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Abstract 21 

We analyzed air dispersal of the protistan phyla Cercozoa and Oomycota with an air sampler 22 

near the ground (~2 m) and in tree crowns (~25 m) of three tree species (oak, linden and 23 

ash) in a temperate floodplain forest in March (before leafing) and May (after leaf unfolding) 24 

with a cultivation-independent high throughput metabarcoding approach. Both, Cercozoa 25 

and Oomycota, contain important pathogens of forest trees and other vegetation. We found 26 

a high diversity of Cercozoa and Oomycota in air samples with 122 and 81 OTUs, 27 

respectively. Especially oomycetes showed a high temporal variation in beta diversity 28 

between both sampling dates. Differences in community composition between air samples 29 
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in tree canopies and close to the ground were however negligible, and also tree species 30 

identity did not affect communities in air samples, indicating that the distribution of protistan 31 

propagules through the air was not spatially restricted in the forest ecosystem. OTUs of plant 32 

pathogens, whose host species that did not occur in the forest, demonstrate wind dispersal 33 

of propagules from outside the forest biome. Overall, our results lead to a better 34 

understanding of the stochastic processes of wind dispersal of protists and protistan 35 

pathogens, a prerequisite to understand the mechanisms of their community assembly in 36 

forest ecosystems.  37 

Importance 38 

Wind dispersal has been shown to play a crucial role in protistan community assembly. The 39 

protistan taxa Cercozoa and Oomycota contain important plant parasites with a major 40 

ecologic and economic impact. However, comprehensive assessments of cercozoan and 41 

oomycete diversity in forest air samples were lacking. Using a cultivation-independent high 42 

throughput metabarcoding approach, we analyzed cercozoan and oomycete air dispersal in 43 

forest floors and the canopy region – a potential filter for microbial propagules. Our study 44 

provides insights into the diversity and community assembly of protists within the air, 45 

contributing to a better understanding which factors drive the distribution of plant pathogens 46 

within forest ecosystems.  47 

1. Introduction 48 

The air is an effective means of long-distance propagation for a wide range of microbial 49 

organisms (Foissner & Hawksworth, 2009; Pepper & Dowd, 2009). The phyllosphere – and 50 

especially the crowns of trees – are the largest biological interface between the soil and the 51 

atmosphere (Ozanne et al., 2003; Ellwood & Foster, 2004), which therefore may act as a 52 

huge natural filter for airborne microbial propagules, including unicellular Eukaryotes 53 

(Protists). Within the paraphyletic taxon of protists, the group of Cercozoa (Rhizaria) are 54 

highly diverse in morphology and physiology and show a high functional and ecological 55 
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variety (Bass et al., 2009; Harder et al., 2016). They dominate terrestrial habitats (Urich et 56 

al., 2008; Voss et al., 2019) and harbor important plant pathogens, such as the Endomyxa, 57 

which have recently been elevated from the Cercozoa into a separate phylum (Cavalier-58 

Smith et al., 2018). Another protistan taxon, the Oomycetes (Stramenopiles), contain 59 

important parasites of forest trees, and many lineages produce caducous sporangia for 60 

dissemination (Goheen & Frankel, 2009; Robideau et al., 2011; Lang-Yona et al., 2018). 61 

With almost 800 described species, Oomycota are reported to have a broad distribution and 62 

a wide variety of ecological roles (Robideau et al., 2011; Thines, 2014; Judelson, 2017). 63 

Further, it is one of the eukaryotic groups with a great impact on ecosystems, as well as on 64 

economics and human health: the most famous species is Phytophthora infestans, which 65 

causes the potato blight. In the 1840s it led to the great famine in Ireland followed by massive 66 

emigration (Lara & Belbahri, 2011; Robideau et al., 2011). 67 

Protists can be passively disseminated over long distances by viable propagules, mostly as 68 

resting stages (cysts), while some groups, especially pathogens with more complex life 69 

cycles, also form sporangia for dispersal (Cowling, 1994; Kageyama & Asano, 2009). Cysts 70 

are formed under unfavorable conditions, e.g. due to dryness, lack of food, or microbial 71 

antibiotics (Petz & Foissner, 1988; Adl & Gupta, 2006; Jousset et al., 2006), and it has been 72 

assumed that the cyst bank plays an important role for the resilience of protists and their 73 

functions in terrestrial environments (Geisen et al., 2017). Viable protist cysts can be 74 

retrieved from soils even after decades (Moon-van der Staay et al., 2006; Kageyama & 75 

Asano, 2009), leading to the long-standing question of how cosmopolitan protists are (Finlay, 76 

2002; Fenchel & Finlay, 2004; Foissner, 2009).  77 

Finlay et al. (2001) proposed that the spatial distribution of protistan propagules is 78 

influenced by several randomizing factors, such as soil particles dispersed by wind, 79 

convective transport, percolating rainwater, fog or animals. Rogerson and Detwiler (1999) 80 

determined that on average 0.25 cysts m-3 are contained in the air depending on wind speed 81 
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and time since last precipitation. Using a molecular approach, Genitsaris et al. (2014) came 82 

to generally similar conclusions, while they further detected operational taxonomic units 83 

(OTUs) with constant presence as well as OTUs exhibiting seasonal variation. High humidity 84 

increases the chance of survival of transported microbes and promotes their deposition 85 

(Fuzzi et al., 1997; Evans et al., 2019) and airborne microorganisms can be transported in 86 

fog droplets by atmospheric turbulence over long distances (Fuzzi et al., 1997; Amato et al., 87 

2005).  88 

Recently, Jauss et al. (2020) confirmed a ubiquitous distribution of Cercozoa and Oomycota 89 

in a floodplain forest, despite strong differences in community composition of different 90 

microhabitats related to differences in the relative abundance of taxa. This led to the 91 

conclusion that within forest ecosystems both cercozoans and oomycetes can colonize most 92 

habitats, in which they then however do not perform similarly well due to habitat filtering. 93 

One reason for this ubiquitous presence of these protists could be wind dispersal.  94 

Here, we studied the air dispersal of Cercozoa, Endomyxa and Oomycota by a cultivation-95 

independent high throughput metabarcoding approach to analyze protistan diversity in the 96 

air surrounding tree canopies and near the ground of a temperate floodplain forest, to gain 97 

a deeper insight into the mechanisms how protists and their pathogenic lineages are 98 

distributed in the environment. These examinations tackled three hypotheses: (1) Wind 99 

dispersal explains the ubiquitous presence of these protists in the floodplain forest. (2) There 100 

are differences in the distribution in the vertical plane as a strong discrepancy between 101 

canopy and ground habitats was previously described. (3) Temporal variation of wind 102 

dispersed propagules further drives the community and pathogen assembly in forest 103 

ecosystems.  104 
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2. Material and Methods 105 

2.1. Sampling and DNA extraction 106 

Air samples were taken in a temperate deciduous floodplain forest in the northwest of the 107 

city of Leipzig, Germany (51.3657 N, 12.3094 E) with a MicroBio MB2 Bioaerosol Sampler 108 

(Cantium Scientific, Dartford, UK) containing 1% agar plates. The samples were collected 109 

under defined conditions drawing 100 l/min of air for ten minutes in two strata: (1) near the 110 

ground (~2m) and (2) in ~25m height in tree canopies with the help of the Leipzig Canopy 111 

Crane (LCC) facility. Two samplings were carried out – one in March and one in May 2019. 112 

For each sampling, three tree species with three replicates each were chosen (Quercus 113 

robur, Tilia cordata and Fraxinus excelsior). As non-arboral control, samples were also taken 114 

on the crane tracks near the ground and at canopy height. Two plates per stratum and of 115 

each replicated tree species were collected, yielding 40 plates per sampling. After air 116 

sampling, the agar plates were taken out of the instrument, sealed with parafilm to prevent 117 

contaminations and frozen until the DNA was extracted with the DNeasy PowerSoil® Kit 118 

according to the instructions supplied by the manufacturer. Weather conditions were tracked 119 

with a WebVIS data logger attached to the crane (Umweltanalytische Produkte GmbH, 120 

Ibbenbüren, Germany) (Table 1).  121 

Table 1: Weather conditions at the sampling days in March and May 2019. 

 March May 

Average temperature [°C] 6.5 14.3 

Average humidity [%] 59.4 75.0 

Average wind speed [m/s] 4.01 3.23 

Last precipitation event Immediately before 
sampling 

2 days before sampling 

 122 
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2.2. PCR amplification and sequencing 123 

DNA was amplified in duplicates with tagged oomycete- and cercozoan-specific primers 124 

(Fiore-Donno & Bonkowski, 2020; Jauss et al., 2020; Fiore-Donno et al., 2020) 125 

(Supplementary Tables 1-2). PCR-products were purified following the directions of the 126 

NucleoSpin® PCR clean-up protocol. Afterwards, DNA concentrations were measured with 127 

the QubitTM4 fluorometer in combination with the QubitTM dsDNA HS Assay Kit. For 128 

consecutive Illumina MiSeq Sequencing, a library was prepared following the Meyer and 129 

Kircher (2010) protocol. DNA concentrations were checked repeatedly before and after 130 

Illumina sequencing by utilization of DNA chips analyzed with the Agilent 2100 Bioanalyzer. 131 

Between the steps of library preparation, reaction clean-up was performed with the AMPure 132 

XP System using carboxyl coated magnetic beads (SPRI beads). Subsequent steps and the 133 

Illumina MiSeq sequencing itself were performed by the sequencing team of the Max Planck 134 

Institute for Evolutionary Anthropology in Leipzig, Germany.  135 

2.3. Sequence processing and statistical analyses 136 

Bioinformatic and statistical analyses followed the pipeline described in Jauss et al. (2020). 137 

Briefly, resulting reads were merged and clustered into operational taxonomic units (OTUs) 138 

using a custom pipeline utilizing cutadapt v1.18 (Martin, 2011), Swarm v2.2.2 (Mahé et al., 139 

2015) and VSEARCH v2.10.3 (Rognes et al., 2016). OTUs were then annotated using 140 

NCBI’s non-redundant nucleotide database and the Protist Ribosomal Reference Database 141 

(Guillou et al., 2013) for oomycete and cercozoan OTUs, respectively (Supplementary 142 

Tables 3-4). OTUs resembling non-oomycete or non-cercozoan sequences were excluded. 143 

Samples with less than 5 OTUs or with a sequencing depth lower than 20617 reads 144 

(Oomycota) and 16922 reads (Cercozoa) were omitted. Statistical analyses of alpha and 145 

beta diversity and final visualizations were performed in R v3.5.3 (R Core Team, 2019) with 146 

the packages vegan (Oksanen et al., 2019), ggplot2 (Wickham, 2016) and ggraph 147 

(Pedersen, 2020). 148 
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3. Results 149 

3.1. Amplification, sequencing and bioinformatic pipeline 150 

After DNA isolation, all oomycete samples were amplified successfully whereas nine out of 151 

20 cercozoan samples had to be excluded due to the failure of successful amplification of 152 

duplicates. Further, samples containing less than 1ng/µl DNA were excluded from 153 

subsequent processing, as well as samples with a low sequencing depth (see 2.3), yielding 154 

9 cercozoan samples from March and 4 from May, as well as 13 oomycete samples from 155 

March and 20 from May (Supplementary Table 5). Of cercozoan sequences, 94.4% could 156 

be merged with a mean length of 370±35 bp resulting in 122 OTUs in total. Of oomycete 157 

sequences, 92.6% of derived 300 bp long paired-end sequences could be merged and the 158 

mean fragment length accounted for 285±38 bp, which were finally clustered into 81 OTUs. 159 

3.2. Alpha diversity 160 

Neither species richness nor Shannon-diversity nor evenness of Cercozoa or Oomycota 161 

differed between tree species, ground and canopy or non-arboreal controls, although 162 

variation of canopy samples was much lower than of ground samples in Cercozoa (e.g. 163 

species richness CVGround = 42.3%, CVCanopy = 5.6%). However, Shannon-diversity and 164 

evenness of both protistan groups and species richness of oomycetes were higher in May 165 

than in March, indicating that the tree foliage in May did not restrict protistan distribution 166 

(Figure 1).  167 
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 168 

3.3. Beta diversity 169 

For Cercozoa, β-diversity of air samples did not differ between tree species (permANOVA 170 

R2=0.165, p=0.514), ground vs. canopy stratum (permANOVA R2=0.093, p=0.296) nor 171 

sampling season (permANOVA R2=0.101, p=0.168). However, variation of β-diversity was 172 

much lower in May compared to March, and lower in canopy samples compared to ground 173 

samples (Figure 2A). Oomycete communities differed between sampling seasons 174 

(permANOVA R2=0.170, p=0.001), but not between tree species (permANOVA R2=0.080, 175 

p=0.719) or the strata ground and canopy (permANOVA R2=0.037, p=0.259) (Figure 2B).  176 

Figure 1: Boxplot of alpha diversity indices of cercozoan (A) and oomycete (B) samples. Pairwise 

comparisons of March and May samples and canopy and ground samples, respectively are shown. 

Significance was tested with Wilcoxon Sign test and is indicated by asterisks (ns = p>0.05, * = 

p<0.05, ** = p<0.01, *** = p<0.001, **** = p<0.0001). 
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 177 

 178 

3.4. Taxonomic diversity 179 

Cercozoan OTUs were dominated by the orders Cryomonadida and Glissomonadida, 180 

whereas the least abundant ones were Marimonadida and an unspecified order named 181 

Cercozoa_XX, comprising undescribed cercozoan lineages (Figure 3A). We detected no 182 

OTUs assigned to the plant parasitic group of Endomyxa. Oomycete OTUs were almost 183 

exclusively dominated by Peronosporales (Figure 3B), with only few members of the 184 

Pythiales, and the Albuginales being the least abundant order. 185 

Figure 2: Non-metric multidimensional scaling (NMDS) plot of cercozoan (A) and oomycete (B) 

samples. Canopy and ground samples show a large overlap, while in oomycetes the March and May 

samples show a strong separation.  
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 186 

The number of shared OTUs indicated a temporal variation in air dispersal of both protistan 187 

taxa (Figure 4), and dispersal of cercozoan OTUs varied also spatially between canopy and 188 

ground at the incidence level.  189 

Figure 3: Taxonomic annotation of cercozoan (A) and oomycete (B) OTUs. 

Labels give the detected orders and the ten most abundant species with 

their corresponding genus. 
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 190 

Partitioning of the taxonomy into the two sampling seasons revealed similar patterns (Figure 191 

5), yet, the cercozoan order Euglyphida was exclusively present in March samples, and 192 

oomycete Pythiales showed a higher abundance in March than in May.  193 

Figure 4: Venn diagram giving the number and proportion of shared OTUs 

between March and May samples and Canopy and Ground samples, 

respectively, for Cercozoa (A) and Oomycota (B). 
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 194 

4. Discussion 195 

In a recent study, Jauss et al. (2020) quantified the diversity of Oomycota and Cercozoa in 196 

canopy microhabitats and in litter and soil on the ground of the same floodplain forest. This 197 

allows for a direct comparison of the total diversity of these protists in the forest stand with 198 

the potential diversity of taxa distributed by air during two time points. We detected 122 and 199 

81 OTUs of Cercozoa and Oomycota in air samples, respectively, which corresponds to 22 200 

and 24% of the former reported total diversity of these protistan phyla. The high temporal 201 

variation, also reflected by the number of shared OTUs (Figure 4), suggests protistan 202 

distribution to be not restricted by dispersal-limitation, but rather indicates a continuous 203 

propagule rain of potentially invasive species and their accumulating resting stages 204 

occupying vacant niches. The vertical distribution of protists in air samples was rather 205 

homogeneous and did not differ between tree canopy and ground. In contrast, Jauss et al. 206 

Figure 5: Sankey distribution diagram of cercozoan (A) and 

oomycete (B) orders in March and May samples. Orders 

represented by less than 1% of all reads were removed from the 

visualisation for the sake of clarity. 
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(2020) found clear spatial patterns of oomycetes and cercozoans in tree canopies compared 207 

to the forest floor, suggesting that only part of the wind-borne propagule rain finds suitable 208 

conditions for survival in tree crowns due to habitat filtering. The temporal variation could be 209 

either related to temporal variations in the activity and distribution of protists, or more likely 210 

due to a dependency on the weather during the sampling. In March, the conditions were 211 

less favorable, with comparatively low temperatures and humidity with immediate previous 212 

precipitation events that have to be taken into account (Table 1). The remaining ground 213 

moisture might have prevented the lofting of protists through wind currents, while in May the 214 

atmospheric conditions were more preferable with higher average temperatures and a 215 

higher humidity. The conditions in May probably favored the lofting of protists into the 216 

atmosphere and their long-distance dispersal, leading to a higher protistan diversity and 217 

OTU richness (Figure 1), even though the wind speed was slower compared to March (Table 218 

1). As wind speed was determined to be an important factor governing the species richness 219 

of microorganisms in air samples (Rogerson & Detwiler, 1999; Genitsaris et al., 2014), faster 220 

wind speeds in May probably could have revealed more protists. This suggests not a single 221 

factor, but rather the interplay between atmospheric conditions driving the species richness 222 

and community assembly in the air, while our samples possibly only represent the lower 223 

counts of what can be dispersed by air.  224 

Wind dispersal is an important means for the distribution of microbial plant pathogens, and 225 

oomycetes are no exception (Fawke et al., 2015; Lang-Yona et al., 2018). Yet, 226 

comprehensive assessments of their abundances within the forest air were lacking. The 227 

presence of ~54% of all oomycete OTUs in both sampling events (Figure 4B) indicates a 228 

continuous presence of both peronosporean and pythialean oomycete spores and 229 

consequently a high proportion of potentially physiologically active oomycetes, including 230 

potential pathogens within forest ecosystems. Oomycetes pose a serious threat to forest 231 

health and functioning, it is therefore crucial to better understand their diversity and 232 
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distribution patterns of the total forest ecosystem, including air samples (Derevnina et al., 233 

2016; Ajchler et al., 2017; Jung et al., 2018; Lang-Yona et al., 2018). We detected no OTUs 234 

assigned to the orders Saprolegniales, Lagenidiales or Myzocytiopsidales, even though 235 

Jauss et al. (2020) found them in canopy and ground samples. All three orders are capable 236 

of forming dispersal stages, while their absence in our air samples could be due to a different 237 

timing of their sporulation, as our samples can only represent a snapshot of aerobic diversity.  238 

Three dominant cercozoan orders were detected in air samples, but surprisingly no plant 239 

parasites of the Endomyxa. Testate amoebae from the orders Cryomonadida and 240 

Euglyphida occurred in high numbers. Cryomonadida (Thecofilosea) are filose amoeba with 241 

a robust extracellular organic tests (Adl et al., 2019). OTUs assigned to the Rhogostoma-242 

lineage within the Cryomonadida dominated the samples. Rhogostoma species form resting 243 

stages resistant against desiccation for up to three months, although they form no cysts or 244 

zoospores (Mylnikova & Mylnikov, 2012; Öztoprak et al., 2020). Assulina seminulum, has a 245 

silica test with a remarkable size of 60-90 µm (Lara et al., 2010), and dominated the air 246 

dispersed Euglyphids, demonstrating that protists of this size can be still easily dispersed 247 

by air (Finlay, 2002). Not surprising was the dominance of Glissomonadida, represented by 248 

small flagellates of the families Sandonidae and Allapsidae. Their high abundance is 249 

consistent with observations Ploch et al (2016) and Jauss et al (2020). All these orders are 250 

an integral part of the protist phyllosphere microbiome (Agler et al., 2016; Dumack et al., 251 

2017; Flues et al., 2018). Overall, their presence in the microbiome as well as their high 252 

abundance in air samples indicates canopies and their phyllosphere to be a potential filter 253 

not only for dust and particles (Weber et al., 2014; Chen et al., 2017), but also for 254 

microorganisms and potential plant pathogens. 255 

Conclusion 256 

A significant temporal variation in oomycetes indicates protistan community and, 257 

correspondingly, pathogen assembly to be driven by random factors and neutral processes, 258 
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while spatial differences in the vertical distribution of cercozoans and oomycetes were not 259 

found. Accordingly, wind dispersal alone may well explain the ubiquitous presence of 260 

Cercozoa and Oomycota (and likely of other protistan taxa) in the floodplain forest. Our 261 

results further contribute to the understanding of how protists disperse, and which factors 262 

drive the distribution of plant pathogens within forest ecosystems. 263 
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