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Summary (150 words)  

Sentinel species are playing an indispensable role in monitoring environmental pollution in 

aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting 

chemicals that could cause disruptions in lipid homeostasis in aquatic species. A 

comprehensive profiling of the lipidome of these species is thus an essential step towards 

understanding the mechanism of toxicity induced by pollutants. We here extensively 

examined both the composition and spatial distribution of lipids in freshwater crustacean 

Gammarus fossarum. The baseline lipidome of gammarids of different gender and 

reproductive stage was established by high throughput shotgun lipidomics. Spatial lipid 

mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based 

lipids in hepatopancreas and their accumulation in mature oocytes. We uncovered in G. 

fossarum a diverse and dynamic lipid composition that deepens our understanding of the 

biochemical changes during development and which could serve as a reference for future 

ecotoxicological studies. 
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INTRODUCTION 

Lipids are a structurally diverse group of molecules that can be classified into several 

categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol 

lipids, prenol lipids, saccharolipids, and polyketides according to the LIPID MAPS lipid 

classification system (Fahy, et al., 2011; Fahy, et al., 2005; Fahy, et al., 2009). Besides their 

basic function as building blocks of cell membrane, lipids are involved in essential 

biofunctions including signaling and energy storage that mediate cell growth, reproduction, 

and so on (Dutta and Sinha, 2017; Obeid, et al., 1993; van Meer, 2005; van Meer, et al., 

2008). Lipid homeostasis in the organisms is extremely crucial for their development, 

maintenance and reproduction (De Mendoza and Pilon, 2019; Klose, et al., 2012; Zhang and 

Rock, 2008). As a result of anthropogenic activities, especially the intense use of chemical 

products, various kinds of pollutants are continuously released into the aquatic environment. 

Increasing evidence has shown that some of these pollutants are endocrine disrupting 

chemicals, also referred to as obesogens, which could interfere lipid homeostasis and cause 

toxic effects on a number of aquatic animal species (Capitao, et al., 2017; Fuertes, et al., 

2020). Therefore, it is highly desirable to get retrospective and prospective comprehensive 

profiles of the lipidome in sentinel organisms in order to understand which and how the lipid 

species could be altered by chemical pollutants, and to further assess the ecological risk 

incurred by the contaminated aquatic environment. 

Freshwater sentinel species Gammarus fossarum is one of the most represented amphipod 

crustaceans widespread across European inland aquatic habitats (Wattier, et al., 2020) . Its 

broad distribution and sensitivity to a wide range of contaminants has made this keystone 

species a valuable model organism in ecotoxicology (Besse, et al., 2013; Chaumot, et al., 

2015; Dedourge-Geffard, et al., 2009; Kunz, et al., 2010; Mehennaoui, et al., 2016; Wigh, et 

al., 2017). Endocrine effects (e.g., accelerated oocyte maturation, smaller vitellogenic 

oocytes, and decreased spermatozoon production) have also been observed in this species 

when exposed to endocrine disrupting chemicals in wastewater effluents (Schirling, et al., 

2005) and in laboratory experiments (Trapp, et al., 2015). It is thus of great interest to 

characterize the lipidome of this organism to understand the molecular mechanism 

underlying these endocrine effects and to develop biomarkers for early stage risk 

assessment of obesogen contamination in freshwater systems. Initial assessment of lipid 

perturbation in Gammarus fossarum exposed to a growth regulator insecticide has been 

recently reported (Arambourou, et al., 2018). However, only a limited number of lipid classes 

and molecular species in this non model organism have been described (Arambourou, et al., 
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2018; Fu, et al., 2020; Kolanowski, et al., 2007). Our knowledge about the lipid composition 

especially the associated dynamics in this species is scarce. 

Lipidomics per se covers a broad range of mass spectrometry (MS) workflows that aim to 

identify and quantify a great variety of lipid classes, including their molecular species in 

biological systems (Hsu, 2018; Hu, et al., 2019; Klose, et al., 2013; Shevchenko and Simons, 

2010; van Meer, 2005; Wenk, 2005). In addition, when required, advanced lipid structural 

characterization (e.g., double bond and sn-positions) is also readily achievable via MS 

related developments such as ozonolysis (Brown, et al., 2011), UV-induced 

photodissociation (Bowman, et al., 2017; Brown, et al., 2011; Ryan, et al., 2017; Williams, et 

al., 2017) and ion mobility spectrometry (Groessl, et al., 2015; Jackson, et al., 2008; Kim, et 

al., 2009; Leaptrot, et al., 2019). The most popular analytical platforms for lipidomic analysis 

are electrospray ionization (ESI)-MS based shotgun lipidomics (i.e., direct infusion MS) and 

liquid chromatography (LC)-MS. In contrast to the necessity of time consuming 

chromatography separation in LC-MS, shotgun lipidomics is a high-throughput approach 

which relies on the direct infusion of a crude lipid extract into the ion source of a mass 

spectrometer (Han and Gross, 2003; Han and Gross, 2005; Han and Gross, 2005; Hsu, 

2018). The maintenance of a constant concentration of the delivered lipid extract provides a 

stable ionization environment thus enabling reproducible qualitative and quantitative 

detection of hundreds of molecular lipid species in a single run. Nowadays, high-resolution 

mass spectrometry (e.g., Fourier transform ion cyclotron resonance and Orbitrap) is 

frequently used in shotgun lipidomics and has tremendously increased the confidence of 

analysis with its capability of resolving isobaric lipid species (Zullig and Kofeler, 2020). Up to 

now, shotgun lipidomics has been successfully applied to describe the lipidome of a variety 

of biological systems like yeast cells (Ejsing, et al., 2009; Klose, et al., 2012), Drosophila 

(Carvalho, et al., 2012; Palm, et al., 2012), flatworm (Thommen, et al., 2019), nematode 

Caenorhabditis elegans ( Penkov, et al., 2010) and freshwater crustacean Daphnia magna 

(Taylor, et al., 2017). 

Despite the access of the molecular complexity and the identification of hundreds to 

thousands of chemical species offered by shotgun lipidomics, the spatial distribution of the 

measured molecular lipid species is missing due to the mandatory lipid extraction 

procedures. Even though a global evaluation of lipid content in an organism proves to be 

very valuable for studying the lipid metabolism variations associated with development or 

disease (Ayciriex, et al., 2017; Carvalho, et al., 2012; Guan, et al., 2013; Knittelfelder, et al., 

2018; Wang, et al., 2020), the spatial distribution of these biomolecules is crucial to 

understand their modes of action in particular functional compartments. In the last two 

decades, mass spectrometry imaging has emerged as a novel tool to localize various 
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molecules such as metabolites, lipids, drugs and so on in biological tissues without the need 

of labelling (Davoli, et al., 2020; McDonnell and Heeren, 2007; Spengler, 2015). By using a 

laser or an ion beam to generate ions directly from the tissue, MSI preserves the spatial 

localization of the ions and enables multiplexed molecular mapping of important structures in 

tissue sections. Among the various MSI techniques, secondary ion mass spectrometry 

(SIMS) is well recognized for its high spatial resolving power providing a micron or even 

submicron routine resolution (Ayciriex, et al., 2011; Benabdellah, et al., 2010; Touboul and 

Brunelle, 2016). Therefore, SIMS remains popular in biological imaging despite the severe 

molecular fragmentation due to the employment of energetic primary ion beams. Matrix 

assisted laser desorption/ionization (MALDI), on the other hand, enables intact molecular 

detection with a good spatial resolution typically >10 µm (Benabdellah, et al., 2010; Gessel, 

et al., 2014). Both SIMS and MALDI MS imaging techniques have been intensively employed 

for lipid mapping (Bich, et al., 2014; Djambazova, et al., 2020; Sämfors and Fletcher, 2020; 

Zemski Berry, et al., 2011).  

With the aim to provide an exhaustive characterization of the lipidome of freshwater 

sentinel species G. fossarum and to disclose the lipid dynamics during the development, we 

performed shotgun lipidomics and mass spectrometry imaging on gammarids of different 

gender and distinct female reproductive stages. The baseline lipidome of this organism was 

defined by high throughput shotgun lipidomics using a robotic chip-based nano-ESI infusion 

device coupled to a high-resolution mass spectrometer. To reveal the in-situ localization of a 

variety of lipids in the organs and tissues, gammarid tissue sections were examined globally 

by MALDI MSI and scrutinized in detail by time of flight (TOF)-SIMS imaging. Several 

unknown sulfate-based lipids were uncovered in this organism and localized in the epithelium 

of hepatopancreas by high resolution SIMS imaging which subsequently guided the targeted 

high mass resolution analysis of hepatopancreas lipid extract for molecular identification and 

structural characterization. Dynamic distribution of these sulfate-based lipids in the course of 

reproduction or oocyte maturation was then investigated by mapping the oocytes of female 

gammarids at two different reproductive stages. Overall, our results provide for the first time 

both compositional and spatial information of the lipids in this crustacean species. 
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RESULTS AND DISCUSSION 

Lipid composition of the Gammarus fossarum lipidome 

Shotgun Lipidomics analyses via high-resolution mass spectrometry in positive and negative 

ion mode were conducted to decipher the lipidome of males and females of the freshwater 

crustacean G. fossarum and at specific female reproductive stages (Figure S1). The 

reproduction cycle of female gammarids (oogenesis/vitellogenesis, embryogenesis) is closely 

synchronized with molting and is now well characterized (Chaumot, et al., 2020; Geffard, et 

al., 2010; Schirling, et al., 2004). In total, six molt stages are defined according to the 

phenotypic features of the females, namely postmolt (A, B), intermolt (C1, C2) and premolt 

(D1, D2). Contrary to females, spermatogenesis in male gammarids is not related to the 

molting cycle and morphological parameters are not available to depict accurately the 

organisms at different spermatogenesis stages. In our study, all the male organisms sampled 

were in amplexus to ensure they were at similar spermatogenesis stage (mature). Female 

gammarids were collected at the beginning of intermolt stage (C1) and at premolt stage (D1) 

to investigate lipid alterations related to oocyte maturation.  

By shotgun lipidomics, more than 200 molecular lipid species were quantified, corresponding 

to 11 major lipid classes in wild male and female adult gammarids – triacylglycerols (TAG), 

diacylglycerols (DAG), phosphatidylcholines (PC), phosphatidylethanolamines (PE), ether 

lipids (PE-O and PC-O), phosphatidylinositols (PI), lysophosphatidylcholines (LPC), 

lysophosphatidylethanolamines (LPE), sphingomyelins (SM), and cholesterol (Chol) (Figure 

1A). Our findings have significantly expanded the lipidome coverage reported previously in 

G. fossarum in terms of both lipid class and molecular lipid species (Arambourou, et al., 

2018).  Total fatty acids (FA) including the acyl chains of larger lipid molecules from the 

whole organism were also examined and deciphered by GC-FID (Figure S2). The 

predominant fatty acid in gammarids was monounsaturated C18:1 (~33%). Other fatty acids 

of comparatively high level were saturated C16:0 (~16%), polyunsaturated C20:5 n-3 (~14%) 

and monounsaturated C16:1 (~13%). Omega-3 fatty acids made up ~25% of the 

polyunsaturated fatty acid (PUFA) in contrast of omega-6 PUFA (~9%). The main n-3 FA was 

eicosapentaenoic acid (20:5, n-3), followed by α-linolenic acid (FA 18:3, n-3). 

TAG class turned out to be the most predominant lipid class in gammarids. Interestingly, 

female at D1 stage contained more TAG than female at C1 stage and male (Figure 1B), 

whereas no major changes were observed for membrane lipids like cholesterol, 

phospholipids (PC, PE, PE-O, PC-O, PI), lysophospholipids (LPE, LPC) and sphingomyelin 

(Figure 1C, 1D). In the reproductive cycle of female gammarids, D1 stage follows the second 

vitellogenesis where dramatically increased follicular surface has been observed compared 
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to females at C1 postmolt stages (Geffard, et al., 2010). It is well documented that in many 

crustacean species, ovarian maturation requires huge amount of lipids to realize the 

vitellogenesis process (Alava, et al., 2007; Lee and Walker, 1995; Ravid, et al., 1999). In the 

female gammarids at D1 stage, TAG probably serves as energy storage reservoir (FA store) 

that might be rapidly mobilized on demand during the second vitellogenesis (Subramoniam, 

2011). Although a global lipid accumulation during oocyte maturation is evident, the mostly 

affected stages and lipid species seem to differ among the crustacean species. Equal 

amounts of TAG and phospholipids are accumulated in the ovary of Penaeus semisulcatus 

when oocytes reach maturation (Ravid, et al., 1999). However, in most species, TAG is 

primarily responsible for the changes in total lipid content and increase of phospholipids only 

occurs at the end of maturation (Mourente, et al., 1994; Wouters, et al., 2001) as probably in 

the case of G. fossarum.  

 

Diversity of molecular lipid species in G. fossarum across gender and distinct female 

reproductive stages 

Next, we questioned whether the profile of the molecular lipid species of each lipid class 

found in adult gammarid varies between the gender and different female reproductive stages. 

Figure 2 displays the profiles of the molecular species of four lipid classes (namely TAG, PC, 

PE and SM) in male gammarid and female gammarids at C1 and D1 stages. The abundance 

of each lipid was normalized to the total abundance of the corresponding lipid class to show 

the proportion of each molecular lipid species within a lipid class. It is observed that TAG 

species containing relatively short chain and poly-unsaturated fatty acids (e.g., TAG 46:1, 

TAG 46:2 and TAG 48:1 to TAG 48:6) have a higher proportion in male compared to female, 

whereas TAGs with longer chain and poly-unsaturated fatty acids are more prominent in 

female (e.g., TAG 54:6, TAG 56:7). This difference in the proportion of each molecular 

species in total TAG is less significant between the females at C1 and D1 reproductive 

stages. All the reported 46 TAG molecular species were characterized by tandem mass 

spectrometry. TAG precursors were detected in positive ion mode as ammonium adduct 

[M+NH4]
+, of which the MS/MS spectra were featured by neutral losses (NLs) of NH3 and an 

acyl side chain (as a carbolic acid ROOH) to generate a diacyl product ion (Figure S3). For 

instance, under HCD, the precursor ion at m/z 868.7416 (TAG 52:6, [M+NH4]
+) , exhibited 

NLs of 319, 271, 299 and 245 which correspond to FA 20:5, 16:1, 18:1 and 14:0, 

respectively. We were able to determine that TAG 52:6 was composed of two isomers TAG 

16:0-16:1-20:5 and 14:0-18:1-20:5 (Figure S3B).  

For glycerophospholipid class, the predominant PC species in gammarids is 

monounsaturated PC 34:1, followed by the poly-unsaturated PC 38:4 (Figure 2B). These two 
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major PC species were defined as PC 16:0-18:1 and PC 18:1-20:5, respectively, based on 

the observation of the fragments corresponding to fatty acids in the negative MS/MS spectra 

(Figure S4). For PE lipid class, PE 38:6 (PE 18:1-20:5) stand out as the most abundant 

molecular lipid species (Figure 2C and Figure S5). Only 4 SM species were detected in the 

gammarid, namely SM 34:1 (d18:1/16:0), 36:1 (d18:1/18:0), 36:2 (d18:1/18:1) and 38:2 

(d18:1/20:1) (Figure 2D and Figure S6). This finding was confirmed by a targeted lipidomics 

approach employing LC-ESI-MS/MS (data not shown). Overall, no significant differences in 

the proportional abundance of the glycerophosholipid and sphingolipid lipids were observed 

between male and female gammarid at the molecular species level.  

Localization of lipids in whole-body gammarid section by MALDI MSI  

With the rich molecular lipid species information obtained with shotgun lipidomics, we then 

performed mass spectrometry imaging to map the lipids in situ and reveal their spatial 

localization in the tissues and organs of G. fossarum. First, longitudinal sections of the male 

gammarid were mapped by MALDI MSI to examine the global distribution of the lipid species. 

In negative ion mode, the ions at m/z 295.2 and 297.2 were the main species detected from 

the tissue section (Figure S7), while in positive ion mode phosphatidylcholine (PC) were the 

prominent lipid species observed in the mass range of m/z 750-850 (Figure S8). MALDI MS 

ion images of the main PC lipids, PC 34:1 and PC 36:3, are displayed in Figure 3. Both PC 

species are distributed across the whole body in cephalon, muscle and thorax segments (TS) 

with higher abundance in cephalon. PC 34:1 is the most abundant PC species according to 

the shotgun analysis (Figure 2). Three ions related to PC 34:1 ([M+H]+, [M+Na]+ and [M+K]+) 

were detected, all showing identical distribution in the cephalon, muscle and TS tissue of the 

male gammarid. Besides the PC lipids, an ion at m/z 841.5 was also observed in the 

measured mass range (Figure 3F and Figure S8). The ion image showed a distinct spatial 

localization from the PC lipids. By overlaying the ion image with that of PC 34:1 [M+K]+ and 

subsequently the optical image of the analyzed tissue section (Figure 3G and 3I), it is 

revealed that this molecule is principally colocalized to the gonad as well as to the area close 

to hepatopancreas (HP) where the gonad is usually located but not seen in the optical image 

due to the non-ideal cutting orientation during cryosectioning. This ion at m/z 841.5 was 

tentatively attributed as sulfated glyceroglycolipid (SGG), also referred to as seminolipid with 

C16:0/C16:0 alkyl/acyl chains (Lessig, et al., 2004). 

Seminolipid C16:0/16:0 is the predominant SGG species and is a key lipid involved in germ 

cell differentiation during spermatogenesis in mammalians (Tanphaichitr, et al., 2018; Zhang, 

et al., 2005), and it is likely to have similar function in G. fossarum. In the anatomy of male 

gammarid, the gonad is surrounded by orange lipid droplets (Wigh, et al., 2017). Therefore, it 
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is unclear if this molecule detected here is derived from the gonad tissue or from the 

surrounding lipid droplets. Our future work will be focusing on characterizing this seminolipid, 

discovering its potential analogues and identifying its precise localization.  

Lipid distribution in targeted organs by high resolution SIMS imaging 

After examining the global distribution of lipids in the male gammarid, we then applied high 

resolution SIMS imaging to scrutinize the individual organs at 2 µm lateral resolution. Two 

regions of interest (ROIs) covering various tissue types including hepatopancreas, gonad 

and muscle were targeted as shown in the optical images in Figure 4. The ion at m/z 224.1 

which is a characteristic fragment of phosphatidylcholine (PC) lipids was found abundant in 

the muscle tissue (Figure 4B and 4D), consistent with the results from MALDI MSI. It is 

interesting to note that this PC fragment was also observed with high intensity in the gonad 

tissue, implying the presence of PC lipids in the gonad and which may differ from those in the 

muscle as certain PC species such as PC 34:1 was not observed in the gonad from MALDI 

MSI analysis. Vitamin E was also observed in SIMS MSI analysis and was found in all kinds 

of tissue types. Several unknown ion species were detected between m/z 648.4 and m/z 

696.4 in the positive ion mode (Figure S9) and the corresponding ion images show that they 

appear to be specifically colocalized to the hepatopancreas (Figure 4B and 4D).  

In negative ion mode, several fatty acid species were detected (Figure S10), among which 

FA 18:1 (oleic acid) was observed across the analyzed regions with higher abundance 

observed in the body cavity haemocoel (Figure 4C and 4E). The ion at m/z 297.2 showed 

strong signal in the SIMS spectra acquired in negative ion mode and the ion images illustrate 

that this ion species seems to be mostly derived from the lumen of the hepatopancreas 

(Figure 4E). The ion image of phosphatidylethanolamine (PE) lipid was summed from those 

of diacylglycerophosphatidylethanolamine and 1-(1Z-alkenyl),2-

acylglycerophosphatidylethanol-amines which were all predominantly localized in the 

hepatopancreas (Figure S11). Also in hepatopancreas some unknown ion species at m/z 

588.5, 602.5, 604.5, 616.5 and 618.5 were detected. These ions turned out to have a very 

different distribution pattern from that of the ion at m/z 297.2, although they were all derived 

from the hepatopancreas organ (Figure S12, Figure 4C and 4E). The overlay images of the 

sum of these ion species and FA 18:1 reveal that their distribution is similar to that of ions at 

m/z 648.4-696.4 detected in positive ion mode. This high-resolution examination of regions of 

interest of the whole-body tissue section provided not only a clearer map of the chemical 

species distributed in individual organs of the gammarid, but also supplementary information 

in terms of lipid detection.  
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Identification of sulfate-based lipid species in hepatopancreas 

With the aim to identify whether the ion species at m/z 632.4-696.4 (in positive ion mode) 

and m/z 588.5-618.5 (in negative ion mode) are localized in the lumen or the epithelium of 

the hepatopancreas, we then targeted the hepatopancreas region by SIMS imaging on the 

transverse section where the structures of the 4 hepatopancreas caeca are well defined 

(Figure 5). Consistent with the above MALDI and SIMS analyses of longitudinal tissue 

sections, the ion at m/z 224.1 (PC head group) was predominantly found in the muscle 

tissue. The ion at m/z 196.9 which was assigned as salt ion K2NaSO4
+ (based on spectral 

library search in SurfaceLab) turned out to be concentrated in the lumen of the 

hepatopancreas, whereas the ions at m/z 632.4-696.4 were mainly detected from the 

epithelium of the hepatopancreas and intestine (Figure 5A). For ions generated in negative 

ion mode, FA 18:1 shared similar distribution as PC head group. The ion at m/z 297.2 was 

found in both the lumen and epithelium of hepatopancreas with higher abundance in the 

lumen. The summed ion image of the ions at m/z 588.5-618.5 and its overlay with FA 18:1 

and m/z 297.2 confirm that these ion species are localized principally in the epithelium of 

hepatopancreas and intestine (Figure 5B).  

To characterize these unknown ion species, hepatopancreas tissues from 10 male 

gammarids were pooled and then extracted according to a modified Folch lipid extraction 

procedure. Full scan mode and MS/MS on a high resolution mass spectrometer (ESI-

Orbitrap) was performed in both polarities. The ions at m/z 634.4-696.4 were not observed in 

the positive ion mode, either due to low abundance or low extraction efficiency. In negative 

ion mode, the ions at m/z 295.2, 297.2 and m/z 588.5-618.5 were readily detected and 

subsequent MS/MS analyses yielded informative tandem mass spectra (Figure 5C and 

Figures S13-S18). Fragment ions corresponding to sulfate ion (m/z 79.9562, SO3
-, m/z 

80.9620, HSO3
- and m/z 96.9589, HSO4

- ) as well as neutral losses of hydrocarbon chains 

containing O and N motifs (e.g., C16H30O and C16H33NO in Figure 5C) were observed in the 

MS/MS spectra of all the precursor ions at m/z 588.5-618.5, indicating these molecules were 

sulfate-based lipids. Both precursor and fragment ions were annotated with a high mass 

accuracy better than 5 ppm (Figure 5C, Figures S15-S18, and table S1). Based on these 

accurate MS and MS/MS data, we interrogated various databases including METLIN 

(https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage) and LIPID MAPS 

(https://www.lipidmaps.org/) without getting any possible matches. Thus, these sulfate-based 

lipids are probably new molecules present in this gammarid species. Sulfate-based lipids 

(SL) are a subclass of sulfolipids which is a heterogenous group of lipids containing sulfur 

element (Dias, et al., 2019). In mammals, SL are involved in various biochemical processes 

including cell-cell communication (Honke, 2013), inflammation (Hu, et al., 2007) and 
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immunity (Avila, et al., 1996). Some SL such as cholesterol sulfate and SO3-Gal-ceramide 

are commonly found in the epithelium of digestive tracts to regulate the activities of 

pancreatic protease by inhibiting elastase (Ito, et al., 1998). We hypothesized that the SL 

detected in the hepatopancreas might be involved in similar activities in G. fossarum. 

However, further investigations are required to elucidate their biological functions. 

 
Dynamic change in oocyte lipid composition during the female reproductive cycle 

As described previously, the reproductive cycle of female gammarids comprises six molt 

stages which are characterized by the maturation of oocytes (Geffard, et al., 2010; Schirling, 

et al., 2004). To investigate the dynamics of lipid composition related to the maturation 

process, high resolution TOF-SIMS imaging was performed to map the chemical composition 

of the early vitellogenic oocytes (EVO) of female gammarids at C1 stage and the late 

vitellogenic oocytes (LVO) of female gammarids at D1 stage, respectively. The analyzed 

areas covering various tissue types including oocytes (Ooc), hepatopancreas (HP), intestine 

(In) and muscle are shown in Figure 6. The regions of oocytes were defined and outlined by 

comparing with H&E stained images of the same sections analyzed by TOF-SIMS (Figure 

S19). For females at both C1 and D1 stages, fatty acids were detected across the analyzed 

area with lower abundance in the intestine and hepatopancreas. Intense signals of fatty acids 

were also observed in the hallow area caused by tissue cracking which frequently occurred 

during preparation of fragile tissue sections. The ion at m/z 297.2 was found abundant in 

hepatopancreas and intestine in females at both stages. Very interesting to note is the 

distribution of the newly identified sulfate-based lipids. Compared to the female at C1 stage 

where the SL were mainly detected from the hepatopancreas, the D1 female showed a 

significant accumulation of SL in the oocytes. In Figure 6B, the overlay image of SL, FA18:1 

and the ion at m/z 297.2 illustrates that the SL are only accumulated in the secondary 

oocytes (SO) and are absent in the primary oocytes (PO) which are immature oocytes at 

previtellogenic stage (Schirling, et al., 2004; Tan-Fermin and Pudadera, 1989). 

 Although it is demonstrated in many crustacean species that accumulation of lipids in the 

oocytes occurs during the ovarian maturation, the origin of these rapidly accumulated lipids is 

not fully understood. Mobilization of lipids from hepatopancreas to oocytes in the prawn 

Penaeus japonicus has been proved by tracing the lipids derived from radioactive labelled 

fatty acids (Teshima, et al., 1988). In addition, several studies have reported the co-

occurrence of a decreased lipid content in hepatopancreas and an increased lipid content in 

the ovary during ovarian maturation (Alava, et al., 2007; Castille and Lawrence, 1989; 

Spaargaren and Haefner, 1994). Therefore, it has been hypothesized that hepatopancreas 

also functions as lipid storage organ in crustacean species and could release the required 
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lipids to oocytes to facilitate their maturation. By high resolution mass spectrometry imaging, 

our observation of the accumulation of SL in oocytes of D1 female suggests that these SL 

have probably gone through this lipid transfer process to accumulate in oocytes of the female 

gammarids and play an important role in the maturation process.  

Significance (300 words) 

The comprehensive lipid profile of G. fossarum revealed by shotgun lipidomics and mass 

spectrometry imaging enables us to obtain in-depth insights into the lipid homeostasis in this 

sentinel crustacean species. Guided by high resolution mass spectrometry imaging, the 

discovery of sulfate-based lipids in the epithelium of the hepatopancreas and intestine 

indicates a molecular similarity and very probably a functional similarity as well between the 

digestive tracts of this species and mammals. We also showcased a dynamic lipid 

composition in the oocytes during the reproductive cycle, which supports the hypothesis that 

lipid transfer from hepatopancreas to oocytes could occur to provide necessary lipids for the 

oocyte maturation. In addition, this exhaustive lipid profile of sentinel species G. fossarum 

will serve as a valuable reference for future investigations in the disruptions of lipid 

homeostasis caused by environmental stressor exposure. Thus, the application of the 

presented methodology in environmental relevant species could contribute to providing 

molecular mechanisms of the observable toxic effects of the contaminants and to improving 

our understanding of ecosystem health alterations.  
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STAR METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, Peptides and lipid standards 
Ammonium formate Sigma 

Aldrich 
Cat#70221 

butanol-1 RPE Carlo Erba Cat#414131 
α-Cyano-4-hydroxycinamic 
acid (CHCA) 

Sigma-
Aldrich 

Cat#03841 

9-aminoacridine (9-AA) Sigma-
Aldrich 

Cat#92817 

5ß-Cholestan-3a-ol Sigma-
Aldrich 

Cat#C2882 

Indium tin oxide (ITO) 
coated glass slides 

Sigma-
Aldrich 

Cat#703176 

cholesteryl-d7 ester 16:0 Avanti Polar 
Lipids 

Cat#700149 

cholesterol-d7 Avanti Polar 
Lipids 

Cat#700041 

1,3(d5)-dihexadecanoyl-2-
octadecanoyl-glycerol  
(TAG 16:0-18:0-16:0-d5) 

Avanti Polar 
Lipids 

Cat#110543 

1,3(d5)-diheptadecanoyl-
glycerol (DAG 17:0/17:0-d5) 

Avanti Polar 
Lipids 

Cat#110538 

1-tridecanoyl-sn-glycero-3-
phosphate (LPA 13:0) 

Avanti Polar 
Lipids 

Cat#LM-1700 

1-dodecanoyl-2-tridecanoyl-
sn-glycero-3-phosphate  
(PA 12:0/13:0) 

Avanti Polar 
Lipids 

Cat#LM1400 

N-lauroyl-D-erythro-
sphingosine (Cer 
d18:1/12:0) 

Avanti Polar 
Lipids 

Cat#860512 

1-dodecanoyl-2-tridecanoyl-
sn-glycero-3-
phosphocholine  
(PC 12:0/13:0) 

Avanti Polar 
Lipids 

Cat#LM1000 

1-dodecanoyl-2-tridecanoyl-
sn-glycero-3-
phosphoethanolamine  
(PE 12:0/13:0) 

Avanti Polar 
Lipids 

Cat#LM1100 

N-lauroyl-D-erythro-
sphingosylphosphorylcholine 
(SM d18:1/12:0) 

Avanti Polar 
Lipids 

Cat#860583 

1-tridecanoyl-2-hydroxy-sn-
glycero-3-phosphocholine 
(LPC 13:0) 

Avanti Polar 
Lipids 

Cat#855476P 

1-tridecanoyl-sn-glycero-3-
phosphoethanolamine  

Avanti Polar 
Lipids 

Cat#110696 
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(LPE 13:0) 
D-galactosyl-ß-1,1' N-
lauroyl-D-erythro-
sphingosine  
(GalCer d18:1/12:0) 

Avanti Polar 
Lipids 

Cat#860544 

D-lactosyl-ß-1,1' N-lauroyl-
D-erythro-sphingosine 
(LacCer d18:1/12:0) 

Avanti Polar 
Lipids 

Cat#860545 

1-tridecanoyl-2-hydroxy-sn-
glycero-3-phospho-(1'-myo-
inositol) (LPI 13:0) 

Avanti Polar 
Lipids 

Cat#110716 

1-dodecanoyl-2-tridecanoyl-
sn-glycero-3-phospho-L-
serine (PS 12:0/13:0) 

Avanti Polar 
Lipids 

Cat#111129 

1-dodecanoyl-2-tridecanoyl-
sn-glycero-3-phospho-
inositol (PI 12:0/13:0) 

Avanti Polar 
Lipids 

Cat#110955 

1-dodecanoyl-2-tridecanoyl-
sn-glycero-3-phospho-
glycerol (PG 12:0/13:0) 

Avanti Polar 
Lipids 

Cat#111126 

Eosin solution RAL 
diagnostics 

Cat# 312710 

Ethanol absolute anhydre 
RPE 

Carlo Erba Cat#4146012 

Hematoxylin solution Sigma 
Aldrich 

Cat#H3136 

Heptadecanoic acid Sigma 
Aldrich 

Cat#H3500-1G 

PepMix 5 LaserBio 
Laboratories 

Cat#C105 

Deposited Data 
Shotgun Lipidomics data Repository 

Metabolights 
MTBLS1901 

MALDI imaging raw data Repository 
Metabolights 

MTBLS1901 

Experimental Models: Organisms/Strains 
Gammarus fossarum INRAe #N/A 
Software and Algorithms 
LipidXplorer 1.2.7 MPI-CBG  https://lifs.isas.de/lipidxplorer.html 
Peakstrainer gitlab (git 

mpi-cbg) 
https://git.mpi-
cbg.de/labShevchenko/PeakStrainer/wikis/About 

 

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to the Lead 

contact, Sophie Ayciriex (sophie.ayciriex@univ-lyon1.fr)  

Experimental model and subject details 
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Gammarus fossarum organisms were collected in a watercress site in the vicinity of the 

Pollon river (45°57′25.8′′N 5°15′43.6′′E) in France from a source population commonly used 

in our laboratory. Organisms were collected by kick sampling using a net and selected in the 

field according to their size by using a series of sieves (±1 cm in length). Organisms were 

quickly transported to the laboratory and kept in 30 L tanks supplied with continuous drilled 

groundwater under constant aeration without food supply. The temperature was kept at 

12±1°C. After 24h, adult gammarids were sorted out at specific reproductive stages 

according to morphological criteria (Geffard, et al., 2010). Male gammarids in amplexus were 

collected and females were collected at C1 stage and D1 stage, respectively. The sampling 

was performed at the same time of day. All the collected gammarids were washed with 

deionized water, weighted and flash frozen in liquid nitrogen.  

Method details 

Lipid extraction procedure 

Entire adult gammarid (n=10 per stage) was homogenized in 300 μL of cold isopropanol with 

one stainless steel bead (Ø 4 mm). Protein determination assay from the homogenates was 

performed with BCA protein assay. ~50μg of total protein content was extracted according to 

a modified version of the MTBE lipid extraction procedure (Matyash et al., 2008). Briefly, 

700 μL of solvent mixture (MTBE/MeOH, 10:3, v/v) containing one synthetic internal standard 

representative for each lipid class was added to the dried homogenates. Samples were 

vortexed for 1 h at 4°C. Phase separation was produced by adding 140 μL of water and 

agitating for 15 min at 4°C, followed by centrifugation (15 min, 13 400 rpm at 4°C). The upper 

organic phase was collected, dried down and reconstituted in 600 μL of solvent mixture 

CHCl3/MeOH, 1:2 (v/v). 10 µL of total lipid extract was diluted with 90 µL of solvent mixture 

IPA/MeOH/CHCl3, 4:2:1 (v/v/v) containing 7.5 mM ammonium formate for high resolution MS 

analysis.  

Shotgun lipidomics experiment 

Shotgun lipidomics analyses were performed on a Q Exactive instrument (Thermo Fischer 

Scientific, Bremen, Germany) equipped with a robotic nanoflow ion source TriVersa 

NanoMate (Advion BioSciences, Ithaca, NY, USA) using nanoelectrospray chips with a 

diameter of 4.1 µm. The ion source was controlled by the Chipsoft 8.3.1 software (Advion 

BioSciences). Ionization voltage was + 0.96 kV in positive and − 0.96 kV in negative mode. 

Backpressure was set at 1.25 psi in both modes by polarity switching according to 

Schuhmann, et al. (Schuhmann, et al., 2012). The temperature of the ion transfer capillary 

was set to 200°C and S-lens RF level 50%. FTMS spectra were acquired within the range of 
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m/z 400–1000 from 0 min to 1.5 min in positive and then within the range of m/z 350–1000 

from 4.2 min to 5.7 min in negative mode at a mass resolution of 140,000 (at m/z 200), 

automated gain control (AGC) of 3 × 106 and with a maximal injection time of 3000 ms. Free 

cholesterol was quantified by parallel reaction monitoring FT MS/MS within runtime 1.51 to 

4.0 min in positive ion mode. For FT MS/MS (PRM method), the micro scans were set to 1, 

isolation window to 1 Da, stepped normalized collision energy to 15, 25, 35, AGC to 2 × 104 

and maximum injection time to 650 ms. All acquired data was filtered by PeakStrainer that 

can be found in gitlab https://git.mpi-cbg.de/labShevchenko/PeakStrainer/wikis/About 

(Schuhmann, et al., 2017). Lipids were identified by LipidXplorer 1.2.7 software (Herzog, et 

al., 2012). Molecular Fragmentation Query Language (MFQL) queries were compiled for 

TAG, DAG, Cholesterol, CE, SM, PC, PC O-, LPC, LPC O-, PE, PE O-, LPE, PI, LPI lipid 

classes. The identification of the lipid class relied on accurately determined intact lipid 

masses (mass accuracy better than five ppm). The identification of the lipid molecular 

species relied on the MS/MS spectra inspection in both polarities of the polar head group 

fragments and fatty acid moieties. Lipids were quantified by comparing the isotopically 

corrected abundances of their molecular ions with the abundances of internal standards of 

the same lipid class. The amount of lipids per animal was calculated and normalized to the 

fresh mass of gammarids.  

Fatty acid profiling by GC-FID  

After lipid extraction of adult gammarids (n=24), lipids were dried down and reconstituted in 1 

mL of methanol with 2.5% sulfuric acid containing 5 µg of heptadecanoic acid methyl ester as 

internal standard. The mixture was incubated at 80°C for 1 h. Then, 1.5 mL of water was 

added. Fatty acid methyl esters (FAMES) were extracted using 750 µL of hexane and 

separated in a 15 m × 0.53 mm Carbowax column (Alltech Associates, Deerfield, IL, U.S.A.) 

on a GC-FID (Hewlett–Packard 5890 series II). The oven temperature was programmed for 1 

min at 160°C, followed by a 20°C per min ramp to 190°C and a second ramp of 5°C per min 

to 210°C, and then maintained at 210°C for a further 6 min. FAMES retention times were 

determined by comparison with those of standards and quantified using heptadecanoic acid 

methyl ester as standard. 

 

Annotation of lipid molecular species 

Annotation of lipid species follows the guidelines established by the Lipid Maps Consortium 

(Fahy, et al., 2005; Fahy, et al., 2009) and the Lipidomics Standards Initiative (LSI) (Liebisch, 

et al., 2013; Pauling, et al., 2017). Lipid species were noted as the following: <lipid 

class><number of total C number in the sum of fatty acid moieties>:<number of unsaturation 
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in the sum of fatty acid moieties> (e.g., PC 34:1). Lipids molecular species were annotated 

as the following: <lipid class><number of C in the first fatty acid moiety>:<number of double-

bond in the first fatty acid moiety>–<number of total C number in the second fatty acid 

moiety>:<number of double bond in the second fatty acid moiety> [e.g., phosphatidylcholine 

(PC) 16:0–18:1]. Sphingolipid species were annotated as <lipid class><number of C in the 

long-chain base (LCB) + fatty acid moieties>:<number of double bonds in the LCB + fatty 

acid moieties> (e.g., SM 34:1).  

Preparation of gammarid tissue sections  

The male and female gammarids of C1 and D1 stages were directly plunge-frozen in liquid 

N2 without embedding and then stored at - 80°C until cryo-sectioning. Transversal and 

longitudinal sections of adult G. fossarum were cut at - 23°C with a thickness of 12 μm 

utilizing a MICROM HM505E cryostat microtome. The sections were immediately thaw 

mounted onto ITO coated glass slides (Sigma-Aldrich) and dried for 30 min in a desiccator 

under low vacuum. Then the slides were placed in plastic bags filled with N2 to avoid 

oxidation and stored at - 80°C until analysis.  

All optical images were recorded at 10X magnification on an Olympus BX41M optical 

microscope. 

MALDI-TOF imaging  

The longitudinal sections of male gammarid were coated with a homogeneous layer of 

matrices using a robotic TM-Sprayer (HTX Technologies, Chapel Hill, NC, USA) prior to 

MALDI imaging. 10 mg/mL CHCA solution prepared in ACN/H2O/TFA (70:30:0.1, v/v/v) and 

10 mg/mL 9-AA solution prepared in EtOH/H2O (70:30, v/v) were used for positive and 

negative ion mode MALDI imaging experiments, respectively. CHCA solution was sprayed at 

70°C and 9-AA solution at 90°C with the following parameters: flow rate: 0.12 mL/min; nozzle 

height: 40 mm; nozzle moving speed: 120 cm/min; moving pattern: CC; track spacing: 3 mm; 

drying time: 30 s; nebulizing gas (N2) pressure: 10 psi; 2 passes. MALDI imaging 

experiments were carried out with an UltrafleXtreme MALDI-TOF/TOF mass spectrometer 

(Bruker Daltonics, Wissembourg, France) equipped with a 2 kHz Smart beam-II™ Nd:YAG 

laser (wavelength: λ=355 nm). The ion images were acquired with a pixel size of 40 μm 

(‘medium’ focus setting) and the spectrum of each pixel represented ion signals summed 

from 500 laser shots. The mass spectra were acquired in reflectron mode over a mass range 

of m/z 120 to 1700. Mass calibration was achieved using calibration standard PepMix 5 

(LaserBio Labs, Sophia Antipolis, France) which was deposited onto the matrix coated slide. 

Data acquisition and processing were performed using flexControl 3.4 and flexImaging 4.1 

(Bruker Daltonics, Wissembourg, France), respectively. ‘Median’ method was employed for 
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normalization of all the mass spectra given that it provided slightly higher signal to noise 

ratio. 

TOF-SIMS imaging  

TOF-SIMS imaging experiments were performed on a TOF-SIMS V (IONTOF GmbH, 

Münster, Germany) mass spectrometer. The bismuth liquid metal ion gun (LMIG) was 

operated in high current bunch (HCBU) mode to ensure a good mass resolution and a 

sufficient beam current together with a reasonable analysis time. The 25 keV Bi3
+ cluster ions 

were selected as primary ion beam, of which the current was about 0.45 pA measured at 10 

kHz with a fixed pulse width of 20.5 ns. The secondary ions were extracted and accelerated 

to 2 keV at the entrance of the TOF analyzer, and then post-accelerated to 10 keV before 

reaching the detector which is composed of a single micro-channel plate, a scintillator and a 

photomultiplier. A low energy pulsed electron flood gun (20 eV) was employed to 

compensate the charge accumulation on the insulating tissue samples. Ion images were 

generated from areas of 500 µm × 500 µm divided by 256 × 256 pixels. The total ion dose 

applied on each area is ~ 5×1011 ions/cm2. Data processing was performed using 

SurfaceLab 7 software (IONTOF GmbH, Münster, Germany). Mass spectra were internally 

calibrated using small fragments commonly observed in SIMS spectra such as CH+, CH2
+, 

CH3
+, C2H3

+, C2H5
+ in positive ion mode and CH-, CH2

-, C3
-, C4

-, C4H
- in negative ion mode. 

Improvement of mass accuracy was obtained by adding characteristic ion peaks of Vitamin E 

(m/z 429.373, C29H49O2
- and m/z 430.381, C29H50O2·

+) to the mass calibration list. 

Histological staining 

The post MSI analyzed tissue sections were stained with Hematoxylin and Eosine (H&E) to 

visualize the anatomy of the tissue sections. After washing away the MALDI matrices with 

ethanol, the tissue sections were stained in hematoxylin solution for 15 min before being 

washed with running tap water for 5 min. Then the sections were immerged in eosin solution 

for 10 min. After washing the tissues with distilled water for 5 min, the slides were placed 

successively in 70% ethanol, 96% ethanol and 100% ethanol, each for 2 min. Finally, the 

slides were plunged in n-butanol solution for 4 min and then allowed to dry at ambient 

atmosphere before observation under a microscope. 

MS/MS analysis of unknown sulfate-based lipids in hepatopancreas 

Hepatopancreas were dissected and pooled from 10 male gammarids for lipid extraction and 

subsequent MS analysis. For lipid extraction, hepatopancreas tissues were homogenized in 

300 µL methanol with zirconia beads (Ø 0.5 mm) and then extracted with a mixture of 

MeOH/CHCl3 (1/2, v:v) through continuous agitation at 4°C for 1 h. 100 µL H2O were added 
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for phase separation. After a quick centrifugation, the lower phase containing the lipids was 

collected and dried down at 40°C under constant N2 flow. The final product was reconstituted 

in pure methanol for MS analysis. 

The lipid extract was infused directly into the HESI source of a Q Exactive mass 

spectrometer (Thermo Fischer Scientific, Bremen, Germany) with a Hamilton™ syringe (1 

mL, 600 µL/min). For both MS and MS/MS analyses, the spray voltage was set at + 4 kV for 

positive ion mode and - 3.3 kV for negative ion mode. Capillary temperature was 320°C and 

S-lens level was 75. For MS/MS fragmentation, the AGC target was set at 5 × 106 and 

maximum injection time was 100 ms. Collision energy used to fragment the selected 

precursors was optimized and set at a normalized value of 50 except for the precursor ions 

at m/z 295.212 and m/z 297.1369, for which the normalized collision energy were 45 and 40, 

respectively. The mass resolution was 140,000 for all the analyses.  

Data and software availability 

Shotgun lipidomics data and MS imaging data have been deposited to the EMBL-EBI 

MetaboLights database (Haug, et al., 2020) with the identifier MTBLS1901. The datasets can 

be accessed here: https://www.ebi.ac.uk/metabolights/MTBLS1901.   
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Figure 1. Lipid composition of the Gammarus fossarum lipidome. (A) Lipid classes 
identified in G. fossarum organism with the associated number of lipid species identified. 
Comparison of the different lipid profile between male and female gammarids at specific 
female reproductive stages (C1 versus D1): (B) TAG profile. (C) cholesterol, 
phosphatidylcholine, phosphatidylethanolamine and ether lipids distribution. (D) 
lysophospholipids, phosphatidylinositol and sphingomyelin profile. Lipid class abundance is 
presented as moles per mole of total membrane lipid (phospholipids, sphingolipids and 
sterols – not including storage lipids). Statistically significant changes (p<0.05) are marked by 
asterisks. Error bars indicate standard deviation. 
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Figure 2. Diverse molecular lipid species in G. fossarum across gender and female 
reproductive stages.  Lipid profile for the main glycerolipid (A) TAG and the two main 
phospholipid classes (B) PC and (C) PE. (D) Sphingomyelin profile. Note that for TAG profile 
only the species higher than 5 mol% are presented. Statistically significant changes (p<0.05) 
are marked by asterisks. Error bars indicate standard deviation. 
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Figure 3. Localization of lipids in whole-body gammarid section by MALDI MSI. (A) 
Optical image of the whole-body tissue section of the male gammarid. (B) Ion image of 
protonated PC 34:1. (C) Ion image of sodium adduct of PC 34:1. (D) Ion image of potassium 
adduct of PC 34:1. (E) Ion image of potassium adduct of PC 36:3. (F) Ion image of the ion at 
m/z 841.5. (G) Two-color overlay of the ion at m/z 841.5 and the potassium adduct of PC 
34:1. (I) Overlay of the two-color overlay image in G and the optical image.  Ce: Cephalon; 
ADS: anterior digestive system; HP: hepatopancreas; TS: thorax segments.   
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Figure 4. Lipid distribution in targeted organs of male gammarid by high resolution 
SIMS imaging. ROI: region of interest. (A) Optical image of the gammarid tissue section. (B) 
Ion images of lipid species detected in positive ion mode in ROI 1. (C) Ion images of lipid 
species detected in negative ion mode in ROI 1. (D) Ion images of lipid species detected in 
positive ion mode in ROI 2. (E) Ion images of lipid species detected in negative ion mode in 
ROI 2. H: haemocoel. HP: hepatopancreas. G. gonad. M: muscle. Ion image of Vitamin E 
was summed from those of ions at m/z 429.4 and m/z 430.4. Ion image of m/z 634.4-696.4 
was summed from those of ions at m/z 634.4, 648.5, 648.4, 664.5, 666.4, 680.4, 682.4 and 
696.4. Ion image of m/z 588.5-618.5 was summed from those of ions at m/z 588.5, 602.5, 
604.5, 616.5 and 618.5. 
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Figure 5. Identification of sulfate-based lipid species in hepatopancreas. (A) Ion images 
of selected chemical species detected in positive ion mode. (B) Ion images of selected 
chemical species detected in negative ion mode. (C) MS/MS spectrum of the precursor ion at 
m/z 588.4667 acquired on a Q Exactive mass spectrometer in negative ion mode. 
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Figure 6. Dynamic change in oocyte lipid composition during the reproductive cycle. 
(A) Optical image of the transvers tissue section of C1 female and ion images of FA18:1 and 
sulfate-based lipids. (B) Optical image of the transvers tissue section of D1 female and ion 
images of FA 18:1 and sulfate-based lipids. The ion image of sulfate-based lipids at m/z 
588.5-618.5 was summed from those of m/z 588.5, m/z 602.5, m/z 604.5, m/z 616.5 and m/z 
618.5. 
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