
PISCES: a package for rapid quantitation
and quality control of large scale mRNA-seq
datasets

Matthew D. Shirley1, Viveksagar K. Radhakrishna1, Javad
Golji1, Joshua M. Korn1

Novartis Institutes for Biomedical Research1

Contact: matt_d.shirley@novartis.com, joshua.korn@novartis.com

Abstract
PISCES eases processing of large mRNA-seq experiments by encouraging capture of metadata using sim-
ple textual file formats, processing samples on either a single machine or in parallel on a high performance
computing cluster (HPC), validating sample identity using genetic fingerprinting, and summarizing all
outputs in analysis-ready data matrices. PISCES consists of two modules: 1) compute cluster-aware analy-
sis of individual mRNA-seq libraries including species detection, SNP genotyping, library geometry detec-
tion, and quantitation using salmon, and 2) gene-level transcript aggregation, transcriptional and read-
based QC, TMM normalization and differential expression analysis of multiple libraries to produce data
ready for visualization and further analysis.

PISCES is implemented as a python3 package and is bundled with all necessary dependencies to enable
reproducible analysis and easy deployment. JSON configuration files are used to build and identify tran-
scriptome indices, and CSV files are used to supply sample metadata and to define comparison groups for
differential expression analysis using DEseq2. PISCES builds on many existing open-source tools, and re-
leases of PISCES are available on GitHub or the python package index (PyPI).

Introduction
Since the first description of RNA-seq [1], methods for RNAseq quantification have rapidly increased in
sensitivity and decreased in required processing time. Recent improvements in speed have been achieved
by removing the step of full read alignment to a reference [2][3][4]. While these “alignment-free” (also
known as “pseudoalignment,” “quasi-mapping,” or “lightweight alignment”) methods have achieved real
speed gains, this comes at a loss of compatibility with existing RNAseq workflows, including important in-
tegrity checks. Alignment-free quality control (QC) and sample identification methods for RNAseq li-
braries are not readily available, and existing packages [5] for QC are incompatible with the data formats
produced by these new quantification methods. Decreased sequencing cost have also led to higher
throughput of sequencing, with an associated desire for faster quantification and turnaround of primary
analysis. Typical RNAseq experiments may now be composed of hundreds to thousands of individual sam-
ples, each with descriptive variables for downstream analysis, which increases the complexity of data and
metadata management. Increased number of samples presents more opportunities for sample mixups in
the lab. Complex designs or cross-experiment meta-analyses further present opportunities for in silico la-
bel swapping. Tracking of these crucial metadata are usually left to the sequencing facility or individual an-
alyst. With no widely agreed upon standards for metadata exchange, information about RNAseq libraries
may be lost.
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With these types of experiments in mind, we built PISCES with an alignment-free human SNP fingerprint-
ing method for checking sample identity, efficient FASTQ QC, and novel QC of the transcriptomic and ge-
nomic compartments without the need for full genomic alignment. PISCES is driven by a well-defined CSV
metadata format (Table 1), which limits opportunities for label swaps and encourages analysts to retain a
minimal set of metadata necessary to reproduce an analysis.

In addition to streamlining primary analysis (transcript and gene quantification) at the single sample level,
PISCES provides methods for executing experiment-level analyses. One common secondary analysis
method for RNAseq libraries is differential gene expression analysis (DGE). PISCES implements DGE us-
ing a wrapper for DEseq2 [6], with contrast groups defined using descriptive variables referenced in the
CSV metadata file. PISCES creates summarized data matrices of transcript-level counts and TPM, as well
as gene-level counts, TPM, and log2 fold-change calculated using the median of a user-specified reference
group for each condition. Trimmed mean of M-values normalization [7] as implemented in edgeR is used
to adjust TPM abundances of protein coding genes to account for differences in RNAseq library transcript
composition, e.g. a varying amount of non-coding transcripts due to pre-mRNA contamination or incom-
plete rRNA depletion.

Finally, with increasing numbers of RNAseq libraries comes an increased computational burden. PISCES
communicates directly with modern compute clusters using the distributed resource management applica-
tion API (DRMAA) to efficiently submit and monitor jobs processing individual RNAseq libraries.

Implementation of the PISCES package
PISCES is provided as a Python 3 package, including all tools and dependencies, which users can easily in-
stall using common packaging tools such as pip on modern Linux and MacOS machines.

Versioned releases are available from both Github and PyPI. Portions of PISCES are implemented in the R
statistical computing language, and these dependencies, as well as other binary dependencies, are also
bundled and installed automatically using renv [8]. Workflows can be run either locally, on a single ma-
chine, or on a compute cluster supporting the DRMAA interface. Individual RNAseq libraries may be ana-
lyzed without associated metadata by passing FASTQ files directly into PISCES, or entire experiments may
be defined using a CSV format metadata file containing, at a minimum: sample names (SampleID),
FASTQ file locations (Fastq1 and optionally Fastq2) or NCBI SRA run accessions (SRA), and output direc-
tories for each sample (Directory). The metadata file may also contain any descriptive information associ-
ated with the biological samples such as treatment, batch, or physical sample QC metrics. This descriptive
information can be used by PISCES to identify sample groupings and reference samples for calculating
normalized log2 fold changes, and to identify groups of samples for generating QC and exploratory figures.
Differential expression is performed using DEseq2, using contrasts defined in a separate CSV format (Ta-
ble 2) that describes covariates of interest referenced in the metadata CSV file. Transcriptomic QC metrics
are calculated from the ratios of unprocessed intronic transcripts, mature processed transcripts, and inter-
genic regions. Several library QC metrics are inferred using only kmer counting directly from FASTQ files,
including species detection, strand detection, and human SNP fingerprint for sample identification.

The PISCES workflow
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Fig. 1 Overview of PISCES workflow, demonstrating configuration file inputs and descriptions of pro-
cesses and outputs for each PISCES subcommand (index, submit, summarize-expression and summa-

rize-qc).

The PISCES workflow (Fig. 1) is designed to be flexible, requiring minimal setup to describe an experi-
ment; scalable, running on one to many samples either locally or on a compute cluster; fast, using align-
ment-free methods to generate QC metrics; and reproducible, driven by easily generated configuration
files and versioned transcriptome annotation, with automated generation of transcriptome index files. We
demonstrate each step of the PISCES workflow on a real experiment (Fig. 2) and show examples of
PISCES outputs on real data.

Results
As a demonstration of the speed and simplicity of the PISCES workflow we reprocess an NCBI SRA study
consisting of two breast cancer cell lines, MCF7 and T47D, with Y537S or D538G mutations introduced in
the ESR1 (estrogen receptor) gene and treated with Vehicle or Estrogen (Fig. 2).

Fig. 2 Treatment information for SRP093386

pisces index builds custom transcriptome indices

PISCES is distributed with configuration for human, mouse, and human/mouse chimera transcriptomes
(for xenograft experiments) derived from Gencode v32 and Gencode vM23 [9]. Custom transcriptomes
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can easily be defined in a JSON configuration file format. Extra sequences (such as bacterial genomes,
spike ins for library prep, or genetic knock-ins in the experimental design) can be added to transcriptomes
as arbitrary FASTA formatted files. PISCES builds transcript sequences using the GTF file format by first
creating all defined transcript models per gene, and then concatenating all unique intron sequences to
form one intronic transcript model per gene. In this way PISCES enables simultaneous quantification of
both fully processed mRNA and contaminating pre-mRNA transcripts. Intergenic regions can also be cap-
tured, allowing quantification of all transcriptomic compartments of an organism’s genomic assembly.
PISCES leverages the pufferfish index [10] enhancements in salmon version 1.0 and above which allows
indexing of vastly larger transcript sequences.

CSV formatted metadata files are input for PISCES

We include a metadata file describing libraries generated from MCF7 cell lines in [11] as a test script, dis-
tributed with PISCES. The following analysis, reproduced from this test script, serves as an example of a
typical RNAseq workflow from FASTQ files to differential expression calls. In this example, PISCES uses
the NCBI SRA toolkit to directly obtain sequencing data from NCBI servers, although paths to local data
can be substituted in Fastq1, and optionally Fastq2 columns.

Directory SRA SampleID Treatment Genotype CellLine

SRR5024105 SRR5024105 GSM2392606 Vehicle Wildtype MCF7

SRR5024106 SRR5024106 GSM2392607 Vehicle Wildtype MCF7

SRR5024107 SRR5024107 GSM2392608 Vehicle Wildtype MCF7

SRR5024108 SRR5024108 GSM2392609 Vehicle Wildtype MCF7

SRR5024109 SRR5024109 GSM2392610 Vehicle Y537S MCF7

SRR5024110 SRR5024110 GSM2392611 Vehicle Y537S MCF7

SRR5024111 SRR5024111 GSM2392612 Vehicle Y537S MCF7

SRR5024112 SRR5024112 GSM2392613 Vehicle Y537S MCF7

SRR5024113 SRR5024113 GSM2392614 Vehicle D538G MCF7

SRR5024114 SRR5024114 GSM2392615 Vehicle D538G MCF7

SRR5024115 SRR5024115 GSM2392616 Vehicle D538G MCF7

SRR5024116 SRR5024116 GSM2392617 Vehicle D538G MCF7

SRR5024117 SRR5024117 GSM2392618 Estrogen Wildtype MCF7

SRR5024118 SRR5024118 GSM2392619 Estrogen Wildtype MCF7

SRR5024119 SRR5024119 GSM2392620 Estrogen Wildtype MCF7

SRR5024120 SRR5024120 GSM2392621 Estrogen Wildtype MCF7

SRR5024121 SRR5024121 GSM2392622 Estrogen Y537S MCF7

SRR5024122 SRR5024122 GSM2392623 Estrogen Y537S MCF7

SRR5024123 SRR5024123 GSM2392624 Estrogen Y537S MCF7

SRR5024124 SRR5024124 GSM2392625 Estrogen Y537S MCF7

SRR5024125 SRR5024125 GSM2392626 Estrogen D538G MCF7

SRR5024126 SRR5024126 GSM2392627 Estrogen D538G MCF7

SRR5024127 SRR5024127 GSM2392628 Estrogen D538G MCF7
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SRR5024128 SRR5024128 GSM2392629 Estrogen D538G MCF7

Table 1: Experimental metadata such as treatment variables and covariates of interest (cell line, time point
etc.) are described in CSV format.

Treatment Estrogen Vehicle

Genotype Y537S Wildtype

Genotype D538G Wildtype

Table 2: Contrasts for differential expression analysis are defined using the variables present in the meta-
data table. Columns in this file do not have headers, but correspond to covariate name, experimental
value, control value.

With the above two files, an example PISCES workflow is only a few commands, and can be run easily on
most Linux and MacOS machines.

A formula for linear modeling of the experiment (-d) specifies the Treatment and Genotype covariates,
and the interaction between the two, and p-values and log2 fold change are computed from the fit for each
comparison defined in the contrasts CSV. The resulting summarized expression and QC data is output to
tab separated text files suitable for further analysis and visualization using a suitable analytics environ-
ment such as Jupyter or RStudio.

pisces submit runs PISCES on a DRMAA enabled HPC

The PISCES pisces submit command simplifies the task of executing the main PISCES workflow on a
typical compute cluster, meaning a grid compute cluster using SGE, UGE, SLURM, Torque, or another
DRMAA enabled job scheduler. The pisces submit command takes an appropriately formatted metadata
file similar to Table 1 as input and dispatches multiple pisces run jobs, passing along any extra argu-
ments a user supplies, as well as any cluster resource limits such as maximum job runtime, maximum
memory, and number of CPU cores requested. pisces submit then monitors job log output and reports job
status (number of jobs queued, running, finished), enabling a user to quickly process and track a large
number of RNAseq libraries in parallel.

pisces summarize-qc aggregates genetic QC metrics

Sample quality and identity is paramount for interpretable RNAseq results, but is missing from most
alignment-free workflows. Here, read sequence quality metrics are assessed using fastqp version 0.3.4. For
studies involving human samples, PISCES uses exact kmer counting (k=21) to generate a VCF per sample
based on 226 chosen high minor-allele frequency SNPs. Log-odds scores representing the likelihood that
two samples are genetically identical are used to generate a sample identity matrix. To demonstrate
PISCES’ ability to match genetic identity even across independent experiments, we included breast cancer
cell lines from the Cancer Cell Line Encyclopedia [12] with our example SRA analysis. In (Fig. 3) we show
the genetic fingerprints of the CCLE [12] T47D and MCF7 cell lines match the expected clusters from the
SRA experiment. Additionally, one can detect cell line pairs that were derived from the same patient (the

$ pip install novartis-pisces
$ pisces index
$ pisces submit -m metadata.csv
$ pisces summarize-qc -m metadata.csv -f fingerprint.txt
$ pisces summarize-expression -m metadata.csv -f contrasts.csv -d "~Treatment + Genotype"
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KPL1 cell line which is a derivative of MCF7, and the autologous pair AU565 and SKBR3.)

Fig. 3 Sample identity matrix showing two clusters of samples, corresponding to

libraries derived from MCF7 and T47D cell line models. The p_same score is a log-odds value where 0 in-
dicates an exact genetic match and more negative values indicate a lower probability of genetic identity.
Breast cancer cell lines from the publicly available CCLE are shown, demonstrating PISCES ability to inte-
grate datasets across experiments.

pisces summarize-expression aggregates transcript and gene abundance
estimates

PISCES uses salmon [2] for estimating transcript and gene abundances from RNAseq libraries. Salmon is
computationally efficient as well as accurate in assignment of reads to transcripts [13]. PISCES includes
Salmon version 1.3.0. Library type parameters (strand-specific, read pairs, and read pair orientation) are
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inferred from input FASTQ files. Salmon is run with default parameters as well as specifying --seqBias, -
-gcBias, and --useVBOpt. The pisces summarize-expression subcommand aggregates transcriptomic
counts and TPM estimates for multiple samples and summarizes these values to gene-level data matrices
with appropriate column names defined in the metadata CSV file. TMM normalization is applied to the
TPM estimates to control for highly expressed outlier transcripts. If unprocessed transcript models are
specified during pisces index, data matrices for “intronic” and “intergene” transcriptomic compartments
are output and a summary of percent coding, intergenic and intronic sequence estimates can be used to
determine relative sample QC thresholds Fig. 4.

Fig. 4 Percent coding, intronic, and intergenic read content is calculated salmon counts of processed
transcript models, transcript models of introns, and intergenic sequences.

If contrasts (Table 2) and a formula are specified, differential gene expression is calculated and output to a
tidy data table. These in turn can be visualized using standard graphing techniques, for example as a vol-
cano plot Fig. 5.
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Fig. 5 Volcano plot of differentially expressed genes (DEGs) identified by DESeq2, with p < 0.01.
DEGs previously identified from [11] shown with the fold change stated in the original publication.

pisces genomic indexing and repeat masking

During development of PISCES it became clear that the expression of certain genes was detected under bi-
ologically improbable contexts (such as aberrant immune cell marker gene expression in non-immune
cancer cell culture). Upon closer inspection it appeared that many of these genes with unexpectedly high
expression were mapping reads to repetitive regions of the transcript sequence. These repetitive regions
are masked by RepeatMasker in the UCSC repeat masked genome assemblies, and so by default the pisces
index command will hard-mask any soft-masked characters in the input genome assembly. The effect of
repeat masking on salmon TPM estimates is that many genes with apparently low-to-medium abundance
are significantly reduced, indicating their TPM estimates were driven primarily by repeat sequences and
were likely a result of incorrectly assigned reads (Fig. 6).
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Fig. 6 Median estimated read counts per gene for MCF7 models (Table 1) for either exon-centric tran-
script models (x-axis) or exon-centric transcript models with repeat-masking (y-axis) demonstrates in-
flation (right shifted bins) of gene counts in the exon-centric data. Median counts were binned in quar-

ter-log increments with a pseudo-count added to every observation to avoid undefined values.

Another way to visualize the effect of repeat masking is to examine its impact on differential gene expres-
sion results. In Fig. 7 this effect is demonstrated between exon-centric transcriptome indices with and
without repeat masking. Off-axis genes contain reads that are potentially mis-mapped due to repetitive se-
quence content. Copies of these repetitive sequences may be found throughout the genome assembly, and
without repeat masking, reads that map well to these sequences may be incorrectly assigned.
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Fig. 7 Differentially expressed genes identified in D538G or Y537S vs. Wild-type MCF7 models (Table
1) for either exon-centric transcript models (x-axis) or exon-centric transcript models with repeat-

masking (y-axis). Off-axis genes indicate potential mis-mapped reads due to repetitive sequence. DEGs
with p < 0.01 are shown. Genes with a greater than 2 fold difference between methods are labeled.

Points are colored by the ratio of median gene counts for exon-centric vs exon-centric repeat-masked
methods.

Surprisingly, we can achieve almost exactly the same effect as repeat-masking by simply including intronic
and intergenic sequences to build a genome-centric transcript index for salmon. This may be due to miss-
ing transcripts in our transcriptome model that contain repeats; by including these repeats in our intronic
and intergenic sequences they are no longer assigned to the transcript that did have these repeats. LINE
and SINE repeats are commonly expressed in several cancer types [14], and transcript models that contain
these transposable elements, especially in 5’ and 3’ untranslated regions (UTRs) could be susceptible to
such read mis-mapping. Fig. 8 shows that changes to differentially expressed genes are minimal between
the repeat-masked exon-centric indexing method and the genome-centric transcriptome indexing method.
By compartmentalizing the entire genome assembly we may reduce the number of spurious mappings
arising from repetitive genomic sequences.
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Fig. 8 Differentially expressed genes identified in D538G or Y537S vs. Wild-type MCF7 models (Table
1) for either exon-centric transcript models with repeat-masking (x-axis) or genome-centric transcript
models (y-axis). Off-axis genes indicate potential mis-mapped reads due to repetitive sequence. DEGs

with p < 0.01 are shown. Genes with a greater than 2 fold difference between exon-centric (repeat-
masked) and genome-centric methods are labeled. Points are colored by the ratio of median gene

counts for exon-centric repeat-masked vs genome-centric methods.

Based on these results we recommend the use of a genome-centric transcriptome index in PISCES.

Discussion
The motivation for development of PISCES is to enable the efficient, reproducible, and automated analysis
of the majority of RNAseq experiments. To this end, the main design goals were ease of installation and
use, built-in cluster submission to enable rapid job processing, clarity and reproducibility through use of
configuration files, and a design that encourages users to describe experiments using metadata files that
can be leveraged at multiple steps in the PISCES workflow. In this way users are encouraged toward repro-
ducible description of their RNAseq analysis.

Traditional alignment-based RNAseq pipelines trade longer run times for more detailed alignment of each
sequence read. The gains in computing efficiency acheived by pseudoalignment based transcript quantifi-
cation come at the cost of this detailed alignment information. This required adaptation of existing
RNAseq QC methods that rely on alignment, to keep the total run time of the PISCES pipeline close to the
run time of its’ slowest individual component. Integration of external datasets (e.g. TCGA, GTEx, or SRA
projects) can be complicated by varying quality control from different sites, data transfer concerns due to
disparate (local and remote) data sources, and limitations due to compute times necessary to run tradi-
tional tools. PISCES enables large scale integration of datasets, processing of high throughput RNAseq
generated from large plate format screens, fast quantification against multiple custom transcriptomes, and
fast, reliable reprocessing of libraries whenever new transcriptome annotation or genome assemblies be-
come available.

In addition to gains in computational efficiency, PISCES enables rapid analysis of routine RNAseq experi-
ments, through automated modeling of differential gene expression and generation of clean tables for vi-
sualizing gene expression, sample clustering, genetic identity, and QC metrics. We demonstrate a novel
genome-centric transcriptome indexing strategy that allows integrated transcript QC measures of intronic
and intergenic sequences while also avoiding read mismapping that may occur with exon-centric tran-
scriptome quantification. PISCES is available on GitHub at https://github.com/Novartis/pisces, and on
the python package index (PyPI) at https://pypi.org/project/novartis-pisces.
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