most affected cellular pathways. Down-regulated genes are 
strongly enriched for mitochondrial and oxidative phosphorylation pathways in both FTD-
GRN and FTD-MAPT (Fig. 2D, Fig. S1), indicating a dysfunctional energy metabolism - a 
well-known hallmark of many neurodegenerative diseases10. Neuronal system pathways are 
enriched among down-regulated genes for both groups as well. This might be explained by 
dysfunctional neurons that have not yet undergone apoptosis or by a general impairment of 
neuronal function caused by the disease. Other significantly down-regulated pathways 
include ubiquitin-dependent protein metabolism and vesicle-mediated transport (FTD-GRN). 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.405894
http://creativecommons.org/licenses/by-nd/4.0/


In all three groups, up-regulated genes are enriched for extracellular matrix (ECM) 
associated pathways and circulatory system development (Fig. S1). Genes involved in 
Hippo-signalling are enriched in FTD-GRN and FTD-MAPT (Fig. 2D), and immune system 
related genes are enriched in FTD-GRN. ECM dysregulation, in particular, has been 
implicated with several neurodegenerative diseases. For instance, studies in mouse models 
showed that tau pathology can lead to ECM reorganization and that reducing ECM proteins 
could reverse memory deficits in an AD model11,12. While the role of the ECM in FTD 
remains unknown, our results suggest a prominent involvement in end-stage FTD.  
 
We also specifically examined the DEGs with the largest fold-changes in the RNA-seq data 
because large expression fold-changes often signify strong dysregulation. These results 
support the importance of ECM in FTD as for all disease groups, multiple matrix 
metalloproteinase enzymes (MMPs) are among the DEGs with the largest LFCs (Fig. S2, 
Fig. S3A). Elevated RNA levels of MMP genes have been reported for many 
neurodegenerative diseases, and MMPs target a wide range of ECM 13indicating their 
importance in neurodegenerative mechanisms14. Protein interaction networks of up-
regulated genes in FTD-MAPT and FTD-GRN show the central importance of MMPs in 
these networks (Fig. S3 B & C).  
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Figure 2: Gene- and Pathway-level transcriptional changes in FTD. A Principal 
component analysis of variance stabilized RNA-seq expression values, coloured by group. B 
Overlap between RNA-seq DEGs from different disease groups. C Overlap between 
smRNA-seq DEGs from different disease groups. D Enriched Reactome pathways in RNA-
seq up- and down-regulated DEGs. Shown are the ten most significant pathways per group; 
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the x-axis signifies the negative log10 P-value. Colour corresponds to adjusted P-value and 
node size corresponds to the number of genes in a pathway. E, F Best candidates for active 
and inactive TFs in FTD-GRN and FTD-MAPT, respectively. The x-axis signifies the 
negative log10 P-value. G Overlap of DMPs in different disease groups. 

 

Regulatory mechanisms associated with differential expression 
To better understand relevant regulatory mechanisms leading to these gene expression 
changes, we generated a set of candidate driver transcription factors (TFs) using the GFM 
CAGE-seq data. CAGE-seq cluster counts, when assigned to the closest gene, correlate 
well with RNA-seq expression data (average sample-wise correlation coefficient: 0.6, Fig. 
S4). We used the CAGE-seq data to predict candidate driver TFs for up- and down-
regulated genes (see Methods for details). TEAD2, a TF central to the Hippo signalling 
pathway, is the only predicted active TF common to FTD-GRN and FTD-MAPT (Fig. 2E), 
while there is greater overlap among inactive TFs (here: inactive TF = has down-regulated 
targets, Fig. 2F). Moreover, we performed miRNA-target gene mapping to evaluate potential 
regulatory roles of miRNAs. Expression values of miRNAs were correlated with their 
predicted targets using matching samples from the RNA-seq data. Only miRNA-target pairs 
with considerable negative correlation were retained (see Methods). 
 
DNA methylation is another important regulatory mechanism that can affect gene 
expression. We used the Illumina Infinium EPIC methylation data from the GFM to examine 
epigenetic changes in FTD. We considered only the most variable CpG sites (28,173) and 
corrected for possible confounding effects using surrogate variable analysis (SVA) to 
perform differential methylation analysis (see Methods). We detected 18,126, 9,478 and 
5,282 significantly differentially methylated positions (DMPs) for FTD-MAPT, FTD-GRN, and 
FTD-C9orf72, respectively (Fig. 2G). The C9orf72 repeat expansion is known to be 
associated with hypermethylation15 and we confirmed in our data that a CpG site located at 
the 5’-end of the C9orf72 gene, only 14 bp away from the repeat expansion, is 
hypermethylated (log fold-change: 0.6, Fig. S4A). Pathway enrichment analysis of genes in 
proximity to DMPs yielded enrichment of genes involved in nervous system development for 
hypermethylated CpG sites. Genes close to hypomethylated sites were enriched for system 
development and vasculature development (Fig. S5C). As hypermethylation of CpG sites at 
promoter regions is associated with decreased expression, this indicates epigenetically 
controlled expression inhibition of genes important for neuronal function, or remnants of cell 
composition effects that could not be entirely alleviated by SVA (see Methods). Performing 
biological age prediction using the methylation data resulted in underestimated age 
predictions for all groups, albeit to a lesser extent for FTD groups, which indicates 
accelerated aging in FTD (Fig. S5B).  
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Vulnerability of excitatory neurons and enrichment of 
endothelial cells 
To identify vulnerable cell types and disease-related cell composition changes, we inspected 
the results from the RNA-seq deconvolution analysis (Methods) with respect to genetic FTD 
subtypes. As expected, fractions of neuronal cells are systematically lower in all FTD groups 
compared to controls (Fig. S6). As a result, virtually all other cell types show increasing 
percentages. We therefore calculated the percentage-wise change for each cell type and 
assessed statistical significance (see Methods). Strongest neuronal loss was observed in 
FTD-GRN, followed by FTD-MAPT and FTD-C9orf72 (Fig. 3A, Table S3), which agrees with 
studies that have shown that the frontal lobe is most strongly affected in FTD-GRN16–18. 
Moreover, neuronal loss can be primarily attributed to loss of excitatory neurons, while 
fractions of inhibitory are not significantly different to controls (Table S3). Our results 
therefore confirm findings from recent studies that found excitatory neurons to be especially 
vulnerable to tau pathology19 and detected an important role of glutamatergic 
neurotransmission in FTD 20,21. Closer examination of the KEGG pathway ‘glutamatergic 
synapse’ suggests that AMPA receptors are mainly affected, while we could not see signs of 
dysregulation for NMDA receptors (Fig. S7 A-C). Analysis of candidate regulator TFs 
highlighted the TF Early Growth Response 3 (EGR3), targets of which are enriched for 
glutamatergic synapse genes (Fig. S7D), indicating involvement in excitatory neuronal 
function. 
 
To validate the results of our computational deconvolution, we considered the fractions of 
excitatory neurons as a proxy of neurodegeneration and correlated them with manually 
determined degeneration scores from a pathologist (Fig. 3B, Methods). Indeed, excitatory 
neuron fractions show strong negative correlation with pathology scores (Pearson’s 
correlation coefficient = -0.78, P-value = 2.8e-07), thereby providing experimental 
confirmation of our computational predictions.  
 
The strongest growth in percentage compared to the baseline is observed for endothelial 
cells in FTD-MAPT and FTD-C9orf72 disease groups, but not FTD-GRN, where microglial 
cells show the strongest increase. Circulatory system development is among the most 
significantly up-regulated biological processes in all three disease groups (Fig. 3 C & D). The 
role of the circulatory system in FTD is relatively unexplored, however, Bennet et al. recently 
found increased vasculature growth in mouse models of FTD-MAPT with P301L mutation22. 
Interestingly, endothelial enrichment in FTD-MAPT is particularly strong in patients with 
P301L mutation (Fig. 3A). Another recent study observed a particular microvascular 
structure with increased frequency in brains of patients with frontotemporal lobar 
degeneration (FTLD)23 and Park et al. have shown that soluble tau can interfere with nitric 
oxide production and thus lead to reduced vasodilation of blood vessels, ultimately leading to 
insufficient blood supply 24. 
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. 

 
Figure 3: Cell composition changes in FTD. A Percentage change of averaged fractions 
per group compared to the average of the control group. Genetic subtypes are indicated with 
different colours. B Regression of excitatory neuron fractions (y-axis) against 
neuropathology scores (x-axis). C, D PPI networks of genes up-regulated in FTD-MAPT and 
FTD-GRN (log-fold-change > 1), respectively. Genes involved in the biological process 
“circulatory system development” are labelled. E Heatmap of EWCE analysis results for 
HumanBase modules of FTD-GRN and FTD-MAPT. Different modules are lined up on the x-
axis, different cell types on the y-axis. Tile colour signifies the EWCE P-value. Tiles with P-
values above 0.1 are marked grey. 
 
 
To better understand transcriptional changes and regulatory mechanisms, it is often helpful 
to cluster genes into modules with similar expression or function. Therefore, we performed 
tissue-specific functional module detection with HumanBase25 and assessed cell type 
specificity of modules using EWCE26. Both for FTD-MAPT and FTD-GRN, most modules 
show specificity for a few cell types (Fig. 3E). Up-regulated modules in both groups are 
significantly enriched for endothelial genes (P-value < 0.1). Genes within these modules 
have been associated with blood vessel development (FTD-MAPT M6-up) and endothelial 
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cell growth (FTD-GRN M4-up) by HumanBase (Fig. 3 C & D), further supporting a distinct 
involvement of endothelial genes in these FTD subtypes. 
 

Increased Inflammatory response in FTD-GRN 
The protein encoded by GRN is well known for its importance to lysosomal function and as a 
modulator of the immune system, among others27. Finally, in patients with FTD-GRN, 
microglial fractions show an even larger relative increase than endothelial cells, indicating 
increased microglial activity. GRN is highly expressed in microglia and well-known for having 
important functions in the immune system28. Microglia are also slightly enriched in FTD-
MAPT (P-value = 0.037) but not in FTD-C9orf72 (P-value = 0.475).   
Here, we have observed a prominent increase in microglial cell fractions and up-regulation of 
immune system pathways in FTD-GRN, a feature of GRN deficiency that has been 
frequently shown in mouse models28–30. We therefore wanted to further characterize 
potential underlying regulatory mechanisms. First, we examined FTD-GRN modules for 
enrichment of immune system-related terms. Indeed, several up-regulated modules are 
enriched for genes related to the immune system, while we could not find enrichment among 
down-regulated modules. The module FTD-GRN M1-up contains genes important for 
neutrophil migration and response to interleukins (Fig. 4 A & D). Both modules M3-up and 
M4-up contain genes relevant to NF-kappa-B (NFkB) signalling, as well as genes involved in 
tumour necrosis factor (TNF) production (Fig. 4 B & C, respectively). Finally, the module M6-
up is enriched for genes involved in T cell activation. Modules M3-up, M4-up and M6-up are 
furthermore enriched for microglial-specific genes (Fig. 3E). Interestingly, several 
necroptosis-related genes are up-regulated (M1-up: TLR3, TLR8, RIPK3; M4-up: RIPK2), 
suggesting this pathway as a potential driver of neuronal death. While we did not detect 
prominent signals for neuroinflammation in FTD-MAPT, the FTD-MAPT module M3-up 
contains several genes involved in T cell and TNF signalling (EZR, RAB29, CARD8, HIPK1). 
However, neuroinflammation is much less prominent in FTD-MAPT and FTD-C9orf72 
compared to FTD-GRN. 
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Figure 4: Neuroinflammation in FTD-GRN. A Up-regulated HumanBase modules in FTD-
GRN with most significant terms. B Protein-protein interaction (PPI) network (made with 
String-DB) of FTD-GRN M1 up-module. Genes involved in necroptosis, interleukin response 
and neutrophil migration are indicated C PPI network of FTD-GRN M4-up module. Genes 
involved in NFkB signalling are indicated. D PPI network of FTD-GRN M3-up module. Genes 
involved in NFkB signalling and CEPBD are indicated. E and F KEGG pathway enrichment 
of predicted targets of TFs NFKB2 and RELA, respectively. G and H GO:BP pathway 
enrichment of predicted targets of TFs KLF3 and SP1, respectively. 
 
 
Inspection of our candidate regulator TFs indicated the TFs Nuclear Factor Kappa B Subunit 
2 (NFKB2) and RELA as potential drivers in FTD-GRN (Fig. 2E), which together form the 
NFkB signalling complex. Enrichment analysis of predicted NFKB2 and RELA targets in 
FTD-GRN revealed TNF signalling and NFkB signalling as the most significantly enriched 
KEGG pathways (Fig. 4 E & F), suggesting NFKB2 and RELA as potential drivers of 
increased TNF signalling. Furthermore, enrichment analysis indicated targets of the TFs SP1 
and KLF3 as highly enriched among genes in the FTD-GRN M3-up module, which are both 
part of our candidate regulator set. Predicted KLF3 targets are enriched for immune system 
genes (Fig. 4G). SP1 target genes do not show a strong enrichment but have roles in actin 
cytoskeleton organization and endothelial cell differentiation, among others (Fig. 4H). We 
furthermore investigated predicted targets of down-regulated miRNAs and genes proximal to 
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hypomethylated CpG sites for involvement in the immune system in FTD-GRN but could not 
detect any significant immune system-relevant enrichment. 
 
To closer examine which parts of the NFkB and TNF signalling pathways are affected in 
FTD-GRN and in FTD in general, we inspected fold-changes of genes from the 
corresponding KEGG pathways. Interestingly, the pro-inflammatory cytokine Interleukin 1 
Beta (IL1B) is down-regulated in all disease groups, although only significantly in FTD-MAPT 
(Fig. S9A). Similarly, the inflammatory cytokine Interleukin 6 (IL6) has negative fold-changes 
in all disease groups. Downstream effector genes with positive fold-changes include multiple 
chemokines, Interleukin 18 Receptor 1 (IL18R1) and several metalloproteinases. 
 
Hyperactivation of TNF by NFkB signalling has been linked to obsessive-compulsive 
behaviour in a GRN loss-of-function mouse model29. The authors found that GRN deficiency 
leads to NFkB overactivation in microglia, and that inhibition of NFkB was sufficient to rescue 
the behavioural symptoms. Indeed, it has been previously shown in mice that GRN 
deficiency leads to overactivation of microglia28.  
 

Dysfunctional energy metabolism and cellular trafficking in FTD 
Among the most significantly down-regulated pathways in FTD-GRN and FTD-MAPT are 
several pathways involved in energy metabolism and oxidative phosphorylation (Fig. 2D, Fig. 
S1). Inspection of modules revealed the modules FTD-GRN M1-down and FTD-MAPT M1-
down as being most significantly associated with the term NADH dehydrogenase complex 
assembly (Fig. 5 D & E, Tables S4 and S5). Further inspection of the FTD-MAPT and FTD-
GRN M1-up modules revealed that they contain several NADH:Ubiquinone Oxidoreductase 
Subunit genes (Fig. 5 B & C), which are necessary for functional oxidative phosphorylation 
and hence energy production. The FTD-GRN module is moreover enriched for genes 
involved in intracellular transport and autophagy. The FTD-GRN M1-down module contains 
several genes associated with FTD or ALS: Superoxide Dismutase 1 (SOD1), Dynactin 
Subunit 1 (DCTN1), PTEN Induced Kinase 1 (PINK1), Huntingtin (HTT), and CHCHD10. All 
these genes show lower expression values in every genetic subgroup, although they do not 
reach significant levels in all groups (Fig. 5A).  
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- 
Figure 5: Impaired oxidative phosphorylation and cellular trafficking in FTD. A 
Expression levels (variance stabilized with DESeq2) of the genes CHCHD10, PINK1, SOD1, 
DCTN1 and HTT in different groups. B STRING-DB PPI of FTD-MAPT M1-down module. 
Genes involved in oxidative phosphorylation are labelled. C PPI of FTD-GRN M1-down 
module. Genes involved in NADH dehydrogenase complex assembly and mitophagy are 
labelled, as well as CHCHD10. D, E Most significant results from pathway enrichment 
analysis with g:Profiler (GO biological process) for the FTD-GRN M1-down module and the 
FTD-MAPT M1-down module, respectively. Node colour corresponds to adjusted P-value 
and node size to term size. F Most significant results from enrichment analysis (Reactome) 
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of targets of up-regulated miRNAs in all disease groups. G, H Heatmaps of intersection-
over-union scores between predicted miRNA targets and down-regulated modules in FTD-
GRN and FTD-MAPT, respectively. I Top enrichment results of g:Profiler (GO biological 
process) for the FTD-GRN M3-down module. Node colour corresponds to adjusted P-value 
and node size to term size. J PPI network (String-DB) of FTD-GRN M3-down module. 
Predicted targets of up-regulated miRNAs are labelled. K PPI network of predicted targets of 
up-regulated miRNAs in FTD-MAPT. 
 
Cellular transport is thought to play a key role in FTD pathogenesis as impaired trafficking 
can affect protein and mitochondria homeostasis. Here, we have shown that mitochondria 
function is strongly impaired in end-stage FTD and that transport pathways are tightly 
connected to this pathology. We thus looked for potential regulatory mechanisms driving the 
pathological changes. Enrichment analysis of targets of up-regulated miRNAs in all disease 
groups revealed cellular localization as the most significantly enriched biological process 
(GO:BP) and membrane trafficking as the most significant Reactome pathway (Fig. 5F). Up-
regulated miRNAs in FTD therefore seem to primarily target cellular transport pathways and 
might play important roles in dysfunctional transportation. 
 
To detect modules and genes predominantly targeted by up-regulated miRNAs, we 
calculated the intersection-over-union (IoU) of up-regulated miRNA targets with down-
regulated modules for FTD-GRN and FTD-MAPT (Fig. 5 G & H). The FTD-GRN M3-down 
module is most strongly targed by miRNAs and contains genes involved in metabolic 
processes and cellular localization (Fig. 5I, Table S4). Five miRNAs have putative target 
genes in this module: hsa-miR-150-5p, hsa-miR-142-3p, hsa-miR-193a-3p, hsa-miR-148a-
3p and hsa-miR-363-3p, which are all significantly up-regulated in FTD-MAPT as well, 
except hsa-miR-363-3p. We generated networks of the above mentioned candidate miRNAs 
combined with a PPI network of the FTD-GRN M3-down module (Fig. 5J) and a PPI network 
of all predicted targets in FTD-MAPT (Fig. 5K), as we could not detect a similar module in 
FTD-MAPT. In total, we observed 31 common putative miRNA targets in both networks. 
 
Next, we selected three miRNAs for further characterization in our cellular model systems: 
hsa-miR-193a-3p, hsa-miR-150-5p and hsa-miR-19b-3p (Fig. 6A). The former two miRNAs 
are DE in all three disease groups and have many targets among module genes (Fig. 5 J & 
K). The miRNA hsa-miR-19b-3p is up-regulated in all disease groups, although it does not 
reach significance after (FTD-MAPT and FTD-C9orf72) or before (FTD-GRN) multiple testing 
correction. Nevertheless, down-regulated genes were predicted to be enriched for targets of 
hsa-miR-19b-3p by g:Profiler, the miRNA is known to inhibit autophagy 31 and it is highly 
expressed in neurons. We performed RNA-seq experiments on iPSC-derived neurons and 
microglia (Methods) that were transfected with miRNA mimics and inhibitors for the three 
selected miRNAs. Here, we focused on the mimic experiments, as the mimics should in 
theory reproduce the effects of miRNA overexpression. Inhibition and mimicking of miR-150-
5p in neurons had only minor effects in neurons, while in microglia, the miR-150-5p mimic 
had strong effects, leading to 237 down-regulated and 236 up-regulated DEGs, enriched for 
cellular transport and immune system pathways of the latter and nervous system 
development of the former (Fig. 6B). Inhibition of miR-150-5p had even stronger effects 
(3221 DEGs), indicating an important function of this miRNA in microglia. Transfection of 
miR-193a-3p mimic and inhibitor was only successful in microglia, where the mimic had 
strong effects with 1756 down-regulated and 1474 up-regulated genes. Up-regulated genes 
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were enriched of mitochondrial functions like oxidative phosphorylation, while down-
regulated genes were enriched for localization and vesicle-mediated transport pathways 
(Fig. 6C).  
In neurons, the miR-19b-3p mimic resulted in 89 down- and 137 up-regulated DEGs 
(inhibitor: 8 down-regulated, 31 up-regulated). Genes down-regulated by the mimic and up-
regulated in the inhibitor experiment are involved in neuronal system pathways, enriched for 
miR-19b-3p targets and share 17 common genes, thus providing evidence for these genes 
to be regulated by miR-19b-3p. In microglia, stronger effects of the miR-19b-3p mimic 
compared to the inhibitor were observed (1518 compared to 608 DEGs). Genes down-
regulated by the miR-19b-3p mimic were enriched for catabolic processes, autophagy and 
vesicle-mediated transport, up-regulated genes were enriched for cell cycle and immune 
system related genes (Fig. 6D). These results provide strong evidence that hsa-miR-19b-3p 
and hsa-miR-193a-3p indeed regulate cellular trafficking pathways. Furthermore, hsa-miR-
150-5p is important for microglia function and up-regulation could lead to immune system 
activation. 
 
 

 
Figure 6: Effects of miRNA mimic and inhibitor experiments in iPSC-derived microglia. 
A Boxplots of normalized expression values for the selected miRNAs. B, C, D The top ten 
most significantly enriched biological processes of up- and down-regulated genes after 
transfection with mimics for miR-150-5p, miR-193a-3p and miR-19b-3p, respectively. Node 
size corresponds to the number of genes in the biological process term and node colour 
corresponds to the P-value adjusted for multiple testing. 
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Discussion 
Here, we present the data from phase 1 of the RiMod-FTD project, a multi-omics, multi-
model data resource for FTD research that aims to understand the role of distinct genetic 
risk factors in the disease. Generated by the RiMod-FTD consortium over several years, the 
resource depicts a valuable tool for FTD researchers that will help to accelerate scientific 
progress towards a better understanding of relevant disease mechanisms in FTD. Additional 
multi-omics data from iPSC derived cell types, transgenic mouse models and other brain 
regions will be added over time. 
 
By studying post-mortem tissue of the GFM we detected largest transcriptional dysregulation 
and greatest neuronal loss in FTD caused by mutations in GRN, agreeing with previous 
findings of a more pronounced frontal lobe atrophy in FTD-GRN compared to other 
subtypes32. Our deconvolution analysis furthermore indicates that excitatory neurons are the 
most affected cell type in all genetic disease groups of FTD, which was confirmed in the 
RiMod-FTD proteomics data (Mediema et al., manuscript in preparation) as well. Recently, 
evidence from multiple studies has accumulated pointing toward a strong involvement of 
glutamatergic synapses in FTD33. While it has been previously reported that densities of both 
ionotropic glutamate receptors, AMPA and NMDA receptors, are reduced in post-mortem 
brain tissue of FTD patients21, we see evidence that AMPA receptors are particularly 
affected. Intriguingly, a recent single-nucleus RNA-seq study in a GRN mouse model could 
show that hyperactivation of microglia leads to selective loss of excitatory neurons34, which 
confirms our hypothesis that excitatory neurons are especially vulnerable in FTD. 
Strong neuroinflammation is a distinct feature of FTD-GRN, which is confirmed in our data 
and by increased microglial cell numbers in this FTD sub-type, in line with recent findings 
showing increased microglial burden in FTD-GRN35,36. Using an integrative approach, we 
could highlight the TFs: NFKB2, RELA, KLF3 and SP1 as potential key inflammatory drivers, 
leading to activation of the NFkB- and TNF-signalling pathways. We have furthermore found 
indicators of activated necroptosis, suggesting this pathway as potential cause for cell death. 
The necroptosis cell death pathway is deregulated in several neurodegenerative disorders37, 
and a recent study has shown that TBK1, a genetic cause of ALS and FTD (here down-
regulated in FTD-GRN), is an endogenous inhibitor of RIPK1, an upstream regulator of 
RIPK338. The authors showed that embryonic lethality of TBK1-knockout mice is dependent 
on RIPK1 activity, suggesting that the necroptosis pathway is indeed an important part of 
FTD pathogenesis. In a recent review, Molnár and colleagues have discussed several 
available drugs that could potentially regulate necroptosis39, highlighting the potential of this 
pathway as a drug target for developing therapies for FTD.  
 
Our pathway enrichment and deconvolution analyses pointed toward increased blood vessel 
abundance and growth in FTD brains compared to controls, which is consistent with the 
results from the RiMod-FTD proteomics data (Mediema et al., manuscript in preparation).  It 
is generally not known how and if the vasculature system is involved in FTD pathogenesis, 
although recent studies have observed abnormalities in a mouse model of tau pathology and 
post-mortem human brains22,23. To our knowledge, angiogenesis as a pathological feature in 
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several genetic FTD subtypes has not been reported before and therefore depicts an 
important subject to study for future FTD research. 
 
In all three disease groups, we have observed prominent up-regulation of ECM pathways 
and MMP enzymes, suggesting MMPs as important regulators in FTD pathogenesis. While it 
has been increasingly recognized that MMPs are important regulators in many 
neurodegenerative diseases 40,41, the role of MMPs in FTD pathogenesis has not been 
investigated in depth. In mouse models of ALS, inhibition of the MMPs MMP2 and MMP9 
could indeed prolong survival and reduce symptoms42,43. Moreover, TIMP3, which is up-
regulated in our data, was found to be partly responsible for neuronal apoptosis in an ALS 
model 44, which points towards TIMP3 as a potential apoptosis mechanism in FTD. MMPs 
are furthermore tightly involved in the inflammatory response, and can activate the tumour 
necrosis factor (TNF) gene, for instance45. Inflammatory cytokines, hypoxia and reactive 
oxygen species can lead to the activation of MMPs40,46. MMPs can digest the ECM, stimulate 
increased production of growth factors and thereby promote the growth of blood vessels, 
providing a potential causal link to the prominent enrichment of endothelial cells46. Given 
their important biological functions and their involvement in all genetic FTD subgroups, we 
think it will be fruitful and important to further investigate how MMPs contribute to FTD and 
whether they can be exploited as drug targets, as MMP inhibition in model system has 
shown promising results47,48. 
 
Impaired cellular trafficking mechanisms is very likely a key feature of FTD pathogenesis and 
it has been shown multiple times that FTD-causal mutations lead to trafficking deficits 49–51. 
However, it is not always clear which mechanisms continue to dysfunctional transport 
mechanisms. Here, using multi-omics data and validation experiments, we show that 
elevated expression of several miRNAs contributes to the inhibition of genes important for 
cellular transport. Additional studies are necessary to further validate this hypothesis, which 
directly suggests several miRNAs as putative drug targets. 
 
A limitation of our study is the number of samples per group. We believe that increasing the 
sample size for individual groups such as FTD-C9orf72 will further increase the power of our 
analysis and help to better define which pathways are truly distinct to certain subtypes. It will 
therefore be an objective for future iterations of the RiMod-FTD resource to include larger 
numbers of samples. 
 
To conclude, we present here an integrated multi-omics analysis on data from Phase 1 of 
the RiMod-FTD project and developed new hypotheses on FTD disease mechanisms. The 
data presented here highlights several regulator molecules important for FTD pathogenesis 
and their consequences such as vascular abnormalities and thereby we show the value of 
an integrated multi-omics data analysis for hypothesis generation and testing. The data from 
the RiMod-FTD project will be of great value to other scientists and ongoing extensions of 
this resource will further increase its value. 
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Methods 
Donor samples employed in this study 
Post mortem human brains  
Tissues were obtained under a Material Transfer Agreement from the Netherlands Brain 
Bank, and additional samples were provided by the Queen Square Brain Bank of 
Neurological Disorders and MRC, King College London. Demographic details about human 
brain samples are summarized in Table S1. 
GFM and GTM tissue from each subject was divided into three pieces for transcriptomic, 
proteomic and epigenetic experiments in a dry-ice bath using precooled scalpels and 
plasticware. 
 
hIPS-derived NGN2 neurons and miRNA mimics and inhibitors transfection  
smNPC were derived from hiPSc cells (Cell line id: GM23280 obtained from the Coriell 
Institute) using the protocol described by Reinhardt et al52. The differentiation protocol from 
smNPC to neurons involves over-expression of Neurogenin-2 (NGN2) using a modified 
version of the NGN2 lentiviral inducible vector system (single vector 
pLV_TRET_hNgn2_UBC_BSD_T2A_rtTA3). The detailed description about protocol, 
reagents and media composition is available  in Dhingra et al.53. 
Briefly, stable NGN2 smNPC are grown for six days in expansion medium N2B27 
supplemented with CHIR99021 (CHIR) 3 µM, Purmorphamine (PMA) 0.5 µM and L-ascorbic 
acid 2-phosphate magnesium (AA) 64 mg/l. For differentiation, cells are plated (80,000 
cells/cm2) onto Poly L-orithine and laminin coated plates in N2B27 medium supplemented 
with doxycycline (dox) at 2.5 µg/mL, and 2 µM DAPT. On day 4 of differentiation, 
transfection was performed in n=3 replicate plates using lipofectamine RNAiMax 
(ThermoFisher Scientific) with a final concentration of miRNA mimic and inhibitors (miR-19b-
3p and miR-1505p mimics and inhibitors from Qiagen and miR-193a-3p mimic and inhibitor 
from ThermoFisher Scientific) in the range of 5 to 10 nM as per the manufactures’ guidelines 
along with their corresponding controls. Next day (day 5 of differentiation), the complete 
media was changed with N2B27 media supplemented with dox, 10 ng/mL brain-derived 
neurotrophic factor (BDNF), 10 ng/mL glial cell-derived neurotrophic factor (GDNF), 10 
ng/mL neurotrophic factor 3 (NT-3), 1 µg/mL Laminin, and 10 µM DAPT. Thereafter, half 
media was changed on day 8 of differentiation. On day 11, cells were gently washed with 
PBS and processed for RNA isolation. 
 
hIPS-derived microglia and miRNA mimics and inhibitors transfection 
 hiPSCs were differentiated as previously described (van Wilgenburg et al54). In brief, 3 x 
10^6 iPSCs were seeded into an Aggrewell 800 well (STEMCELL Technologies) to form 
embryoid bodies (EBs), in mTeSR1 and fed daily with medium plus 50ng/ml BMP4 (Miltenyi 
Biotec), 50ng/ml VEGF (Miltenyi Biotec), and 20ng/ml SCF (R&D Systems). Four-day EBs 
were then differentiated in 6-well plates (15 EBs/well) in X-VIVO15 (Lonza) supplemented 
with 100ng/ml M-CSF (Miltenyi Biotec), 25ng/ml IL-3 (Miltenyi Biotec), 2mM Glutamax 
(Invitrogen Life Technologies), and 0.055mM beta-mercaptoethanol (Thermo Fisher 
Scientific), with fresh medium added weekly. Microglial precursors emerging in the 
supernatant after approximately 1 month were collected and isolated through a 40um cell 
strainer and plated in N2B27 media supplemented with 100 ng/ml M-CSF, 25 ng/ml 
interleukin 34 (IL-34) for differentiation.  Thereafter, the media is reshred every 2 days 
supplemented with 100 ng/ml M-CSF, and 25 ng/ml IL-34. The cells were cultured for 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.405894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.405894
http://creativecommons.org/licenses/by-nd/4.0/


additional 6 days with media refresh every 2 days. On day 7 of maturation, transfection was 
performed in n=3 replicate plates using lipofectamine RNAiMax with a final concentration of 
miRNA mimics and inhibitors in the range of 5 to 10 nM as per the manufactures’ guidelines 
along with their corresponding controls (miR-19b-3p and miR-1505p mimics and inhibitors 
from Qiagen and miR-193a-3p mimic and inhibitor from ThermoFisher Scientific). Next day 
complete media was refreshed. On day 11, cells were gently washed with PBS and 
processed for RNA isolation. 
 
Genetic analysis 
Genomic DNA was isolated from 50 mg of GFM frozen brain tissue by using the Qiamp DNA 
mini kit (Qiagen) following the manufacturer protocol. DNA concentration and purity were 
assessed by nanodrop measurement. DNA integrity was evaluated by loading 100 
nanogram per sample on a 0,8% agarose gel and comparing size distribution to a size 
standard. 
Presence of C9orf72-HRE in postmortem brain tissues and hIPS cells was confirmed by 
primed repeat PCR according to established protocols. Reported mutations for MAPT and 
GRN were verified by sanger sequencing. 
 
Transcriptomic procedures 
RNA isolation from human brain tissue 
Total RNA for CAGE-seq and RNAseq was isolated from ±100mg of frozen brain tissue with 
TRIzol reagent (Thermo Fischer Scientific) according to the manufacturer recommendation, 
followed by purification with the RNeasy mini columns (Qiagen) after DNAse treatment.  
 
Total RNA for smallRNA-seq was isolated from frozen tissue using the TRIzol reagent 
(ThermoFischer Scientific). After isopropanol precipitation and 80% ethanol rinsing RNA 
pellet was resuspended in RNAse free water and up to 10 micrograms of RNA was 
incubated with 2U of Ambion DNAse I (ThermoFischer) at 37°C for 20 minutes.  DNA-free 
RNA samples were then further purified by phenol-chloroform-isoamyl-alchol extraction 
followed by ethanol precipitation. 
 
RNA isolation from smNPC-derived neurons and microglia 
Total RNA was isolated from NGN2 driven neurons and microglia cells after transfection with 
miRNA mimics and inhibitors. Briefly at day 11 of transfection cells were carefully rinsed with 
PBS and lysed in Qiazol buffer (Qiagen). Further DNAse treatment and purification were 
carried out with the miRNeasy micro kit (Qiagen) according to the manufacturer protocol. 
 
RNA QC 
For each RNA sample, RNA concentration (A260) and purity (A260/280 and A260/230) were 
determined by Nanodrop measurement and RNA integrity (RIN) was assessed on a 
Bioanalyser 2100 system and/or Tape station 41200 (Agilent Technologies Inc.) 
 
CAGE-seq libraries  
CAGE-seq libraries were prepared from 5 micrograms of RNA from frozen brain tissues 
according to a published protocol55. Libraries were sequenced on a HiSeq 2000 and/or 
HiSeq2500 on a 1x50 bp single read (SR) flow cell (Illumina) at an average of 20M 
reads/sample. 
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RNAseq libraries  
Total RNAseq libraries were prepared from 1 microgram of total RNA from frozen brain 
tissue using the TruSeq Stranded Total RNA with Ribo-Zero Gold kit (Illumina) according to 
the protocol specifications. RNAseq libraries were sequenced on a Hiseq2500 and 
HISeq4000 on a 2x100 bp paired end (PE) flow cell (Illumina) at an average of 100M 
PE/sample. 
 
smallRNAseq libraries  
Small RNA-seq libraries were prepared from 1 microgram of total RNA from NPC-derived 
neurons and 300 nanograms of microglia after miRNA mimics and inhibitors transfection, 
using the mRNA TrueSeq Stranded kit (Illumina). mRNAseq libraries were sequenced on a 
NextGen550 on a 75 cycles flow cell (Illumina). Small RNAseq libraries from frozen tissue 
were prepared starting from 2 micrograms of total RNA using the Nextflex Small RNA-seq kit 
v3 (Bioo Scientific) and the NEBNext Small RNA library prep set for Illumina (New England 
Biolabs). Libraries were sequenced on a NextSeq550 on a 75 cycles flow cell.  
 
 
Methylation assay 
To assess the methylation status of over 850000 CpG sites in promoter, gene body and 
enhancer regions we have used the MethylationEPIC bead chip arrays (Illumina).  
Bisulfite conversion of genomic DNA, genome amplification, hybridization to the beadchips, 
washing, staining and scanning procedure was performed by Atlas Biolabs (Atlas Biolabs, 
Berlin, Germany). Cases and controls DNAs were distributed randomly across each array. 
 
HumanBase Module Analysis 
Functional gene modules were generated using the HumanBase tool at: 
https://hb.flatironinstitute.org/. We divided DEGs into up- and down-regulated genes as we 
were looking for active and repressed modules in FTD. Modules were downloaded for further 
analysis. Cell type enrichment analysis was performed for genes of each modules using 
EWCE56 as described further down. 

RNA-seq processing and analysis 
Raw FastQ files were processed using the RNA-seq pipeline from nf-core (nf-core/rnaseq 
v1.3) 57, with trimming enabled. Gene quantification was subsequently done using Salmon 
(v0.14.1)58 on the trimmed FastQ files. Alignment and mapping were performed against the 
human genome hg38. DESeq2 (v.1.26.0)59 was used to perform differential expression 
analysis. We corrected for the covariates gender and PH-value. Genes were considered 
differentially expressed when having a Benjamini-Hochberg corrected P-value below 0.05. 

Cell type deconvolution and filtering 
We performed cell type deconvolution on the RNA-seq data using Scaden60. For training we 
used the human brain training dataset used in the Scaden publication. Each ensembl model 
was trained for 5000 steps. To filter differentially expressed genes for false positives caused 
by cell composition bias, we first calculated the correlation of gene expression with cell type 
fraction. Then, we calculated a cell type specificity score as defined in Skene et al. 56 for 
each gene available in the scRNA-seq dataset from Darmanis et al. 61. We filtered out all 
genes that had a specificity score of at least 0.5 and a positive correlation of at least 0.4 with 
the cell type fractions of the most specific cell type. False positive DEGs that are caused by 
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systematic increase or decrease of a specific cell type will show high correlation with the cell 
type fractions and can thus be identified and removed from the analysis. A specificity score 
of 0.5 means that half of the total gene expression for a certain gene can be attributed to a 
single cell type, assuming a uniform cell type composition. The cut-offs for specificity score 
and correlation were chosen based on an informed decision. Relative changes in cell type 
composition were quantified by first calculating the average fractions of a cell type for all 
groups and then calculating the percentual change of cell fractions compared to the average 
control fractions. This allows to detect relative changes in cell type compositions. Statistical 
significance between cell type fractions of groups was assessed using a t-test in the R 
language. 

Cell type enrichment analysis 
We performed cell type enrichment analysis of genesets using the EWCE R package56. Cell 
type specificity of genes was calculated from the single-cell RNA-seq cortex dataset of 
Darmanis and colleagues61. EWCE analysis was done following instructions from 
https://github.com/NathanSkene/EWCE.  

CAGE-seq processing and analysis 
Sequencing adapters and barcodes in CAGE-seq FastQ files were trimmed using Skewer 
(v.0.1.126)62. Sequencing artefacts were removed using TagDust (v1.0)63. Processed reads 
were then aligned against the human genome hg38 using STAR (v.2.4.1)64. CAGE detected 
TSS (CTSS) files were created using CAGEr (v1.10.0)65. With CAGEr, we removed the first 
G nucleotide if it was a mismatch. CTSS were clustered using the ‘distclu’ method with a 
maximum distance of 20 bp. For exact commands used we refer to the reader to the scripts 
used in this pipeline: https://github.com/dznetubingen/cageseq-pipeline-mf. 

Transcription factor activity analysis 
To identify candidate regulatory transcription factors, we first performed differential 
expression analysis with all CAGE-seq clusters (see RNA-seq analysis). Then, we extracted 
the sequence 600 bp up-stream and 300 bp downstream around all detected clusters. We 
used Homer66 to look for significant TFBS enrichment in the regions around up- and down-
regulated clusters (similar to 67). TFBS motifs were downloaded from the JASPAR 
database68. When calculating enrichment, we considered all extracted regions that are not 
part of the set of interest as background. The complete pipeline can be found at 
https://github.com/KevinMenden/tf-activity. We selected all TFs with significant enrichment 
(p-value <= 0.001) for either up-regulated or down-regulated CAGE clusters as candidate 
regulators. We considered genes as potential targets of a TF if a TFBS could be found in 
their promoter region. As an additional filter, we selected only TFs with evidence for 
differential expression in the RNA-seq data (adj. P-value < 0.05, not filtered for cell 
composition). 

smRNA-seq processing and analysis 
After removing sequencing adapters, all FastQ files were uploaded to OASIS2 69 for 
analysis. Subsequent differential expression analysis was performed on the counts yielded 
from OASIS2, using DESeq2 and correcting for gender and PH-value, as was done for the 
RNA-seq data. Additionally, we added a batch variable to the design matrix to correct for the 
two different batches of this dataset. For the target prediction analysis, we first downloaded 
all targets from mirBase70. Then, we correlated the expression of miRNAs with their 
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predicted targets using matching samples from the RNA-seq data. We removed all predicted 
targets with a correlation above -0.4, thus only considering miRNA-target pairings with high 
negative correlation. 
 
Methylation data processing and analysis 
The Infinium MethylationEPIC BeadChip data was analyzed using the minfi R package71. We 
removed all sites with a detection P-value above 0.01, on sex chromosomes and with single 
nucleotide polymorphisms (SNPs). Data normalization was done using stratified quantile 
normalization. Sites with a standard deviation below 0.1 were considered uninformative and 
filtered out, to increase detection power. Surrogate variable analysis72 was performed to 
determine confounding factors. Differential methylation analysis was done using the limma 
package73 and controlling for the detected surrogate variables. Sites with a Benjamini-
Hochberg 74 adjusted P-value below 0.05 were considered differentially methylated. 

Age prediction 
We predicted the biological age of donors using the methylation data and the Wenda 
algorithm75. Training data was kindly provided by the authors of Wenda. We subsetted the 
data for CpG sites found in our data (11,729) sites and performed the prediction as 
described at https://github.com/PfeiferLabTue/wenda. 
 
Analysis of mRNA-seq data from cellular models 
This section describes the analysis of mRNA-seq data generated for the miRNA mimic and 
inhibitor experiments. FastQ files were mapped and gene counts quantified using Salmon 
and differential expression analysis was performed with DESeq2 (see post-mortem brain 
RNA-seq analysis). DEGs were examined for pathway enrichment using go:Profiler.  
 
Assessment of degeneration 
For assessment of neurodegeneration, H&E stained paraffin sections of the frontal and 
temporal cortex were graded as absent (0), mild (1), moderate (2) and severe (3) based on 
the presence of spongiosis, neuronal loss and gliosis. 

 

Data Availability 
All data used in this study and published as phase 1 of the RiMod-FTD resource will be 
deposited at the European Phenome-genome Archive (EGA) upon publication. 

Code Availability  
The code used for generating the analysis results is made freely available in the GitHub 
repository https://github.com/dznetubingen/rimod-ftd-paper. 
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