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Abstract 

Numerous computational methods have been proposed to predict protein-protein 

interactions, none of which however, considers the original DNA loci of the interacting 

proteins in the perspective of 3D genome. Here we retrospect the DNA origins of the 

interacting proteins in the context of 3D genome and discovered that 1) if a gene pair 

is more proximate in 3D genome, their corresponding proteins are more likely to 

interact. 2) signal peptide involvement of PPI affects the corresponding gene-gene 

proximity in 3D genome space. 3) by incorporating 3D genome information, existing 

PPI prediction methods can be further improved in terms of accuracy. Combining our 

previous discoveries, we conjecture the existence of 3D genome driven cellular 

compartmentalization, meaning the co-localization of DNA elements lead to increased 

probability of the co-localization of RNA elements and protein elements. 
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Introduction 

In almost all cellular processes, including DNA transcription and replication, signaling 

cascades, metabolic cycles and many additional processes, proteins undertake their 

cellular functions by coordinating with other proteins1. It is therefore important to know 

the specific nature of these protein-protein interactions (PPIs). A human cell at any time, 

contains over 100,000 binary interactions between proteins2, a small fraction of these 

protein-protein interactions however, are experimentally identified3, lagging behind the 

generation of sequencing information which grow exponentially. Biological-wise, this 

is due to the dynamic nature of these interactions, that many of them are transient, and 

others occur only in certain cellular contexts or at particular times in development3. 

Technology-wise, this is due to the low throughput and inherent imperfection of the 

empirical PPI identification experiments; for example, yeast two-hybrid (Y2H) system4 

and co-immunoprecipitation (coIP) coupled with mass spectrometry5 are two widely 

adopted methods, both prone to false discoveries because procedures from the reagent 

choosing to the cell type used and experimental conditions can all influence the final 

outcome6. 

To bridge the gap between ensemble in situ PPI and the identified ones, accurate 

and efficient computational methods are required, as the prediction results can either be 

directly used or boost the labor-intensive empirical methods. In the past two decades, 

numerous computational protein interaction discovery approaches have been developed. 

A PPI prediction method is usually determined by two factors: the first factor is the 

encoding scheme, i.e., what information is adopted and how they are encoded for the 

target protein or protein pair; the other factor is the mathematical learning model being 

employed. By combining these two factors, computational PPI prediction approaches 

can be further categorized into four classes: network topology based, genomic context 

and structural information based, text mining based, and machine learning based which 

utilize heterogeneous genomic or proteomic features. Many studies have demonstrated 

that utilizing these PPI prediction tools is important for new research in protein-protein 

interaction analysis to be conducted1,7-11. 
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It has been reported that genes that are proximate to each other in terms of linear 

genomic distance, could lead to their protein counterparts interacting to each other12. 

This occurs to us that genes that are proximate in 3D genomic space may also obey 

such rule, and chromatin conformation capturing technologies such as Hi-C13,14 and 

ChIA-PET15 developed in recent years provide an excellent opportunity to 

systematically investigate this conjecture. To the best of our knowledge, there is no 

existing PPI prediction method that considers the genomic 3D distance of the 

corresponding gene pairs so far. Therefore, if the gene-gene 3D distances are indeed 

correlated to the protein-protein interaction, it would contribute to the PPI prediction 

without doubt. 

In this work, we retrospect the DNA origins of the interacting proteins in the 

context of 3D genome and discovered that 1) if a gene pair is more proximate in 3D 

genome, their corresponding proteins are more likely to interact. 2) signal peptide 

involvement of PPI affects the corresponding gene-gene proximity in 3D genome space. 

3) by incorporating 3D genome information, existing PPI prediction methods can be 

further improved in terms of accuracy. Furthermore, by combining our previous 

discoveries – that somatic co-mutation DNA loci tend to form Somatic Co-mutation 

Hotspots (SCHs) in 3D genome space16, which was recently supported by Akdemir et 

al.17, and that 3D genome contribute to immunogenic neoantigen distribution18 – we 

conjecture the existence of 3D genome driven cellular compartmentalization; with this 

compartmentalization, the co-localization of DNA elements lead to increased 

probability of the co-localization of their downstream elements including RNAs, 

proteins, and even metabolic molecules, as Figure 1 illustrates. 
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Figure 1. Conceptual illustration of 3D genome driven cell compartmentalization. Co-

localization of DNA lead to co-expression of RNA, which further lead to protein-protein 

interaction and concentration of depredated molecular. 

Results 

Protein-protein interaction and 3D genome 

To investigate whether the interacting proteins’ corresponding genes are more 

proximate to each other in chromatin 3D space, we conducted intra-chromosomal (per 

each individual chromosome) and inter-chromosomal (whole genome) analyses. For 

the intra-chromosomal analyses, we compared PPIs’ corresponding gene-gene spatial 

contact frequencies (inverse to 3D distance) on Hi-C heatmaps with the overall 

background and gene-level background contact frequencies of DNA loci of the same 

linear distance. As Figure 2 demonstrates, the PPIs’ gene counterparts are significantly 

more proximate to each other comparing to both background values. 
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Figure 2. Comparison of chromatin contact frequency (inverse of 3D distance) distributions 

of PPI and background in intra-chromosomal level. Left: PPIs’ corresponding gene pair 3D 

distance distribution (red), background 3D distance distribution with same linear distance 

(blue), gene-level background 3D distance distribution with same linear distance (green). 

Right: detailed scatter points of 3D distances (y-axis) along with linear distances (x-axis). 

A,B,C,D correspond to BioGRID, HI2014, HPRDall, and MetaCore PPI databases 

analyzed with GM12878 Hi-C cell line. 

 

For the inter-chromosomal analyses, we first generated non-PPI pairs for each PPI 

dataset so that each non-PPI protein pair is never witnessed be interacting by any 

previous empirical experiment. We then compare the corresponding gene-gene contact 

frequencies and the neighboring regions of both PPI and non-PPI. As Figure 3 and 

Figure 4 demonstrate, the PPIs’ corresponding gene-gene contact frequencies including 

their neighboring regions are significantly more proximate to each other compared with 

the non-PPIs’ gene-gene pairs. 
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Figure 3. A: averaged Hi-C heatmap (101x101 bins) centered at PPIs’ and Non-PPIs’ 

corresponding gene-gene loci. B: PPIs and Non-PPIs’ corresponding averaged contact 

frequencies and their decay along with increased distance to the central point. C, D: 

zoomed in heatmap with 25x25 bins. E, F: zoomed in heatmap with 7x7 bins. 

 

 

Figure 4. Gene-gene pair projections of PPIs overlaid on Hi-C heatmaps. A, B: PPIs from 

BioGRID database overlaid on whole genome and chromosome 1 of hESC Hi-C heatmaps 

respectively. C, D: PPIs from BioGRID database overlaid on whole genome and 

chromosome 1 of IMR90 Hi-C heatmaps respectively. 
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Role of signal peptide in 3D genome assisted PPI 

We believe that the above discovery can be explained by a logical conjecture that when 

two closely related genes that were once linearly next to each other in evolutional-wise 

lower complex genome, tend to be linearly separated far away or even re-located at 

different chromosome during evolution, to avoid linear-space batch error scenario such 

as replication or transcription. Yet, to still be able to cooperate, they remain spatially 

proximate so that their co-expression lead to co-localization of their RNAs and proteins 

counterparts, which further lead to protein-protein interaction. Additional pieces of 

patches can further enrich this conjectural storytelling picture and the signal peptide is 

one of them, as many proteins re-localization are guided by signal peptides. 

 To examine whether signal peptide affects the relation between 3D genome and 

PPI, we first labelled all the PPIs with at least one protein whose re-localization is 

assisted by signal peptide, and then we partition PPIs into two categories, i.e., signal 

peptide assisted PPI (SigPep PPI) and no signal peptide assisted PPI (Non-SigPep PPI). 

As Figure 5 indicates, gene-gene contact frequencies of PPIs that are not assisted by 

signal peptides tend to be higher than the gene-gene contact frequencies of PPIs that 

are assisted by signal peptides. This can be explained that for the interacting proteins 

that are brought together by signal peptides, their gene counterparts can be more freely 

located on the 3D genome, with larger spatial distances. 
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Figure 5. Comparison of contact frequencies between PPI with signal peptide assisted 

protein-protein co-localization and PPI without signal peptide assisted protein-protein co-

localization. 

Applying 3D genome information in PPI prediction 

Having the important discovery above, we then investigate whether adopting 3D 

genome information can contribute to more accurate PPI predictions, as none of the 

existing PPI prediction method ever consider PPI in the 3D genome perspective. We 

selected six representative PPI prediction methods and performed 5-fold cross 

validation on the PPI datasets, with and without 3D genome information. As Table 1 

shows, the prediction accuracy in terms of AUC can be significantly improved if 3D 

genome information is employed. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404517


Table 1: AUC performance of benchmark models without/with 3D positional 
information on all 4 datasets 

Dataset AC-SVM* CNN*  E-ELM*  AC-SAE*  DNN*  MCD-SVM*  

BioGRID 0.7435/ 

0.7586 

0.7252/ 

0.7822 

0.7918/ 

0.8129 

0.8473/ 

0.8694 

0.8642/ 

0.8962 

0.9168/ 

0.9174 

HI2014 0.7589/ 

0.7771 

0.8690/ 

0.8943 

0.9192/ 

0.9228 

0.8926/ 

0.9156 

0.9408/ 

0.9449 

0.9862/ 

0.9865 

iRefWeb 0.7310/ 

0.7528 

0.7499/ 

0.8093 

0.7623/ 

0.7862 

0.8613/ 

0.8785 

0.8980/ 

0.9017 

0.9508/ 

0.9518 

MetaCore 0.7130/ 

0.7380 

0.7588/ 

0.8140 

0.7429/ 

0.7723 

0.8614/ 

0.8896 

0.9114/ 

0.9267 

0.9537/ 

0.9545 

 

*Performance measures the averaged AUC score on specific dataset in the order of: AUC without 

3D genome information /AUC with 3D genome information 

 

Methods 

PPI and 3D genome data 

We collected and curated five representative PPI datasets, namely BioGRID19, 

HI201420, HPRDall21, iRefWeb22, and Clarivate MetaCore. The positive samples are 

interacting protein-protein pairs and the negative samples are draw from all the non-

PPIs with different subcellular locations. 

For the 3D genome data, we collected eight Hi-C datasets, namely hESC, IMR90, 

GM12878, HUVEC, IMR90-Rao, NHEK, K562, and KBM723,24. The datasets are 

normalized using the KRNorm method and are curated so that intra-chromosomal 

heatmaps are of 40kb bin resolution and the inter-chromosomal heatmaps are of 500kb 

bin resolution. 

Encoding scheme and prediction methods 

We selected six representative machine learning PPI prediction methods that are 

developed recently; each method has its own protein-protein encoding scheme. These 

methods are Auto-Covariance SVM (AC-SVM)25, Convolutional Neural Network 
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(CNN)26, Ensemble Extreme Learning Machine (E-ELM)27, Auto-Covariance Stacked 

Encoder (AC-SAE)28, Deep Neural Network (DNN)29, and Multi-scale Continuous and 

Discontinuous SVM (MCD-SVM)30. We re-implemented all the six methods with 

different encoding schemes described in the references. To add 3D genome information, 

we computationally modeled 3D genome based on the Hi-C heatmaps and compute for 

each bin (500kb) a <x, y, z> coordinate each protein in the PPI datasets are assigned to 

a bin so that each protein has <x, y, z> feature 3-tuple. 

 

Discussion 

In this work, we retrospect the DNA origins of the interacting proteins in the context of 

3D genome and discovered that 1) if a gene pair is more proximate in 3D genome, their 

corresponding proteins are more likely to interact. 2) signal peptide involvement of PPI 

affects the corresponding gene-gene proximity in 3D genome space. 3) by incorporating 

3D genome information, existing PPI prediction methods can be further improved in 

terms of accuracy. Combining our previous discoveries, we conjecture the existence of 

cellular compartmentalization driven by the chromatin 3D conformation. The concept 

of 3D genome driven cellular compartmentalization can well explain the co-localization 

of DNA elements lead to increased probability of the co-localization of their 

downstream elements including RNAs, proteins, and even metabolic molecules. More 

detailed investigation is needed to either further prove the 3D genome driven 

compartmentalization theory or utilize this theory in assisting 3D genome related 

researches. 
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