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Antibodies are becoming a frontline therapy for SARS-CoV-2, but the risk of viral 
evolutionary escape remains unclear. Here we map how all mutations to SARS-CoV-2’s 
receptor-binding domain (RBD) affect binding by the antibodies in Regeneron’s 
REGN-COV2 cocktail and Eli Lilly’s LY-CoV016. These complete maps uncover a single 
amino-acid mutation that fully escapes the REGN-COV2 cocktail, which consists of two 
antibodies targeting distinct structural epitopes. The maps also identify viral mutations that 
are selected in a persistently infected patient treated with REGN-COV2, as well as in lab 
viral escape selections. Finally, the maps reveal that mutations escaping each individual 
antibody are already present in circulating SARS-CoV-2 strains. Overall, these complete 
escape maps enable immediate interpretation of the consequences of mutations observed 
during viral surveillance. 
 
Antibodies are being developed as therapeutics to combat SARS-CoV-2 (​1​). Antibodies against 
some other viruses can be rendered ineffective by viral mutations that are selected during 
treatment of infected patients (​2​, ​3​) or that spread globally to confer resistance on entire viral 
clades (​4​). Therefore, determining ​a priori​ which SARS-CoV-2 mutations escape key antibodies 
is essential for assessing how mutations observed during viral surveillance impact the efficacy 
of antibody treatments. 

Most leading anti-SARS-CoV-2 antibodies target the viral receptor-binding domain 
(RBD), which mediates binding to ACE2 receptor (​5​, ​6​). We recently developed a deep 
mutational scanning method to map how all mutations to the RBD affect its function and 
recognition by antiviral antibodies (​7​, ​8​). This method involves creating libraries of RBD 
mutants, expressing them on the surface of yeast, and using fluorescence-activated cell sorting 
and deep sequencing to quantify how each mutation affects RBD folding, ACE2 affinity, and 
antibody binding (Fig. S1A). Here we applied this method to map all RBD mutations that 
escape binding by recombinant forms of the two antibodies in Regeneron’s REGN-COV2 
cocktail (REGN10933 and REGN10987) (​9​, ​10​), and Eli Lilly’s LY-CoV016 antibody (also known 
as CB6 or JS016) (​11​) (Fig. S1B). REGN-COV2 was recently granted an emergency use 
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authorization for treatment of COVID-19 (​12​), while LY-CoV016 is currently in phase 2 clinical 
trials (​13​).  

We completely mapped RBD mutations that escape binding by the three individual 
antibodies as well as the REGN10933 + REGN10987 cocktail (Fig. 1A,B and zoomable maps at 
https://jbloomlab.github.io/SARS-CoV-2-RBD_MAP_clinical_Abs/​). REGN10933 and 
REGN10987 are escaped by largely non-overlapping sets of mutations in the RBD’s 
receptor-binding motif (Fig. 1A), consistent with structural work showing that these antibodies 
target distinct epitopes in this motif (​9​). But surprisingly, one mutation (E406W) strongly 
escapes the cocktail of both antibodies (Fig. 1A). The escape map for LY-CoV016 also reveals 
escape mutations at a number of different sites in the RBD (Fig. 1B). Although some escape 
mutations impair the RBD’s ability to bind ACE2 or be expressed in properly folded form, many 
come at little or no cost to these functional properties (colors in Fig. 1A,B and Fig. S2)—an 
unfortunate consequence of the mutational tolerance of the RBD (​7​).  

To validate the antigenic effects of key mutations, we performed neutralization assays 
using spike-pseudotyped lentiviral particles, and found concordance between the escape maps 
and neutralization assays (Fig. 1C and Fig. S3). As expected from the maps for the REGN-COV2 
antibodies, a mutation at site 486 escaped neutralization only by REGN10933, whereas 
mutations at sites 439 and 444 escaped neutralization only by REGN10987—and so none of 
these mutations escaped the cocktail. But E406W escaped both individual REGN-COV2 
antibodies, and thus also strongly escaped the cocktail. The identification of E406W as a cocktail 
escape mutation demonstrates how complete maps provide information beyond other standard 
approaches: structural analyses and viral-escape selections led Regeneron to posit that no single 
amino-acid mutation could escape both antibodies in the cocktail (​9​, ​10​), but our complete maps 
show this is not true. 

To explore how well our escape maps explain the evolution of virus under antibody 
selection, we first examined data from Regeneron’s viral escape-selection experiments in which 
spike-expressing VSV was grown in cell culture in the presence of REGN10933, REGN10987, or 
the cocktail (​10​). That work identified five escape mutations from REGN10933, two from 
REGN10987, and none from the cocktail (Fig. 2A). All five cell-culture-selected mutations were 
prominent among the single-nucleotide accessible mutations in our escape maps (Fig. 2B), 
demonstrating concordance between the escape maps and viral evolution under antibody 
pressure in cell culture. Notably, E406W is not accessible by a single-nucleotide change, which 
may explain why it was not identified by the Regeneron cocktail selections despite being 
relatively well tolerated for RBD folding and ACE2 affinity. 

To determine if the escape maps could also inform analysis of viral evolution in infected 
humans, we examined deep sequencing data from a persistently infected immunocompromised 
patient who was treated with REGN-COV2 at day 145 after diagnosis with COVID-19 (​14​). The 
late timing of treatment allowed ample time for the patient’s viral population to accumulate 
genetic diversity. Administration of REGN-COV2 was followed by rapid changes in the 
frequencies of five amino-acid mutations in the RBD (Fig. 2C and Fig. S4). Our escape maps 
showed that three of these mutations escaped REGN10933, and one escaped REGN10987 (Fig. 
2B). Notably, the mutations did not all sweep to fixation after antibody treatment: instead, there 
were competing rises and falls (Fig. 2C). This pattern has been observed in the adaptive 
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within-host evolution of other viruses (​15​, ​16​), and occurs because of genetic hitchhiking and 
competition among viral lineages. Both these forces are apparent in the persistently infected 
patient (Fig. 2C and Fig S4C): E484A (not an escape mutation in our maps) hitchhikes with 
F486I (which escapes REGN10933) after treatment, and the viral lineage carrying N440D and 
Q493K (which escape REGN10987 and REGN10933, respectively) competes first with the 
REGN10933 escape-mutant Y489H, and then with the E484A / F486I lineage and Q493K-alone 
lineage. 

Importantly, three of the four escape mutations in the REGN-COV2-treated patient were 
not identified in Regeneron’s viral cell-culture selections (Fig. 2B),  illustrating an advantage of 
complete maps. Viral selections are “incomplete” in the sense that they only identify whatever 
mutations are stochastically selected in that particular cell-culture experiment. In contrast, 
complete maps annotate all mutations, which could include mutations that arise for reasons 
unrelated to treatment but incidentally affect antibody binding. 

Of course, viral evolution is shaped by functional constraints as well as pressure to 
evade antibodies. The mutations selected in cell culture and the patient consistently met the 
following criteria: they escaped antibody binding, were accessible via a single-nucleotide 
change, and imposed little or no cost on ACE2 affinity (as measured by prior deep mutational 
scanning (​7​); Fig. 2D, Fig. S5). Therefore, complete maps of how mutations affect key 
biochemical phenotypes of the RBD (e.g., ACE affinity and antibody binding) can be used to 
assess likely paths of viral evolution. A caveat is that over longer evolutionary timeframes, the 
space of tolerated mutations could shift due to epistatic interactions, as has been previously 
observed in viral immune and drug escape (​17​–​19​).  

The complete maps enable us to assess what escape mutations are already present 
among circulating SARS-CoV-2. We examined all human-derived SARS-CoV-2 sequences 
available as of November 12, 2020, and found a substantial number of RBD mutations that 
escaped one or more of the antibodies (Fig. 3). However, the only escape mutations present in 
>0.1% of sequences were the REGN10933 escape-mutant Y453F (0.2% of sequences) (​10​) and the 
REGN10987 escape-mutant N439K (1.2% of sequences, has an effect on neutralization as shown 
in both Fig. 1C and (​20​)). Y453F is associated with independent mink-associated outbreaks in 
the Netherlands and Denmark (​22​, ​23​); notably the mink sequences themselves sometimes also 
contain other escape mutations such as F486L (​21​). N439K is prevalent in Europe, where it has 
comprised a large percentage of sequences from regions including Scotland and Ireland (​20​, ​23​). 

To determine if the escape maps could be rationalized from the structural interfaces of 
the antibodies and RBD, we projected the maps onto crystal or cryo-EM structures (Fig. 4A; 
interactive versions at ​https://jbloomlab.github.io/SARS-CoV-2-RBD_MAP_clinical_Abs/​). As 
might be expected, escape mutations generally occur in the antibody-RBD interface. However, 
structures alone are insufficient to predict which mutations mediate escape. For example, 
LY-CoV016 uses both its heavy and light chains to bind a wide epitope overlapping the 
ACE2-binding surface, but escape is dominated by mutations at RBD residues that contact the 
heavy chain CDRs (Figs. 4A, S6E-G). In contrast, escape from REGN10933 and REGN10987 
mostly occurs at RBD residues that pack at the antibody heavy/light-chain interface (Fig. 4A, 
S6A-D). The E406W mutation that escapes the REGN-COV2 cocktail occurs at a residue not in 
contact with either antibody (Fig. 4A). So overall, mutations at RBD residues that contact 
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antibody do not always mediate escape, and several prominent escape mutations occur at 
residues not in contact with antibody (Fig. 4B, S6D,G). 

Overall, we have completely mapped mutations that escape some of the leading 
antibodies used to treat COVID-19. These maps demonstrate that prior characterization of 
escape mutations was incomplete: for instance, overlooking a single amino-acid mutation that 
escapes both antibodies in the REGN-COV2 cocktail, and failing to identify most mutations that 
arose in a persistently infected patient treated with the cocktail. Of course, our maps still do not 
answer the most pressing question: will SARS-CoV-2 evolve widespread resistance to these 
antibodies? While the presence of escape mutations in the patient treated with REGN-COV2 is 
ominous, other viruses that typically cause self-limiting acute infections undergo extensive 
within-patient evolution only in long infections of immunocompromised patients (​15​) and not 
in the broader population (​24​). However, it is concerning that so many escape mutations impose 
little cost on RBD folding or receptor affinity, and that some of these mutations are already 
present at low levels among circulating viruses. Ultimately, it will be necessary to wait and see 
what mutations spread as SARS-CoV-2 circulates in the human population. Our work will help 
with the “seeing,” by enabling immediate interpretation of the effects of the mutations 
catalogued by viral genomic surveillance. 
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Figure 1. Complete maps of escape mutations from the REGN-COV2 antibodies and 
Ly-CoV016.​ (A) Maps for antibodies in REGN-COV2. Line plots at left show total escape at each 
site in the RBD. Sites of strong escape (purple underlines) are shown in logo plots at right. The 
height of each letter is proportional to how strongly that amino-acid mutation mediates escape, 
with a per-mutation “escape fraction” of 1 corresponding to complete escape. The y-axis scale is 
different for each row, so for instance E406W escapes all REGN antibodies but it is most visible 
for the cocktail as it is swamped out by other sites of escape for the individual antibodies. See 
https://jbloomlab.github.io/SARS-CoV-2-RBD_MAP_clinical_Abs/​ for zoomable versions. 
Letters are colored by how mutations affect the RBD’s affinity for ACE2 (​7​), with yellow 
indicating poor affinity and brown indicating good affinity; see Fig. S2 for maps colored by how 
mutations affect expression of folded RBD. (B) Map for LY-CoV016. (C) Validation of key 
mutations in neutralization assays using pseudotyped lentiviral particles. Each point indicates 
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the fold-increase in inhibitory concentration 50% (IC50) for a mutation relative to the unmutated 
“wildtype” (WT) Wuhan-Hu-1 RBD. The dotted blue line indicates wildtype-like neutralization 
sensitivity, and the dashed gray lines indicate upper and lower bounds on detectable fold 
changes. Point shapes / colors indicate if escape was expected at that site from the maps. Full 
neutralization curves are in Fig. S3. 
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Figure 2. Escape maps are consistent with viral mutations selected in cell culture and a 
persistently infected patient. ​(A) Viral escape mutations selected by Regeneron with 
spike-pseudotyped VSV in cell culture in the presence of antibody (​10​). (B) Escape maps like 
those in Fig. 1A but showing only mutations accessible by single-nucleotide changes to the 
Wuhan-Hu-1 sequence, with non-gray colors indicating mutations in cell culture (red), in the 
infected patient (blue), or both (purple). Fig. S5 shows these maps colored by how mutations 
affect ACE2 affinity or RBD expression. (C) Dynamics of RBD mutations in a patient treated 
with REGN-COV2 at day 145 of his infection (black dashed vertical line). E484A rose in 
frequency in linkage with F486I, but since E484A is not an escape mutation in our maps it is not 
shown in other panels. See also Fig. S4. (D) The escape mutations that arise in cell culture and 
the infected patient are single-nucleotide accessible and escape antibody binding without 
imposing a large cost on ACE2 affinity. Each point is a mutation with shape / color indicating 
whether it is accessible and selected during viral growth. Points further to the right on the x-axis 
indicate stronger escape from antibody binding; points further up on the y-axis indicate higher 
ACE2 affinity.  
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Figure 3. Antibody escape mutations in circulating SARS-CoV-2. ​For each antibody or 
antibody combination, the escape score for each mutation is plotted versus its frequency among 
the 180,555 high-quality human-derived SARS-CoV-2 sequences on GISAID (​25​) as of 
November 12, 2020. Escape mutations with notable GISAID frequencies are labeled. 
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Figure 4. Structural context of escape mutations. ​(A) Escape maps projected on 
antibody-bound RBD structures. (REGN10933 and REGN10987: PDB 6XDG (​9​); LY-CoV016: 
PDB 7C01 (​11​)). Antibody heavy- and light-chain variable domains are shown as blue cartoons, 
and the RBD surface is colored to indicate how strongly mutations at that site mediate escape 
(white indicates no escape, red indicates strongest escape site for that antibody / cocktail). Sites 
where no mutations are functionally tolerated are colored gray. (B) For each antibody, sites 
were classified as direct antibody contacts (non-hydrogen atoms within 4Å of antibody), 
antibody-proximal (4-8Å), or antibody-distal (>8Å). Each point indicates a site, classified as 
escape (red) or non-escape (black) (dashed gray line, see Methods). Red and black numbers 
indicate how many sites in each category are escape or non-escape, respectively. Interactive 
visualizations are at ​https://jbloomlab.github.io/SARS-CoV-2-RBD_MAP_clinical_Abs/​ and 
additional static views are in Fig. S6. 
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Supplementary Materials 
 
Materials and Methods 
Data and Code Availability 

● Complete computational pipeline for escape-mapping data analysis: 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs  

● Markdown summaries of the escape-mapping data analysis steps: 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/s
ummary/summary.md  

● Raw data tables of mutant escape fractions: 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/s
upp_data/REGN_and_LY-CoV016_raw_data.csv  

● Raw Illumina sequencing for the escape mapping: NCBI SRA, BioProject: PRJNA639956, 
BioSample SAMN16850904 

● Processed Illumina sequencing counts for the escape mapping: 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/tree/main/results/co
unts 

● Complete computational pipeline for analysis of within-patient viral evolution: 
https://github.com/jbloomlab/SARS-CoV-2_chronic-infection-seq  

● Raw Illumina sequencing for the within-patient viral evolution: NCBI SRA, BioProject 
PRJNA681234.  

 
Antibodies 
Publicly available antibody variable domain sequences were acquired for REGN10933, 
REGN10987, and LY-CoV016 (also known as JS016, LY3832479, or CB6). Specifically, 
REGN10933 and REGN10987 variable domain sequences were reported by Hansen et al. (​9​) in 
supplemental Data S1. LY-CoV016 (CB6) sequence was reported by Shi et al. (​11​), Genbank 
Accessions MT470196 and MT470197. 

Recombinant antibodies were cloned and produced by Genscript. Specifically, antibody 
variable domains were cloned with the human IgG1 heavy chain and human IgK (REGN10933 
and LY-CoV016) or human IgL2 (REGN10987) constant regions into pcDNA3.4 vector, and 
transfected into HD 293F cells maintained at 37°C with 8% CO​2​ on an orbital shaker. Cell 
culture supernatants were collected, and affinity purified over RoboColumn Eshmuno A 0.6mL 
columns. 
 
Antibody-escape mapping 
Antibody selection experiments were performed in biological duplicate using a deep mutational 
scanning (mutational antigenic profiling) approach (​8​) using previously described duplicate 
mutant RBD libraries (​7​). These libraries contain virtually all possible amino-acid mutations to 
the SARS-CoV-2 RBD within a yeast-surface display vector, with RBD variants linked to unique 
16-nucleotide barcode sequences to facilitate downstream sequences. As described in (​8​), these 
libraries were sorted to eliminate variants that lose ACE2 binding prior to mapping the 
antibody-escape variants. 
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Antibody labeling and selection was performed essentially as described in (​8​). 
Specifically, 9 OD aliquots of RBD libraries were thawed and grown overnight at 30°C 275 rpm 
in 45mL SD-CAA (6.7 g/L Yeast Nitrogen Base, 5.0 g/L Casamino acids, 1.065 g/L MES, and 2% 
w/v dextrose). Libraries were backdiluted to an OD of 0.67 in SG-CAA+0.1% dextrose (SD-CAA 
with 2% w/v galactose and 0.1% w/v dextrose in place of 2% dextrose), and incubated for 16-18 
hours at room temperature with mild agitation to induce RBD surface expression. For each 
antibody selection, 20 OD units of induced cells were washed twice with PBS-BSA (0.2 mg/mL), 
and incubated in 4mL PBS-BSA with 400 ng/mL antibody (monoclonal REGN10933, 
REGN10987, LY-CoV016, or REGN10933+REGN10987 pooled at 1:1 w/w ratio at total 400 
ng/mL) for 1 h at room temperature with gentle agitation. Labeled cells were washed with 
ice-cold PBS-BSA followed by secondary labeling for 1 h at 4°C in 2.5 mL 1:200 PE-conjugated 
goat anti-human-IgG (Jackson ImmunoResearch 109-115-098) to label for bound antibody, and 
1:100 FITC-conjugated anti-Myc (Immunology Consultants Lab, CYMC-45F) to label for RBD 
surface expression. Labeled cells were washed twice with PBS-BSA and resuspended in 2.5mL 
PBS. Yeast expressing the unmutated SARS-CoV-2 RBD were prepared in parallel to library 
samples, labeled at the same 400 ng/mL and 100x reduced 4 ng/mL antibody concentrations. 

Antibody-escape cells were selected via fluorescence-activated cell sorting (FACS) on a 
BD FACSAria II. FACS selection gates were drawn to capture 95% of yeast expressing 
unmutated SARS-CoV-2 RBD labeled at 4 ng/mL antibody (100x reduced antibody 
concentration relative to library samples, see Figure S1B,C). For each library sample, 
approximately 6-8 million RBD+ cells were processed on the cytometer, with between 5.9e5 and 
1.9e6 antibody-escaped cells collected per sample into SD-CAA supplemented with 1% w/v BSA 
(see selection percentages in Figure S1C). Antibody-escaped cells were grown overnight in 
1.5mL SD-CAA + 100 U/mL penicillin + 100 µg/mL streptomycin at 30°C 275 rpm. 

Plasmid samples were prepared from up to 7.5 OD units of overnight cultures of 
antibody-escaped cells, and 30 OD units of pre-selection yeast populations (Zymoprep Yeast 
Plasmid Miniprep II) per manufacturer instructions, with the addition of a -80°C freeze-thaw 
step prior to cell lysis. The 16-nucleotide barcode sequences identifying each RBD variant were 
amplified by PCR and prepared for Illumina sequencing exactly as described by Starr et al. (​7​). 
Barcodes were sequenced via 50 bp single-end reads on an Illumina HiSeq 3500, targeting at 
least 3x as many sequencing reads as FACS-selected cells, and pre-sort reference populations of 
at least 2.5e7 reads. 
 
Analysis of mutant library deep sequencing and computation of per-mutant escape fractions 
Escape fractions were computed as described in (​8​), with minor modifications as noted below. 
Specifically, we used the ​dms_variants ​ package (​https://jbloomlab.github.io/dms_variants/​, 
version 0.8.2) to process Illumina sequences into counts of each barcoded RBD variant in each 
pre-sort and antibody-escape population using the barcode/RBD look-up table from (​7​). 
Markdown renderings of these steps in the computational analysis are at 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/summar
y/aggregate_variant_counts.md​ and 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/summar
y/counts_to_cells_ratio.md​.  
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For each antibody selection, we then computed the “escape fraction” for each barcoded 
variant using the deep sequencing counts for each variant in the original and antibody-escape 
populations and the total fraction of the library that escaped antibody binding via the formula 
provided in Greaney et al (​8​). These escape fractions represent the estimated fraction of cells 
expressing that specific variant that fall in the antibody escape bin, so a value of 0 means the 
variant is always bound by antibody and a value of 1 means that it always escapes antibody 
binding. We then applied a computational filter to remove variants with low sequencing counts 
or highly deleterious mutations that might cause antibody escape simply by leading to poor 
expression of properly folded RBD on the yeast cell surface. Specifically, we ignored all variants 
with pre-selection sequencing counts that were lower than the counts for the 99th percentile of 
the stop-codon containing variants--the logic here being that stop codon variants are largely 
purged by the earlier sorts for RBD expressing and ACE2-binding variants and so any residual 
presence provides an indication of low-count “noise.” Next, we removed any variants that had 
poor RBD expression or ACE2 binding, or contained mutations that individually cause poor 
RBD expression and ACE2 binding, the logic being that this would eliminate misfolded or 
non-expressing RBDs. Specifically, we removed variants that had (or contained mutations with) 
ACE2 binding scores < -2.35 or expression scores < -1, using the variant- and mutation-level 
deep mutational scanning scores from Starr et al (​8​).  Note that these filtering criteria are slightly 
more stringent than those used in Greaney et al (​8​). A markdown rendering of the computation 
of the variant-level escape fractions and the variant filtering is at 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/summar
y/counts_to_scores.md​. 

We next deconvolved variant-level escape scores into escape fraction estimates for single 
mutations using global epistasis models (​26​) implemented in the ​dms_variants ​ package, as 
detailed at (​https://jbloomlab.github.io/dms_variants/dms_variants.globalepistasis.html​). In this 
fitting, we excluded variants that contained mutations that were not seen as either single 
mutants or in at least two multiple-mutant variants. We then computed the estimated effect of 
each mutation as the impact of that mutation on the “observed phenotype” scale transformation 
of its “latent phenotype” as computed using the global epistasis models, and applied a floor of 
zero and a ceiling of 1 to these escape fractions. All of the above analysis steps were performed 
separately for each of the duplicate mutant libraries. We then only retained those mutations that 
passed all of the above filtering and were measured in both libraries or had at least two-single 
mutant measurements in one library. The reported scores throughout the paper are the average 
across the libraries; these scores are also in Table S1. Correlations in final single-mutant escape 
scores are shown in Figure S1D. A markdown rendering of the computation that computes 
these mutation-level escape fractions is at 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/summar
y/scores_to_frac_escape.md​.  

For plotting and analyses that required identifying RBD sites of “strong escape” (e.g., 
choosing which sites to show in logo plots in Fig 1A,B or label in Figure 4B), we considered a 
site to mediate strong escape if the total escape (sum of mutation-level escape fractions) for that 
site exceeded the median across sites by >5 fold, and was at least 5% of the maximum for any 
site. A markdown rendering of the identification of these sites of strong escape is at 
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https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/summar
y/call_strong_escape_sites.md​. 
 
Pseudotyped lentiviral particle neutralization assays 
We performed neutralization assays using lentiviral particles carrying the luciferase gene and 
pseudotyped with the SARS-CoV-2 spike essentially as described in Crawford et al (​27​) with the 
following two modifications: the Wuhan-Hu-1 spike sequence had a deletion of the final 21 
amino acids in the cytoplasmic tail (which increases viral titers (​28​)), and carried the D614G 
mutation (which further increases viral titers and makes the sequence better match currently 
circulating viruses (​8​)). The spike plasmid used for these experiments, 
HDM-SARS2-spike-del21-D614G, is available on AddGene as plasmid #158762 
(​https://www.addgene.org/158762/​).  
 
Deep-sequencing analysis of within-host viral genetic diversity in persistently infected patient 
The persistently infected patient and his clinical time course are described in detail in (​14​). That 
paper also describes the Illumina deep sequencing of that patient at nine timepoints. All 
sequencing is from nasal swab samples. The deep sequencing data have been deposited on the 
Sequence Read Archive under BioProject accession PRJNA681234. 

Intra-patient single-nucleotide polymorphisms (SNPs) were identified with an 
automated variant-calling pipeline 
(​https://github.com/jbloomlab/SARS-CoV-2_chronic-infection-seq​) created with Snakemake (​29​). 
Briefly, paired-end reads were filtered, and sequencing adaptors were removed with fastp (​30​). 
Reads from SARS-CoV-2 were enriched by kmer matching to the Wuhan-Hu-1 reference 
genome (NC_045512.2) using BBDuk 
(​https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/​). Following filtering, reads were 
aligned to the Wuhan-Hu-1 reference with BWA-MEM (​31​). Variants were identified by 
counting the coverage of each base at every position in the reference genome using a custom 
Python script. These variants were filtered based on a minimum allele frequency of >0.01, a 
PHRED quality threshold of >25, and coverage of more than 100 reads.  The coverage pattern 
over the Spike gene was plotted by averaging the number of reads over every base meeting the 
minimum PHRED score of 25 in 10 bp bins (Fig. S4A).  

To visualize the change in allele frequencies over time (Fig. 2C & S4B), we identified 
sites in the spike gene with nonsynonymous mutations that rose above 10% frequency at any 
sampled timepoint (note that we ignore any mutations relative to Wuhan-Hu-1 that are fixed at 
all timepoints as these are not intra-host variants). Using this list of high-confidence 
polymorphisms, we selected any other nonsynonymous mutations annotated at those sites, 
regardless of frequency, to get a full picture of allelic variation in putatively selected residues. 
For the analysis of just the RBD mutations between days 143 and 152 (Fig. 2C), we excluded any 
mutations that were either fixed or absent over the timeframe of interest (T478K, S494P, and 
N501Y).  

To phase the variant alleles in the RBD (Fig. S4C) over the last three timepoints, we used 
a custom Python script that counted the co-occurrence of nonsynonymous variants in 
read-pairs. To maximize the number of informative reads for each timepoint, we only required 
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that reads cover segregating sites in each timepoint based on analysis of the mutation 
frequencies in Fig. 2C. In other words, for the day 143 sample, we required reads to cover sites 
484, 486, and 489, but not sites 440 or 493. For the day 146 sample, only one haplotype was 
possible (N440D/Q493K); thus, its frequency was assumed to be 100%. Finally, for the day 152 
sample, we required reads to cover sites 484, 486, 489, and 493, but not site 440. Of these 
informative reads, those with SAM flags indicating quality failure or secondary mapping were 
excluded. To estimate the frequency of the identified haplotypes, we divided each haplotype’s 
count by the total number of unique haplotypes at each timepoint. Despite the lower number of 
supporting reads for each haplotype than for individual variants (527 reads for Day 143; 732 
reads for Day 146; 1091 reads for Day 152), each haplotype’s frequencies were consistent with 
the frequencies of the individual variants of which they were comprised. Finally, we filtered out 
any haplotypes present at a frequency of less than 0.01. 
 
Analysis of mutations in circulating human SARS-CoV-2 strains 
For the analysis in Fig. 3, all 196,061 spike sequences on GISAID (​25​) as of 12-November-2020 
were downloaded and aligned via ​maff ​t (​32​). Sequences from non-human origins and 
sequences containing gap or ambiguous characters were removed, as were sequences with 
extremely high numbers of RBD mutations relative to other sequences, leaving 180,555 retained 
sequences. All RBD amino-acid mutations were enumerated compared to the reference 
Wuhan-Hu-1 SARS-CoV-2 RBD sequence (Genbank MN908947, residues N331-T531). To 
explore the prevalence of mutations such as Y453F and N439K with finer-scale geographic 
resolution, we used the COVID-19 CG resource (covidcg.org) (​23​). We acknowledge all 
contributors to the GISAID EpiCoV database for their sharing of sequence data (all contributors 
listed at: 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/data/gisaid_hco
v-19_acknowledgement_table_2020_11_12.pdf​). 
 
Data visualization 
The static logo plots in the paper were created using ​dmslogo 
(​https://jbloomlab.github.io/dmslogo/​) version 0.5.0; a markdown rendering of the code that 
creates these logo plots is at 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/summar
y/escape_profiles.md​. 

The interactive visualizations of the escape maps and their projections on the 
RBD-antibody structures available at 
https://jbloomlab.github.io/SARS-CoV-2-RBD_MAP_clinical_Abs/​ were created using 
dms-view ​ (​https://dms-view.github.io/docs/​) (​33​). 

The static structural views in the paper were rendered in PyMOL using antibody-bound 
RBD structures PDB 6XDG (​9​) and PDB 7C01 (​11​). Structural distances were computed using 
the bio3d package in R (​34​). 
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Figure S1. Deep mutational scanning method to map antibody-escape mutations.​ (A) 
Experimental approach to map antibody-escape mutations (​8​). SARS-CoV-2 RBD is expressed 
on the yeast cell surface (​7​), where fluorescent labeling detects RBD surface expression and 
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antibody binding. A library of the SARS-CoV-2 RBD variants, previously sorted to purge 
non-functional variants (​8​), is labeled with antibody. Individual yeast cells expressing 
antibody-escape RBD variants are isolated via fluorescence-activated cell sorting (FACS). Deep 
sequencing quantifies variant frequencies before and after FACS, enabling the calculation of an 
“escape fraction” for each RBD mutation, which describes the fraction of cells containing a 
mutation that fall into the antibody-escape FACS bin. Escape fractions are illustrated in 
logoplots, where the height of a letter indicates the escape fraction for an individual mutation, 
and the sum of letter heights at a position indicates the total escape at a site. (B) Representative 
FACS gates used to select single yeast cells (nested SSC/FSC, SSC-W/SSC-H, and FSC-W/FSC-H 
gates) that express RBD on the cell surface (FITC/FSC). (C) Among RBD+ cells, antibody-escape 
bins were drawn on antibody-binding versus RBD expression scatterplots, with gate stringency 
determined from unmutated RBD controls. Antibody-escape sort gates were drawn to capture 
~95% of cells expressing unmutated SARS-CoV-2 RBD when labeled at 0.01x the concentration 
of antibody used to label mutant libraries. The percentage of cells that fall in the 
antibody-escape bin in controls and independent library replicates are shown. (D) Correlations 
in deep mutational scanning scores between independent library duplicates. For each antibody, 
the escape fraction of individual mutations (top) and total escape per site (bottom) is shown for 
two independently generated and assayed mutant libraries. R, Pearson correlation coefficient. 
N, number of mutations or sites. Virtually all of the 3,819 possible RBD mutations are present in 
our libraries, but mutations that completely disrupt folding or binding are purged prior to 
antibody selections (see Methods). 
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Figure S2. Complete escape maps colored by effects of mutations on RBD expression​. The 
escape maps shown here are identical to those in Fig. 1A,B except that the letters are colored by 
how mutations affect RBD expression (​7​) rather than how they affect the RBD’s affinity for 
ACE2. 
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Figure S3. Pseudovirus neutralization curves validating the escape mutant mapping. ​(A) We 
first performed neutralization assays against the REGN-COV2 antibodies / cocktail using the 
unmutated SARS-CoV-2 spike to identify an appropriate dilution range to capture the 
inhibitory concentration 50% (IC50). (B) We then performed neutralization assays using the 
REGN-COV2 antibodies / cocktail with the indicated spike mutants, using a dilution range that 
spanned higher antibody concentration ranges to maximize the resolution on changes in IC50 
for escape mutations. The changes in IC50 caused by the mutations as determined from these 
curves are what is shown in Fig. 1C. For the REGN10933 + REGN10987 cocktail, the 
concentration on the x-axis represents the total concentration of antibody, with the two 
components at an equimolar ratio. (C) Neutralization curves for LY-CoV016 against some of its 
key escape mutations. 
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Figure S4. Spike mutations in a persistently infected patient treated with REGN-COV2 as 
determined by Illumina deep sequencing. (A) ​Coverage at each site in spike for each 
timepoint, calculated as the average number of aligned reads with a Q-score ≥25 in 10 bp bins. 
The x-axis shows the nt position in the genome coordinates of Wuhan-Hu-1 (NC_045512.2). The 
bars underneath show spike and its RBD domain. Coverage >500 is clipped on the y-axis. (B) 
Dynamics of amino-acid mutations in spike across all timepoints. Yellow vertical lines on the 
x-axis indicate sampling times, and the dashed black line indicates administration of 
REGN-COV2 (145 days). Fig. 1C is a subset of this plot that just shows RBD mutations in the 
timepoint immediately before and then after REGN-COV2 administration; those mutations are 
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indicated in blue while all others are in orange. (C) Frequencies of different haplotypes in the 
RBD at the last three timepoints show competition among viral lineages. Note that it is possible 
that rare haplotypes (such as F468I / E484A / Q493K haplotype) represent library preparation 
artifacts that arise due to PCR strand exchange between molecules from more common 
haplotypes (e.g., F486I / E484A haplotype and Q493K haplotype). 
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Figure S5​. ​Maps of single-nucleotide accessible escape mutations from REGN10933 and 
REGN10987 colored by how mutations affect the RBD’s affinity for ACE2 or expression of 
folded protein. ​These plots show the same mutations as in Figure 2B (only those accessible by 
single-nucleotide changes to Wuhan-Hu-1), but colored according to the schemes in Fig 1A and 
Fig S2. 
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Figure S6. Structural mechanisms of escape.​ (A, C, E) Mapping of escape to antibody-bound 
RBD structures (PDB 6XDG (​9​), 7C01 (​11​)), with antibodies as blue surface and RBD colored by 
escape from white to red (see scale bar, upper right). RBD sites of escape are shown as sidechain 
sticks with spheres at alpha carbons. Zoomed views of sites of interest are presented to the right 
of each antibody structure. (B) F486, the top escape site for REGN10933, inserts into a large 
hydrophobic pocket at the antibody surface. (D) Residues K444, V445, and G446, the top sites of 
escape for REGN10987, are part of a loop that packs tightly with REGN10987. G447, a 
prominent site of escape that is not a direct contact (and mutant side chains point away from the 
antibody surface), is at the base of this loop and occupies a glycine-specific phi/psi 
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conformational state. Mutations to G447 likely disturb the precise conformation of the 444-446 
loop, thereby escaping REGN10987 binding. (F) K417, the top site of escape for LY-CoV016, 
forms polar contacts with antibody residues Y52​HC​ and D104​HC​. (G) I472, which is more than 8Å 
from the antibody surface, packs with the C480:C488 disulfide in the interior of the 
ACE2-binding ridge. Mutations to this residue may impact the conformation of this loop, which 
carries direct contact sites that escape antibody binding (shown as spheres), including residues 
Y473, A475, N487, and Y489. 
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Table S1: ​The mutation-level “escape-fraction” measured for each amino-acid mutation against 
each antibody. This CSV table is available at 
https://github.com/jbloomlab/SARS-CoV-2-RBD_MAP_clinical_Abs/blob/main/results/supp_dat
a/REGN_and_LY-CoV016_raw_data.csv​.  
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