
Phase separation of chromatin brush driven by enzymatic reaction
dynamics of histone posttranslational modifications†
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The nuclei of undifferentiated cells show uniform decompacted chromatin while during development
nuclei decrease in size and foci of condensed chromatin appear, reminiscent of phase separation.
This study is motivated by recent experiments that suggest that the unbinding of enzymes that
chemically modify (acetylate) histone tails causes decompaction of condensed chromatin. Here we
take into account the enzymatic reactions of histone modifications to predict the phase separation
of chromatin in a model system, the chromatin brush, which mimics chromatin at the proximity of
a nuclear membrane. The model contains ‘activators’ and ‘silencers’, which change the state of the
nucleosomes to (transcriptionally) active or inactive via the Michaelis-Menten kinetics. Our theory
predicts that the chromatin brush will phase separate when the brush height is reduced below a
threshold height. The phase separation is driven by an anti-correlation: Activators change the state
of nucleosomes to the active state suppressing the binding of silencers to these nucleosomes and vice
versa.

1 Introduction
In eukaryotic cells, DNA is packed into the nucleus in the form
of chromatin, a complex of DNA and histone proteins1. The
repeating unit of chromatin is the nucleosome, where DNA is
wound around an octamer of histone proteins by 1.65 turns2.
The transcription dynamics of a gene depends on the local con-
centration of nucleosomes3. In differentiated cells, heterochro-
matin regions, in which the local concentration of nucleosomes
is relatively large, coexist with euchromatin regions, in which the
local concentration of nucleosomes is relatively small. Genetic
expression is suppressed in heterochromatin regions and is active
in euchromatin regions. In many cases, heterochromatin regions
are located near the periphery of the nucleus and euchromatin
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regions are located at the center of the nucleus. This canonical
structure is stabilized by proteins that tether chromatin to nuclear
membranes, such as lamin A/C and lamin B receptor (LBR)4.

In contrast to differentiated cells, the local concentration of nu-
cleosomes in undifferentiated cells is relatively uniform5–7. The
size of the nucleus decreases upon development and foci of het-
erochromatin are produced after a couple of cell divisions6. The
transition of the chromatin structure during development is anal-
ogous to phase separation. It is therefore of interest to theo-
retically predict the physical mechanism involved in the symme-
try breaking during the development. Theoretical efforts have
been made to predict the phase separation of chromatin8–21. In
many cases, chromatin is theoretically treated as copolymers of
euchromatin- and heterochromatin-like blocks8–16. These mod-
els cannot therefore be used to predict the mechanism of symme-
try breaking in chromatin, since the broken symmetry is already
tailored into its molecular structure ∗.

We have developed a theory of the phase separation of DNA
brushes, in which DNA is end-grafted to a surface to form a poly-
mer brush and is allowed to form a chromatin-like complex17,18.
We treat DNA as a polymer composed of identical segments. The
brush structure is a simplified representation of chromatin near
the nuclear membrane. Nucleosomes are assembled at each seg-

∗ Indeed, CpG islands of a fraction of DNA are methylated in an early stage of develop-
ment and the symmetry is already broken at this point 22. However, for simplicity, we
neglect it in the first step, assuming that DNA methylation does not play significant
role in driving the phase separation of chromatin.
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ment at a constant rate and are disassembled when they collide
with elongating RNA polymerases23. The brush is collapsed by
the attractive interactions between nucleosomes when the nucleo-
some occupancy is large and swollen by the repulsive interactions
between vacant DNA segments when the nucleosome occupancy
is small. Our theory predicts that nucleosome disassembly as a re-
sult of transcription drives the phase separation of the chromatin
brush and predicts the canonical structure of chromatin in the
nucleus: Collapsed chains with large nucleosome occupany lie at
the surface and swollen chains with small nuclear occupancy oc-
cupy the space above the collapsed chains. An extension of this
theory predicts that the Poisson ratio of chromatin gels can be
negative19. This prediction may correspond to the case of stem
cells which feature negative Poisson ratios24.

The tails of histone proteins are chemically modified by en-
zymes, such as histone acetyltransferases (HAT) and histone
methyltransferases (HMT). Chemical states of the histone tails
(so-called histone marks) correlate with the dynamics of gene ex-
pression. Histone tails are acetylated (at H3K27) before transcrip-
tion is initiated, implying a causal relationship between gene acti-
vation and the tail acetylation25,26. Nucleosomes in euchromatic
regions tend to have histone marks that indicate active genes
and nucleosomes in heterochromatic regions tend to have histone
marks that indicate inactive genes. Proteins bind to nucleosomes
depending on the chemical state of histone tails. Recent experi-
ments have shown that HP1 proteins that bind to nucleosomes in
heterochromatin show phase separation and form macromolecu-
lar condensates27,28. These experimental results imply that tran-
sitions of histone states play an important role in the phase sepa-
ration of chromatin.

The transitions of histone states were taken into account in re-
cent theories to predict the discontinuous transitions of chromatin
and the suppression of the growth of domains due to the forced
reset of histone states. These theories treat the transition of hi-
stone states by using the free energy minimization29 and an ex-
tension of model B20, and do not explicitly take into account the
dynamics of enzymes that change histone states. With this ap-
proach, the transition rate does not depend on the local concen-
tration of enzymes and on their reaction kinetics. However, re-
cent experiments have shown that mutating MRG-1 proteins that
mediate the binding of CBP/p300 (one type of HAT) to euchro-
matin changes the state of histones in the heterochromatin region
and decompacts heterochromatin30. Motivated by the latter ex-
perimental result, we here take into account the binding between
enzymes and chromatin and the kinetics of enzymatic reactions of
histone state transitions to predict the phase separation of chro-
matin in a brush. For simplicity, we take into account two types
of enzymes − activators and silencers. Activators provide (tran-
scriptionally) active modifications to wild type nucleosomes and
silencers provide inactive modifications to wild type nucleosomes.
The phase separation of a chromatin brush is driven by an anti-
correlation: Activators change the state of nucleosomes so that
silencers cannot bind to them and silencers change the state of
nucleosomes so that activators cannot bind to them.
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Fig. 1 Chromatin at the proximity of the nuclear membrane is repre-
sented as a brush, where DNA chains are end-grafted to two opposing
planer surfaces (a). We assume that each DNA segment is complexed
into a nucleosome. Nucleosomes take either of three states − neutral,
active, and silent, indicated by H, Ha, and Hs, respectively, in (b). The
transitions betweeen states is driven by three types of enzymes − acti-
vators, silencers, erasers, indicated by A, S, and E, respectively, in (b).
Activators bind to nucleosomes in either the neutral or the active state
(indicated by H−A and Ha−A). Silencers bind to nucleosomes in either
the neutral or the silent state (indicated by H− S and Hs− S). When
phase separation occurs, the chromatin brush forms a double-layer struc-
ture where each layer corresponds to a phase.

2 Model

2.1 Chromatin brush

We represent chromatin at the proximity of the nuclear mem-
brane as a polymer brush, where DNA chains are end-grafted to
a planar surface with the grafting density σ and nucleosomes
are assembled along these chains, see fig. 1a. This model is
motivated by the fact that chromatin is tethered to the nuclear
membrane via lamin A/C and lamin B receptor (LBR)4. Each
chromatin chain is composed of N0 segments of length la. For
simplicity, we assume that each segment carries only one nucleo-
some. Each nucleosome takes one of three states − a (transcrip-
tionally) active state ‘Ha’, a silent state ‘Hs’, and a neutral (wild
type) state ‘H’, reflecting the posttranslational modifications of its
histone tails. The chromatin brush is in an aqueous solution that
contains three types of enzymes − activators ‘A’, silencers ‘S’, and
erasers ‘E’. Activators change nucleosomes in the neutral state to
the active state and these enzymes can bind to nucleosomes in
the neutral state or in the active state. Silencers ‘S’ change nucle-
osomes in the neutral state to the silent state and these enzymes
can bind to nucleosomes in the neutral state or in the silent state.
Erasers ‘E’ change nucleosomes in either the active or the inactive
state back to the neutral state.
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2.2 Free energy

The free energy per unit area has the form

f (αac,αsi,h,N0) = fchr + fenz + fint, (1)

where fchr is the free energy density of chromatin in the brush,
fenz is the free energy density due to the translational entropy
of the enzymes (and solvent molecules), and fint is the free en-
ergy due to the interactions between chromatin segments and en-
zymes. h denotes the height of the brush. αac is the fraction of
active nucleosomes and αsi is the fraction of silent nucleosomes.
These fractions are determined by the kinetics of the posttransla-
tional modification of the histone tails.

For simplicity, we use the Alexander approximation, for which
the local concentration of chain segment is assumed to be uniform
in each phase of the brush. With this approximation, the free
energy density of the chromatin brush is given by

fchr

kBT
=

3
2

σh2

N0l2
a
+w(αac,αsi)

σ2N2
0

h
+

1
3

u
σ3N3

0
h2 . (2)

The first term of eq. (2) is the free energy density due to the
conformational entropy of chromatin. The second and third terms
account for the two- and three-body interactions between chain
segments. The 2nd virial coefficient w(αac,αsi) has the form

w(αac,αsi) =
1
2

whh(1−αac −αsi)
2 +

1
2

waaα
2
ac +

1
2

wssα
2
si

+whaαac(1−αac −αsi)+whsαsi(1−αac −αsi)

+wsaαacαsi. (3)

The w’s on the right hand side are 2nd virial coefficients. Specif-
ically whh accounts for the (neutral nucleosome)-(neutral nucle-
osome) interactions, waa for the (active nucleosome)-(active nu-
cleosome) interactions and wss for the (silent nucleosome)-(silent
nucleosome) interactions. The other w’s account for the “non-
diagonal” interactions between nucleosomes in different states.
We implicitly take into account the interactions between nucleo-
somes via binding proteins, such as HP1, in the values (and the
signs) of these 2nd virial coefficients. For simplicity, we assume
that wss has a negative value and that w0 ≡ waa = whh = wha =

whs = wsa > 0. u is the 3rd virial coefficient. kBT is the thermal
energy (kB: Boltzmann constant, T : absolute temperature).

The free energy density due to the translational entropy of en-
zymes has the form

fenz

kBT
= h[ΦA logΦA − (ΦA +φH−A +φHa−A)

+ΦS logΦS − (ΦS +φH−S +φHs−S)

+ρ logρ −ρ], (4)

The first, third, and fifth terms are the free energy contribu-
tions due to the translational entropy of activators, silencers and
erasers, respectively. The sum of the second, fourth, and sixth
terms results from the free energy contributions due to the trans-
lational entropy of solvent. ΦA and ΦS are the local concentra-

tions of activators and silencers that freely diffuse between chro-
matin in the solvent. ρ is the corresponding concentration of
erasers. The local concentration φH−A(t) of the neutral nucleo-
somes to which activators are bound and the local concentration
φH−S of the neutral nucleosomes to which silencers are bound
have the forms

φH−A =
φH

φH +KA
(φH−A +ΦA) (5)

φH−S =
φH

φH +KS
(φH−S +ΦS), (6)

where φH (= σN0(1−αac −αsi)/h) is the local concentration of
nucleosomes in the neutral state, see the black arrows in the mid-
dle column of fig. 1b. The occupancy of activators increases
with decreasing the equilibrium constant KA. The occupancy of
silencers increases with decreasing the equilibrium constant KS.
Similary, the local concentration φHa−A of the active nucleosomes
to which activators are bound and the local concentration φHs−S

of the silent nucleosomes to which silencers are bound have the
forms

φHa−A =
φHa

φHa +KA
(φHa−A +ΦA) (7)

φHs−S =
φHs

φHs +KS
(φHs−S +ΦS), (8)

where φHa (= σN0αac/h) and φHs (= σN0αsi/h) are the local con-
centration of nucleosomes in the active and silent states, respec-
tively, see the black arrows in the left and right columns of fig. 1b.
For simplicity, we assume that activators bind to neutral and ac-
tive nucleosomes with the same equilibrium constant KA and that
silencers bind to neutral and silent nucleosomes with the same
equilibrium constant KS. Our theory implicitly takes into account
proteins that mediate the binding of enzymes to chromatin in the
binding constants KA and KS.

The free energy density describing the interactions between
chromatin and enzymes is given by

fint

kBT
= h

[
vA

σN0

h
(ΦA +φH−A +φHa−A)

+vS
σN0

h
(ΦS +φH−S +φHs−S)+ vE

σN0

h
ρ

]
. (9)

The first term of eq. (9) is the free energy density due to the
interactions between activators and chromatin segments and vA

is the 2nd virial coefficient that accounts for these interactions.
The second term accounts for the interactions between silencers
and chromatin segments with the second virial coefficient vS. Fi-
nally, the third term describes the interactions between erasers
and chromatin segments with the second virial coefficient vE. For
simplicity, we set these three second virial coefficients to the same
value, v0 ≡ vA = vS = vE. With eq. (9), we assume that the free en-
ergy due to the interactions between enzymes and chromatin seg-
ments does not depend on the nucleosomal state and on whether
enzymes are bound to nucleosomes or freely diffusing. For sim-
plicity, we neglect erasers that are bound to nucleosomes.
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2.3 Two-phase coexistent state

In the two-phase coexistence state, the free energy per unit area
has the form

fcox = f (αac1,αsi1,h1,N1)+ f (αac2,αsi2,h2,N2)+Π(h1 +h2)

−µA((ΦA1 +φH−A1 +φHa−A1)h1 +(ΦA2 +φH−A2 +φHa−A2)h2)

−µS((ΦS1 +φH−S1 +φHs−S1)h1 +(ΦS2 +φH−S2 +φHs−S2)h2)

−µE(ρ1h1 +ρ2h2). (10)

Π is the osmotic pressure in the brush. µA, µS, and µE are the
chemical potentials of activators, silencers, and erasers, respec-
tively. These chemical potentials can be used as Lagrange multi-
pliers to fix the number of corresponding enzymes in the system.

Motivated by the fact that heterochromatin is tethered to nu-
clear membranes, we treat the case in which the phase-separated
chromatin brush forms a double-layer, where the bottom layer is
composed of one phase (with its quantities indicated by the sub-
script 1) and the top layer of the other phase (indicated by the
subscript 2). The height of the bottom layer is h1 and it is com-
posed of N1 segments, where the fractions of nucleosomes in the
active and silent states are αac1 and αsi1, respectively. The height
of the top layer is h2 and it is composed of N2 segments with αac2

and αsi2 denoting the fractions of nucleosomes in the active and
silent states.

For simplicity, we assume here that the relaxation dynamics of
the brush heights and the diffusion (and the binding-unbinding
of enzymes to nucleosomes) are much faster than the state transi-
tions of nucleosomes. With this assumption, the brush heights (h1

and h2) and the local concentrations of enzymes (ΦA1, ΦA2, ΦS1,
ΦS2, ρ1, and ρ2) are in local equilibrium with the given fractions,
αac and αsi, of nucleosomes in the active and silent states, which
are determined by slower dynamics. Note that this assumption is
not essential when we analyze the steady state.

Minimizing eq. (10) with respect to the local concentrations of
enzymes leads to the equality of chemical potentials between two
phases

µA

kBT
= gA(αac1,αsi1,h1,N1) = gA(αac2,αsi2,h2,N2) (11)

µS

kBT
= gS(αac1,αsi1,h1,N1) = gS(αac2,αsi2,h2,N2) (12)

µρ

kBT
= gρ (αac1,αsi1,h1,N1) = gρ (αac2,αsi2,h2,N2), (13)

where the chemical potential functions gA, gS, and gρ have the

forms

gA(αac,αsi,h,N) =
KA

KA +φH +φHa
logΦA − φH +φHa

KA +φH +φHa

+vA
σN
h

(14)

gS(αac,αsi,h,N) =
KS

KS +φH +φHs
logΦS −

φH +φHs

KS +φH +φHs

+vS
σN
h

(15)

gρ (αac,αsi,h,N) = logρ + vρ

σN
h

. (16)

Minimizing the free energy with respect to the brush height, h1

and h2, leads to the force balance equation

Π = Πbru(αac1,αsi1,h1,N1) = Πbru(αac2,αsi2,h2,N2), (17)

where the pressure Πbru generated in the brush has the form

Πbru(αac,αsi,h,N)

kBT
= −3σh

Nl2
a
+w(αac,αsi)

σ2N2

h2 +
2
3

u
σ3N3

h3 .(18)

To derive eq. (18), we assumed that the local concentrations of
nucleosomes is larger than the local concentrations of enzymes
and thus neglected the osmotic pressure due to the translational
entropy of enzymes. The height h and the local concentrations,
ΦA, ΦS, and ρ, of enzymes in the two phases are derived for
given fractions, αac and αsi, of nucleosomes in the active and
silent states by using eqs. (11) - (13) and (17).

2.4 Enzymatic reaction kinetics

We describe the kinetics of the enzymatic reactions of activators
and silencers by using the Michaelis-Menten law. The time evolu-
tion of the state of nucleosomes has the forms

d
dt

φH(t) = −kacφH−A(t)− ksiφH−S(t)+ kdacρ(t)φHa(t)

+kdsiρ(t)φHs(t) (19)

d
dt

φHa(t) = kacφH−A(t)− kdacρ(t)φHa(t) (20)

d
dt

φHs(t) = ksiφH−S(t)− kdsiρ(t)φHs(t), (21)

see fig. 1b. The first term of eq. (19) (and the first term of eq.
(20)) is the transition rate of nucleosomes from the neutral state
to the active state and kac is the rate constant that accounts for
this process, see the magenta arrow in fig. 1b. The second term
of eq. (19) (and the first term of eq. (21)) is the transition rate
of nucleosomes from the neutral state to the silent state with rate
constant ksi, see the cyan arrow in fig. 1b. The third term of eq.
(19) (and the second term of eq. (20)) is the transition rate of
nucleosomes from the active state to the neutral state with rate
constant kdac, see the green arrow indicated by kdac in fig. 1b.
Finally, the fourth term of eq. (19) (and the second term of eq.
(21)) is the transition rate of nucleosomes from the silent state

4 | 1–9Journal Name, [year], [vol.],

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.405134doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.405134
http://creativecommons.org/licenses/by-nc-nd/4.0/


to the neutral state with rate constant kdsi, see the green arrow
indicated by kdsi in fig. 1b.

2.5 Steady state

In the steady state, dφH/dt = dφHa/dt = dφHs/dt = 0, eqs. (19) -
(21) predict the relationships

ΦA =
kdacKA

kac
ρ

αac

1−αac −αsi
(22)

ΦS =
kdsiKS

ksi
ρ

αsi

1−αac −αsi
. (23)

By using eqs. (11) - (13), (17), (22), and (23), we derive the
height h and the fractions, αac and αsi, of nucleosomes in the
active and silent states in the steady state.

2.6 Characteristic scales

In the equilibrium, the height of the brush has the form

hAlx = N0la

(
w0σ

3la

)1/3
(24)

for the case in which all nucleosomes are in the active or neutral
state. The concentration of nucleosomes thus scales as

φAlx =
σN0

hAlx
. (25)

The scale of pressure is

ΠAlx

kBT
= w0φ

2
Alx. (26)

The 3rd virial coefficient u is rescaled by

uAlx =
w2

0
2

(
w0σ

3la

)−2/3
. (27)

3 Results

3.1 Uniform brush with constant chemical potential

In the one phase region, the concentration of enzymes and the
fractions, αac and αsi, of nucleosomes are uniform in the brush.
We first treat the grand canonical ensemble, in which the brush
exchanges activators, silencers, and erasers with the exterior so-
lution and the chemical potentials of these enzymes are constant
throughout the brush (because there are no constant fluxes of
these enzymes). The fractions, αac and αsi, are derived as a func-
tion of the brush height h by using eqs. (11) - (13) and (22) -
(23).

For cases in which the inverse equilibrium constant K−1
A of ac-

tivators is smaller than a threshold value K−1
isl1 (the exterior of

the region delineated by the green curves in fig. 2), our theory
predicts a unique solution of nucleosome fractions, αac and αsi,
for any values of the brush height, see the cyan line in fig. 3.
Whether the fractions αac and αsi increase or decrease with the
brush height depends on the kinetic constants, the chemical po-
tentials, and the inverse equilibrium constants of activators and
silencers. When the inverse equilibrium constant K−1

A is larger
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Fig. 2 The bifurcation diagram is shown as a function of the chemical
potential of activators µA/(kBT ) and the inverse of equilibrium constant
K−1

A φAlx. There are two stable solutions in the region delineated by the
green lines and there is a transition between the two solutions in the
region delineated by the black line. There is one stable solution in the
exterior to these regions. The values of the other parameters used for the
calculations are K−1

S φAlx = 3.0, vφAlx = 0.5, µS/(kBT ) = 0.9, µρ/(kBT ) =
1.5, log(kdacKA/kac) = log(kdsiKS/ksi) = 1.5 for all lines. The values of the
chemical potential µS/(kBT ) and the inverse equilibrium constant K−1

S φAlx
are indicated by the dotted lines.

than the first threshold value K−1
isl1 and smaller than the second

threshold value K−1
cox1 (the region between the green and the black

lines in fig. 2), there is a finite window of brush heights in which
two stable solutions exist, see the black line in fig. 3. However,
one solution branch continues to the brush height region with a
unique solution without showing an instability and it is discon-
nected from the other solution branch and the unstable solution.
This implies that the brush height decreases without showing the
transitions between the two solution branches if one starts from
the brush height region with a unique solution (or the branch that
does not show the instability).

When the inverse equilibrium constant K−1
A is larger than the

second threshold K−1
cox1 and smaller than the third threshold K−1

cox2
(the region delineated by the black curves in fig. 2), there is a fi-
nite window of brush heights in which two stable solutions exist,
see the magenta lines in fig. 3. Each solution branch has a point
at which the solution becomes unstable. The brush thus shows a
transition between a euchromatin-like state in which the fraction
αac of active nucleosomes is relatively large (and the fraction αsi

of silent nucleosomes is relatively small) and a heterochromatin-
like state in which the fraction αac of active nucleosomes is rel-
atively small (and the fraction αsi of silent nucleosomes is rel-
atively large). The local concentration of nucleosomes (that are
the substrate of the enzymes) increases with decreasing the brush
height. This increases the rate of enzymatic reactions that change
the states of the nucleosomes. The bistable solutions result from
an anti-correlation: Activators change nucleosomes in the neu-
tral state to the active state so that silencers cannot bind them,
whereas silencers change nucleosomes in the neutral state to the
silent state so that activators cannot bind them. Because there are
many parameters involved in our model, we limit our discussion
to the coexistence between the two stable solutions found in this
section.
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for several values of the inverse equilibrium constant K−1

A of activators,
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A φAlx = 2.0 (cyan), 3.0 (black), and 3.5 (magenta). The values of
the other parameters used for the calculations are K−1

S φAlx = 3.0 v0φAlx =

0.5, µA/(kBT ) = 0.8, µS/(kBT ) = 0.9, µρ/(kBT ) = 1.5, log(kdacKA/kac) =
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Fig. 4 The brush height h/hAlx (rescaled by the height of Alexander
brush) is shown as a function of the applied pressure Π/ΠAlx (rescaled
by the scale of pressure of Alexander brush). We used K−1

A φAlx = 3.5,
K−1

S φAlx = 3.0, v0φAlx = 0.5, vEφAlx = 0.5, µA/(kBT ) = 0.8, µS/(kBT ) =
0.9, µρ/(kBT )= 1.5, log(kdacKA/kac)= log(kdsiKS/ksi)= 1.5, wss/w0 =−2.0,
and u/uAlx = 0.01 for the calculations. The orange and light green solid
lines correspond to the two branches of stable solutions of the magenta
curve in fig. 3. The broken curves are unstable solutions.

3.2 Two-phase brush with constant chemical potential

In two-phase coexistent states, the concentrations of enzymes, the
fractions, αac and αsi, and brush heights are determined by the
equality of the pressure and the chemical potentials of activators
and silencers between the two phases. We here treat the phase
separation of the chromatin brush in the grand canonical ensem-
ble, in which the equality of chemical potentials is automatically
satisfied because the chemical potentials are constant throughout
the system (this part has been solved in sec. 3.1). We here use
eqs. (17) and (18) to predict the coexistence of the two stable
solutions, found in sec. 3.1.

Eqs. (17) and (18) predict that when the pressure is smaller
than a threshold value Πsp1 or larger than the second thresh-
old value Πsp2, the brush height decreases monotonically with
increasing the applied pressure, see fig. 4. In a window of ap-
plied pressures, Πsp1 < Π < Πsp2, there are two stable solutions.
We here use the Maxwell construction

δW =
∫ h2δN/N0

h1δN/N0

dh [Πbru(αac(h),αsi(h),h,δN)−Π] = 0 (28)

to predict the conditions at which two phases coexist. Eq. (28)
states that the work δW necessary to change a small portion δN of
subchains from one phase to the other is zero. The integral of eq.
(28) should be performed along the unstable solutions (see the
broken line in fig. 4). ‘Unstable solutions’ refers here to solutions
that are unstable in either the equality of chemical potentials (eqs.
(11) - (13) and (22) - (23)), the mechanical balance (eq. (17)),
or both. We have previously used the same treatment to predict
the phase separation of a chromatin brush17–19.

Our theory predicts that the swollen phase, in which the height
of subchains is larger, coexists with the collapsed phase, in which
the height of subchains is smaller. In the swollen phase, the frac-
tion αac of active nucleosomes is relatively large and the fraction
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αsi of silent nucleosomes is relatively small, analogous to euchro-
matin, see the orange curve in fig. 5. In the collapsed phase,
the fraction αac of active nucleosomes is relatively small and the
fraction αsi of silent nucleosomes is relatively large, analogous
to heterochromatin, see the light green curve in fig. 5. Our the-
ory therefore predicts the coexistence of a euchromatin-like phase
and a heterochromatin-like phase. In the swollen phase, the frac-
tion αac of active nucleosomes decreases and the fraction αsi of
silent nucleosomes increases as the inverse equilibrium constant
K−1

A decreases. In contrast, in the collapsed phase, the fractions,
αac and αsi, do not change significantly with decreasing the in-
verse equilibrium constant K−1

A . This result is not consistent with
the experiments by Gasser and coworkers, which suggest that het-
erochromatin is decompressed by the mutation of proteins that
bind activators to euchromatin30, at least in the two-phase coex-
istent state and set of parameters that are used in our numerical
calculations. This may be because we here treat the grand canon-
ical ensemble, in which the total number of enzymes is not con-
stant. The number of activators in the swollen phase increases
with increasing the inverse equilibrium constant K−1

A . These acti-
vators are provided mainly from the external solution, rather than
the collapsed phase.

3.3 Two phase brush with constant number of activators and
silencers

The fact that heterochromatin shows decompaction due to the
release of HATs from euchromatin30 implies that a cell nucleus
may be better modeled by the canonical ensemble, in which the
number of enzymes is constant. To simplify the calculations, we
here treat the case in which the numbers of activators and si-
lencers, nA and nS, are constant in the system, but the number of
erasers can change to keep the chemical potential of erasers con-
stant throughout the system. In the two phase coexistent state,
the chemical potentials of each enzyme are equal between the
two phases. We derive the chemical potentials, µA and µS, so
that the total number of each enzyme is constant and satisfies eq.
(28) by changing the brush height.

Fig. 6 treats cases in which the height of a chromatin brush of
a uniform euchromatin-like state is reduced. This mimics chro-
matin of an undifferentiated cell, where the size of the nucleus
decreases by cell division. When the inverse equilibrium constant
K−1

A of activators is within the window K−1
cox1 < K−1

A < K−1
cox2, in

which two solutions are stable, the chromatin brush shows phase
separation for the brush heights smaller than a threshold value,
see the magenta and light green curves in fig. 6. In one phase,
the fraction αac of active nucleosomes is relatively large and the
fraction αsi of silent nucleosomes is relatively small, analogous
to euchromatin. In the other phase, the fraction αac of active
nucleosomes is relatively small and the fraction αsi of silent nu-
cleosomes is relatively large, analogous to heterochromatin. The
fraction δ (≡ N1/N0) of heterochromatin-like phase increases as
the brush height decreases. In contrast, when the inverse equi-
librium constant K−1

A of activators is smaller than the bifurca-
tion threshold K−1

cox, the chromatin brush does not show phase
separation, see the cyan curve in Fig. 6. With the parameters

that we used in Fig. 6, the fraction αac of active nucleosomes in
the heterochromatin-like phase increases, albeit slightly, with de-
creasing the inverse equilibrium constant K−1

A , compare the ma-
genta and light green curves. The fraction αac of active nucle-
osomes of heterochromatin increases significantly if the inverse
equilibrium constant K−1

A is reduced to a value smaller than the
threshold K−1

cox1, compare the magenta and cyan curves for the
same height in fig. 6.

4 Discussion
Our theory treats the phase separation of a chromatin brush
caused by the enzymatic reactions of histone posttranslational
modifications. This theory is motivated by the fact that hete-
rochromatin is decompacted when HAT (an activator) is unbound
from euchromatin30. The feature of our model is that the binding
of enzymes to chromatin is explicitly taken into account. Our the-
ory predicts that the phase separation of chromatin is driven by
an anti-correlation: Activators change the state of nucleosomes to
the active state so that silencers cannot bind. On the other hand,
silencers change the state of nucleosomes to the silent state so
that activators cannot bind. This may be checked by eliminating
the anti-correlation, namely by allowing activators and silencers
to bind to nucleosomes in any of the states. In the latter case,
eqs. (11) and (12) predict that the local concentrations of en-
zymes, ΦA and ΦS, do not depend on αac and αsi of active and
silent nucleosomes (all φH + φHa’s in eq. (14) and all φH +ΦHs’s
in eq. (15) should be replaced by φH +φHa +φHs). Eqs. (22) and
(23) thus have only one solution

αac =
ΦA

kac
kdacKA

ρ +ΦA
kac

kdacKA
+ΦS

ksi
kdsiKS

(29)

αsi =
ΦS

ksi
kdsiKS

ρ +ΦA
kac

kdacKA
+ΦS

ksi
kdsiKS

. (30)

Indeed, the anti-correlation only causes bistability of nucleosome
states: In one solution, the fraction αac of active nucleosomes
is relatively large, and the fraction αsi of silent nucleosomes is
relatively small, analogous to euchromatin. In the other solution,
the fraction αac of active nucleosomes is relatively small and the
fraction αsi of silent nucleosomes is relatively large, analogous
to heterochromatin. The two solutions are spatially separated
due to the attractive interactions between silent nucleosomes (via
binding proteins, such as HP127,28), see eq. (3).

Our theory predicts that the phase separation of the chromatin
brush is driven by decreasing the distance between the grafting
surfaces, see fig. 1). It is consistent with the fact that the phase
separation of chromatin in an undifferentiated cell is driven after
a couple of cell division, by which the volume of the nucleus de-
creases. The fraction of enzymes that bind to chromatin increases
with decreasing the brush height (equivalently, increasing the nu-
cleosome concentration), see eq. (5) - (8). This enhances the
anti-correlation, discussed in the last paragraph, and stabilizes
the coexistent state of euchromatin-like and heterochromatin-like
phases. This prediction may be tested experimentally by detect-
ing the time at which heterochromatin foci form on undifferenti-
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Fig. 5 (a) The brush height h (rescaled by the height hAlx of Alexander brush), (b) the fraction αac of active nucleosomes, and (c) the fraction αsi of
silent nucleosomes of two coexisting phases are shown as a function of the inverse equilibrium constant K−1

A φAlx. The values of collapsed phase are
shown by the light green curves and the values of swollen phase are shown by the organge curves. We used K−1

S φAlx = 3.0, v0φAlx = 0.5, µA/(kBT ) = 0.8,
µS/(kBT ) = 0.9, µρ/(kBT ) = 1.5, log(kdacKA/kac) = log(kdsiKS/ksi) = 1.5, wss/w0 =−2.0, and u/uAlx = 0.01 for the calculations.

ated cells in which the proteins that bind HAT to chromatin are
perturbed.

The mechanism of phase separation, demonstrated by our the-
ory, is very different from our previous theories17,18 and other
theories8–16,20. Our previous theories17,18 predict that the ap-
plied pressure stabilizes a condensed chromatin phase due to
the attractive interactions between nucleosomes and that RNA
polymerase (which destabilizes the condensed phase) is excluded
from this phase due to the excluded volume interactions between
RNA polymerase and nucleosomes. Some other theories also em-
phasize the roles played by chromatin compaction on the phase
separation of chromatin29. Indeed, our model takes into account
the attractive interactions between silent nucleosomes, see eq.
(3), and the excluded volume interactions between enzymes and
nucleosomes. However, with our present model, the excluded
volume interactions between enzymes and nucleosomes do not
play essential roles in the coexistence between the euchromatin-
like phase and the heterochromatin-like phase, as defined by the
two solutions of eqs. (11) - (13) and (22) - (23).

Experiments by Gasser and coworkers30 and our theory imply
that transcription is regulated by the localization of HAT or other
enzymes to posttranslationally modify the chemical states of his-
tone tails. This concept may be better demonstrated by simpler
models in which the number of involved parameters is smaller
than our present model (even if it may be less realistic than our
present theory). One of the complexities of our present model is
that this theory takes into account the asymmetry of the extent of
compaction, the kinetic constant of histone modification, and the
binding affinity (represented by the equilibrium constant in our
theory) of enzymes to nucleosomes between the euchromatin-like
solution and the heterochromatin-like solution. It is tempting
to assume that the reaction kinetics of activators and silencers
is symmetric. However, in such cases, the window of the inverse
equilibrium constant, K−1

cox1 < K−1
A < K−1

cox2, in which euchromatin-
like and heterochromatin-like solutions are stabilized, converges

to a point, see fig. 2. In reality, there is one more asymmetry: CpG
islands of some of the genes are methylated and those of the other
genes are not methylated22. The binding affinity of enzymes to
nucleosomes, the kinetic constant of histone modification, and
the second virial coefficient may depend on the methylation state
of CpG islands. Elucidating the physics of the symmetry break-
ing of the chromatin structure is important for understanding the
transcription regulation at the early stage of development.
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