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ABSTRACT 15 

Deep neural networks offer a promising approach for capturing complex, non-linear relationships among 16 

variables. Because they require immense sample sizes, their potential has yet to be fully tapped for 17 

understanding complex relationships between gene expression and human phenotypes. Encouragingly, a 18 

growing number of diseases are being studied through consortium efforts. Here we introduce a new 19 

analysis framework, namely MD-AD (Multi-task Deep learning for Alzheimer’s Disease 20 

neuropathology), which leverages an unexpected synergy between deep neural networks and multi-cohort 21 

settings. In these settings, true joint analysis can be stymied using conventional statistical methods, which 22 

(1) require “harmonized” phenotypes (i.e., measured in a highly consistent manner) and (2) tend to 23 

capture cohort-level variations, obscuring the subtler true disease signals. Instead, MD-AD incorporates 24 

multiple related phenotypes sparsely measured across cohorts, and learns complex, non-linear interactions 25 

between genes and phenotypes not discovered using conventional expression data analysis methods (e.g., 26 

component analysis and module detection), enabling the model to capture subtler signals than cohort-level 27 

variations. Applied to the largest available collection of brain samples (N=1,758), we demonstrate that 28 

MD-AD learns a truly generalizable relationship between gene expression program and AD-related 29 

neuropathology. The learned program generalizes in several important ways, including recapitulation of 30 

the disease progress in animal models and across tissue types, and we show that such generalizability is 31 

not achieved by previous statistical paradigms. Its ability to identify genes with high non-linear relevance 32 

to neuropathology enabled us to identify a sex-specific relationship between neuropathology and immune 33 

response across microglia, providing a nuanced context for association between inflammatory genes and 34 

AD.  35 

  36 
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INTRODUCTION 37 

Alzheimer’s disease (AD), the sixth leading cause of death in the United States, is a degenerative brain 38 

condition with no known treatment to prevent, cure, or delay its progression. Primary challenges to  39 

treating and preventing AD include extensive heterogeneity in the clinicopathologic state of older 40 

individuals1 and limited knowledge about genetic and molecular drivers and suppressors of AD-related 41 

(amyloid and tau) proteinopathies and AD dementia2. Recent efforts to identify molecular mechanisms 42 

underlying AD and its progression focus on two complimentary approaches. First, the assembly of large 43 

genome-wide association studies (GWAS) (N>100K subjects) enabled case/control analyses of genetic 44 

variants correlated with a clinical diagnosis of AD. Interestingly, some identified variants have implicated 45 

tau protein binding, amyloid precursor protein (APP) metabolism or immune pathways that play a role in 46 

their aggregation and/or uptake3–5. These results reinforce the need for detailed investigations of the 47 

drivers of neuropathological variation across individuals. Second, moderate-scale post-mortem 48 

transcriptomic studies have investigated molecular correlates of a richer set of phenotypic and 49 

neuropathological outcomes6–9. Early work in this domain examined pairwise correlations among gene 50 

expression levels and AD related traits10 or a diagnosis of AD11. More recent attempts have focused on 51 

learning statistical dependencies among gene expression using AD expression data collected from one 52 

cohort, in order to infer gene regulatory networks7 or co-expressed modules6 associated with AD related 53 

phenotypes (see Supplementary Methods for details). The relative scarcity of brain gene expression data 54 

collected from each cohort has posed a challenge to the use of complex models, such as deep neural 55 

networks. 56 

The collection of postmortem brain RNA-sequencing datasets, assembled by the AMP-AD (Accelerating 57 

Medicines Partnership Alzheimer's Disease) consortium, provides a unique opportunity to combine 58 

multiple data sets in an integrative analysis. Previous work has applied existing co-expression methods to 59 

each dataset and used consensus methods to identify consistent gene expression modules across datasets9. 60 

To our knowledge, there has not yet been a unified approach to learn a single joint model that 61 

incorporates multiple AMP-AD datasets, which would enable the use of all samples to capture intricate 62 

interactions between gene expression levels and phenotypes. A unified approach has been hindered by: 63 

(1) the need for “harmonized” phenotypes consistently measured across datasets, and (2) the limitation of 64 

current analysis methods that focus on linear relationships between variables (e.g., module analysis9) 65 

which tend to capture broader patterns in gene expression that often correspond to cohort-level variations, 66 

and to consequently obscure true disease signals. 67 

Here, we develop MD-AD (Multi-task Deep learning for Alzheimer’s Disease neuropathology), a unified 68 

framework for analyzing heterogeneous AD datasets to improve our understanding of expression basis for 69 

AD neuropathology (Figure 1a-d). Unlike previous approaches, MD-AD learns a single neural network 70 

by jointly modeling multiple neuropathological measures of AD (Figure 1a), and hence it incorporates a 71 

large collection of postmortem brain RNA-sequencing datasets. The combined AMP-AD dataset contains 72 

1,758 samples distributed across 9 brain regions which are labeled with up to six neuropathological 73 

outcomes that are sparsely available across cohorts (Figure 1e). This unified framework has key 74 

advantages over separately trained models. First, MD-AD can accommodate sparsely labeled data, which 75 

is a natural characteristic of datasets aggregated through consortium efforts (Figure 1e). Even if different 76 

phenotypes only partially overlap in the measured samples, each sample contributes to the training of both 77 

phenotype-specific and shared layers (Figure 1a). Predicting multiple phenotypes at once biases shared 78 

network layers to capture relevant features of these AD phenotypes at the same time. This is of critical 79 
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importance: each phenotype represents a different noisy measurement of the same underlying true 80 

biological process, and, as we demonstrate, joint training allows MD-AD to average out the noise to 81 

extract the true hidden signal. Additionally, the increased sample size enables MD-AD to capture 82 

complex non-linear interactions between genes and phenotypes. Multi-layer perceptrons (MLPs) offer 83 

another powerful approach for directly capturing complex relations between gene expression and a 84 

phenotype. However, training separate MLPs for each phenotype (Supplementary Figure 1a) has limited 85 

scope: it can utilize only the samples measured for a specific phenotype, and it cannot share information 86 

across related phenotypes. We demonstrate that these advantages improve MD-AD prediction accuracy, 87 

enabling its predictions to generalize across species and tissue types (Figure 1b).  88 

MD-AD’s ability to capture complex non-linear relationships provides an opportunity to gain new 89 

insights into the expression basis of AD neuropathology, which were not identified by previous 90 

approaches. However, an obvious drawback of deep neural networks is their black-box nature, making it 91 

difficult to biologically interpret gene-phenotype associations. This paper presents two ways to address 92 

this challenge. First, MD-AD adopts a well-known feature attribution method12, which quantifies how 93 

much each input variable (here, gene expression level) contributes to a prediction (here, a 94 

neuropathological phenotype) to identify genes and pathways relevant to each neuropathological 95 

phenotype (Figure 1d). Second, because MD-AD is a deep learning model, we can interpret its 96 

intermediate layers as biologically relevant high-level feature representation of gene expression levels 97 

and its predictions as the amalgamation of AD-specific molecular markers. The last shared layer of MD-98 

AD can be viewed as a supervised embedding influenced by each neuropathological phenotype used 99 

during training. Thus, by interpreting this layer’s embedding, we gain understanding of model 100 

components and high-level dependencies between expression and neuropathology (Figure 1c). As the 101 

first deep learning attempt to relate gene expression to multiple AD neuropathological phenotypes, we 102 

identify globally important genes not previously implicated in linear methods and perform sex-specific 103 

analyses to explore implicitly captured non-linear effects among genes and AD severity predictions.  104 

In sum, our new MD-AD framework makes the following contributions: (1) It is able to effectively impute 105 

accurate AD neuropathological phenotype predictions from broad compendia of heterogeneous brain 106 

gene expression data; (2) it produces learned representations that are more robust than separately learned 107 

models, improving generalizability to other datasets, species, and even tissue types; (3) it provides an 108 

improved understanding of inter-relationships among molecular drivers of AD neuropathology that is 109 

missed by linear methods; and (4) from a biological standpoint, MD-AD highlights a sex-specific 110 

relationship between microglial immune activation and neuropathology. 111 

RESULTS 112 

MD-AD provides a unified framework to learn a single model of multiple neuropathological 113 

phenotypes across multiple cohort datasets 114 

The MD-AD model takes as input brain gene expression profiles and simultaneously predicts several AD-115 

related neuropathological phenotypes (Figure 1a). In particular, the model is trained on expression data 116 

from the ROSMAP6,13,14, ACT15 and MSBB16 cohort studies, which together have 1,758 gene expression 117 

profiles for 925 distinct individuals. These data are normalized for study batch (Supplementary Methods, 118 

Supplementary Figure 1b-c) 17. As shown in Figure 1a, the MD-AD model simultaneously predicts six 119 

AD-related neuropathological phenotypes: three related to amyloid plaques and three to tau tangles. The 120 

former include: (1) Aβ IHC: amyloid-β protein density via immunohistochemistry, (2) NPs: neuritic 121 
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amyloid plaque counts from stained slides, and (3) CERAD score: a semi-quantitative measure of 122 

neuritic plaque severity18. The latter include: (4) τ IHC: abnormally phosphorylated τ protein density via 123 

immunohistochemistry, (5) tangles: neurofibrillary tangle counts from silver stained slides, and (6) 124 

Braak stage: a semi-quantitative measure of neurofibrillary tangle pathology 19. Thus, MD-AD generates 125 

six highly related predictions simultaneously and covers each of the two main hallmarks of AD 126 

neuropathology (plaques and tangles) at three levels of granularity. The three studies measure partially 127 

overlapping subsets of the six phenotypes described above (Figure 1e and Table 1), so across our 128 

combined dataset some variables are sparsely labeled, although Braak and CERAD are each measured in 129 

all studies (Figure 1e). During training, the MD-AD model continually updates model parameters via 130 

backpropagation, but only for labeled phenotypes from a given sample. Thus, for each phenotype for a 131 

given sample, MD-AD updates parameters from associated separate layers along with all shared layers. 132 

This allows us to train a unified model from all available samples despite having many missing labels. 133 

 134 

MD-AD accurately predicts neuropathology from gene expression, and its predictions are 135 

generalizable to external datasets. 136 

In the first pass at model evaluation, we assessed MD-AD using standard five-fold cross-validation (CV), 137 

quantifying the average mean squared error (MSE) on the test samples (Figure 2a and Supplementary 138 

Figure 1d).  We compared MD-AD to two simpler baseline models: a regularized linear model (ridge 139 

regression) and a single output deep neural network (MLP). These alternative results helped us assess two 140 

significant components of the MD-AD model: (1) its non-linear modeling of the relation between gene 141 

expression and neuropathological phenotypes, and (2) its joint modeling of multiple related 142 

neuropathological phenotypes. In general, MLP models outperformed linear models, highlighting a 143 

general advantage of deep learning over a linear approach. Furthermore, compared to the MLP models, 144 

MD-AD showed MSE reductions of 7% for CERAD score, 13% for Braak stage, 7% for NPs, 25% for 145 

tangles, 10% for Aβ immunohistochemistry (IHC), and 14% for τ IHC (Figure 2a). Interestingly, MD-146 

AD showed its largest performance gain for the tangles variable, which also had the most missing labels 147 

(Figure 1e), highlighting a specific advantage of joint learning for sparsely labeled data.  148 

Because our model was trained and evaluated on ACT, MSBB, and ROSMAP datasets, we assessed 149 

whether residual (uncorrected) batch effects affected performance. To do so, we performed additional 150 

validation experiments by leaving out specific datasets during training and then evaluating their 151 

performance for MD-AD trained on the other datasets (Figure 2b, Supplementary Figure 2a). We 152 

evaluated MSE performance for ROSMAP alone since it was the only dataset with all six phenotype 153 

labels; further, by evaluating a single dataset’s performance, we can identify the influence of adding 154 

“external” data. We make several observations from this analysis. First, as one may expect, larger training 155 

samples always helped reducing prediction error on test samples from the unseen study (ROSMAP), and 156 

especially so when datasets from multiple cohorts were included in the training (i.e., ACT and MSBB) 157 

(circular markers in Figure 2b). Second, when considering the effects of augmenting ROSMAP data with 158 

other datasets during training (diamond markers in Figure 2b), we observed that errors initially increased 159 

when adding a new dataset but tended to decline as more datasets were included in training. This may 160 

result from small differences in labeling conventions across studies, or batch effects in gene expression 161 

data. However, we find that the benefits of additional heterogeneous samples ultimately outweigh 162 

potential batch effects in prediction performance. Third, interestingly, we observed that adding new 163 

samples improved performance for a phenotype even when the phenotype in question was not measured 164 
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in the new samples (see gray footprints around markers in Figure 2b). This suggests that the shared 165 

representation learned by MD-AD captures the underlying biological signal common across noisy 166 

neuropathological phenotype measurements.  167 

Next, as the ultimate test of MD-AD out-of-sample predictions, we assessed performance on three 168 

independent studies never seen by the model: Mount Sinai Brain Bank Microarray (MSBB; N=1,053), 169 

Harvard Brain Tissue Resource Center (HBTRC; N=460), and Mayo Clinic Brain Bank (N=323). 170 

Because these datasets provide a sparse set of neuropathological labels, we evaluated whether MD-AD 171 

predictions were consistent with the (binary) neuropathological diagnosis of AD by calculating “MD-AD 172 

neuropathology scores” for each sample (by averaging ranked predictions across the six phenotypes). For 173 

comparison with other methods, we also generated “neuropathology score” predictions for our baseline 174 

models.  175 

As shown in Figure 2c, we observed a highly significant difference in predicted neuropathology scores 176 

between AD cases and controls (two-sided t-test: t= 22.98, p<0.001), and these differences were more 177 

pronounced for MD-AD compared to the other baseline models (results split by dataset are shown in 178 

Supplementary Figure 3a). More convincingly, when split by age group (Figure 2c right panel), we 179 

consistently observed a significant increase in predicted neuropathology for AD vs control samples, but 180 

the difference was largest in individuals under 75 (between-groups p-values are shown in Supplementary 181 

Figure 3b). This is consistent with the observation that aging individuals who are cognitively non-182 

impaired often have substantial neuropathology15. Together, these results indicate that MD-AD can 183 

identify generalizable gene expression patterns that are predictive of AD-related neuropathology across 184 

varied age ranges, and thus it is unlikely that these patterns merely capture normal aging. 185 

 186 

Complex transcriptomic predictors of neuropathology are conserved across species. 187 

We next evaluated how well MD-AD’s learned expression patterns predictive of neuropathology 188 

recapitulated neuropathology in mouse models. We applied MD-AD trained on human datasets to make 189 

predictions based on brain (hippocampal and cortical) gene expression data from 30 TASTPM mice that 190 

harbored double transgenic mutation in APP and PSEN1 and compared the predictions to those from 76 191 

wild type mice20. We focused on TASTPM mice because they were found to robustly exhibit early signs 192 

of amyloid aggregation and plaque formation. As above, to simplify MD-AD predictions, we then 193 

predicted all six neuropathological phenotypes via MD-AD and generated an aggregate “neuropathology 194 

score” per mouse (as described in Supplementary Methods).  195 

As shown in Figure 2d, MD-AD predicted significantly higher neuropathology scores for the 196 

homozygous cross TASTPM than wild type mice (two-sided t-test: t=3.45, p <.001). The MLP baseline 197 

method also produced significant differences between homozygous and wild type mice, but less 198 

effectively (t=3.01, p<.01). Furthermore, there was a stronger trend for higher predictions in the 199 

heterozygous TASTPM cross (N=32) than wild type mice for MD-AD (t=1.38, p=.17) compared to MLP 200 

baselines (p=.38). Interestingly, our linear baseline tended to predict lower average neuropathology levels 201 

for these AD strains than wild type, suggesting that a linear approach may fail to effectively model cross-202 

species AD signal. None of the models produced significantly different neuropathology scores between 203 

other strains (i.e., TPM, TAS10, Tau) and wild type mice, consistent with lower neuropathological burden 204 

in these models (data not shown). Notably, when we stratified the samples by age, we found that MD-AD 205 

tended to predict higher neuropathology in older mice regardless of strain), but in particular it made 206 
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higher neuropathology predictions for homozygous than heterozygous crosses followed by wild type mice 207 

(many of these groups differed significantly from one another, as shown in Supplementary Figure 3c). 208 

Overall, these results indicate that MD-AD learns a generalizable expression pattern associated with 209 

neuropathology that is conserved across species. 210 

 211 

Deep transcriptomic signatures of neuropathology are predictive of AD dementia 212 

Hidden layers of a deep neural network capture the embedding of input examples in the derived feature 213 

space, yielding a “hidden” representation that is predictive of the outcome(s) of interest. In this case, the 214 

last shared layer of MD-AD (Figure 1a, c) captures a latent (lower) dimensional representation of gene 215 

expression that is predictive of multiple types of neuropathology related to AD. To derive the biological 216 

basis of MD-AD predictions, we first visualized this embedding space in 2D using the t-SNE algorithm 217 

(Figure 3a) 21 (to improve stability, we used a consensus approach over many re-trainings of the MD-AD 218 

model, Supplementary Figure 4a). We observed that the representation in this space was impressively 219 

coherent with respect to all six neuropathological variables: individuals with similar overall 220 

neuropathology severities had similar MD-AD consensus representations for their gene expression 221 

profiles, and this observation was true for external test samples not used for model training (Figure 3d-e, 222 

Supplementary Figure 3d).  This was remarkable because representations derived by unsupervised 223 

dimensionality reduction (e.g., K-means or PCA) failed to capture the components of gene expression 224 

relevant to neuropathology, and mainly captured batch effects, while those derived by standard single 225 

output MLP tended to overfit to each neuropathology variable and were incoherent across 226 

neuropathological measurements (Figure 3c and Supplementary Figure 5).  227 

Next, we evaluated whether the MD-AD embedding can go beyond neuropathology to also capture the 228 

molecular manifestation of AD dementia. In particular, we considered three “higher-level” phenotype 229 

variables: AD dementia (a clinical diagnosis of AD), assessment of cognitive function, and assessment of 230 

AD duration. We then correlated the latent representation captured by the hidden nodes in the last shared 231 

layer with each of these three higher-level phenotypes. As shown in Figure 3b, we found that MD-AD 232 

consistently produced nodes that were significantly correlated with high-level AD phenotypes; using 233 

paired t-tests, these correlations often outperformed nodes from our MLPs and always outperformed 234 

unsupervised methods and module-based approaches (p<.05 after FDR correction over nodes). This 235 

indicates that MD-AD creates embeddings that most consistently capture the relationship between gene 236 

expression and general AD severity. Together, these results show that by jointly predicting several 237 

neuropathological phenotypes, the MD-AD framework produces a low dimensional representation of 238 

gene expression data, in the form of embedding nodes, that robustly captures a generalizable signature of 239 

AD beyond individual neuropathological phenotypes alone.  Detailed annotations for MD-AD embedding 240 

nodes are provided in Supplementary Table 2 and Supplementary Figure 4b-d. 241 

 242 

MD-AD reveals an interrelationship between sex and immune genes predictive of AD 243 

neuropathology 244 

We next sought to interpret MD-AD’s learned parameters to identify the set of genes (and their 245 

relationships) that underlie its impressive predictive performance. Here, we applied the Integrated 246 

Gradient (IG) algorithm12 on the fully trained model in an ensemble fashion to ensure robustness 247 

(Supplementary Methods, Supplementary Figure 6a-b), producing an “importance score” for each gene. 248 
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For a global view, we first performed functional enrichment analysis (GSEA22,23) using these importance 249 

scores, and found that relevant genes for the MD-AD model were enriched for several pathways, 250 

including metabolism of RNA and proteins, immune system, cell-to-cell communication, and signal 251 

transduction (Figure 4b). Figure 4a shows the top 50 genes and their pathway annotations where the 252 

particular relevance of immune function is even more prominent.  253 

We next assessed to what extent the learned gene importance varied between a linear model and a non-254 

linear model like MD-AD. With a simple linear correlation-based gene ranking, we found that the top 50 255 

genes had a much lower prevalence of REACTOME pathways (Supplementary Figure 7a). When we 256 

directly compared the top 1% of genes from MD-AD versus a correlation-based approach in Figure 4c, 257 

we observed that many genes belonging to metabolism, immune system, and signal transduction 258 

pathways were highly ranked for MD-AD but not for correlation-ranking. In contrast, transcription-259 

related genes were more frequently highly ranked for correlation-based rankings compared to MD-AD’s 260 

rankings. Overall, gene importance scores generated via correlations alone were enriched for a much 261 

larger set of REACTOME categories (Supplementary Figure 7b), whereas MD-AD pathways tended to 262 

be more specific (Figure 5b). We saw similar results when performing the same analyses with KEGG 263 

pathways (Supplementary Figure 8) 24.  264 

The nonlinear relationships identified by MD-AD can implicitly capture interaction effects with other 265 

covariates observable from expression data (e.g., sex, age, medication intake). Leveraging the fact that, if 266 

our model captures a nonlinear effect, then two samples with the same expression level for a single gene 267 

could receive different IG (“importance”) scores by MD-AD (e.g., Figure 5d; in contrast, a linear model 268 

would have no vertical dispersion), we assessed whether a covariate like sex could explain discrepancy 269 

between expression levels and IG scores. (Sex is a major risk factor in AD and has prominent gene 270 

expression signatures25). Thus, we modeled each gene’s IG score as a linear combination of the gene’s 271 

expression, the individual’s sex, and the interaction between them to identify sex-interacting genes 272 

relevant to AD. Of the 14,591 genes in our dataset, 6,465 showed differential MD-AD importance 273 

between sexes (p<0.05 after FDR), demonstrating that sex-specific expression effects in AD may be 274 

widespread. To confirm that genes are not sex-differential by chance, we show the distribution of sex-275 

differential genes compared with the same analysis conducted with shuffled sex labels (Supplementary 276 

Figure 9a). However, we were particularly interested in genes with high overall MD-AD importance. 277 

When focusing on the top 100 genes with the highest MD-AD scores, we consistently observed high 278 

degrees of interaction between sex and immune system genes (as well as reproduction and hemostasis-279 

related genes) (Figure 5a-b; we saw similar patterns for KEGG pathways in Supplementary Figure 9b-280 

c).  281 

We next explored specific examples of genes with high MD-AD rankings and strong interactions with sex 282 

(i.e., the six genes from the top 100 MD-AD list with the strongest interaction p-values; Figure 5c-d): 283 

KNSTRN, C4B, CMTM4, TREM2, P2RY11, and SERPINA3. In particular, for each of these genes, we 284 

observed high expression values associated with higher neuropathology predictions but some 285 

stratification across sexes: high expression in females led to especially high neuropathology predictions 286 

for KNSTRN and P2RY11, while the opposite was true for the other four genes. More broadly, our finding 287 

immune genes display sex-differential contributions to MD-AD scores appears to be consistent with 288 

conclusions from recent studies about sex differences in neuroinflammatory activity and the role these 289 

differences may play in neurodegenerative disorders26. 290 
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We note that some of our top sex-interacting genes may play important roles in immune response, 291 

particularly in microglia. TREM2, which is genetically implicated in AD, interacts with CD33 (another 292 

AD susceptibility gene) 27, is an important contributor in the clearance of toxic Amyloid-β by microglia in 293 

mice 28, and is correlated with Aβ deposition in the human brain 27.  Similarly, KNSTRN is known to be 294 

upregulated in mouse microglial cells’ early response to neurodegeneration29. These findings indicate that 295 

MD-AD may capture patterns related to sex-differential microglia activity. To explore this idea further, 296 

we obtain lists of upregulated genes from nine clusters of single cell microglial transcriptomes30, and 297 

compare them to our MD-AD gene rankings. As expected, many top MD-AD genes are upregulated in 298 

multiple microglial clusters (Figure 6a); correlation-based methods ranked these microglial genes less 299 

highly (Supplementary Figure 9d). Furthermore, genes upregulated in clusters related to stress, immune 300 

function and proliferation tended to be sex-differential in their gene importance (Figure 6b), further 301 

strengthening the finding that sex differences in immune response and inflammation may be an important 302 

factor in the molecular basis of age-related neuropathology.  303 

To more broadly identify possible cell-type specific effects of MD-AD’s important genes, we tested for 304 

the enrichment of 41 different cell type clusters (across six cell types) found by a single cell 305 

transcriptomic analysis of AD8. Here, we found an enrichment of 2 different microglia clusters, as well as 306 

astrocytes and inhibitory neuron clusters (Figure 6c). Hence, MD-AD’s predictions of neuropathology 307 

rely on broader transcriptomic events that goes beyond microglia genes, suggesting a heterogeneity in the 308 

underlying molecular biology that is predictive of accumulation of AD-related neuropathology.  309 

 310 

Complex transcriptomic predictors learned by MD-AD are conserved across tissues. 311 

Although MD-AD was developed for brain gene expression data, we next asked whether the learned 312 

transcriptomic signatures generalize to blood. To this end, we applied our brain-trained MD-AD model to  313 

gene expression datasets from two batches of the AddNeuroMed cohort, which we called Blood1 and 314 

Blood2 (NCBI GEO database accessions GSE63060 and GSE63061, respectively; summarized in 315 

Supplementary Table 3)31. As shown in Figure 7a, MD-AD predicted significantly higher 316 

neuropathology scores for individuals with both mild cognitive impairment (MCI) (two-sided t-test: 317 

t=7.34, p <.001) and AD dementia (two-sided t-test: t=5.87, p <.001) compared to cognitively normal 318 

controls (CTL). Consistent with external brain samples shown in Figure 2d and 2f, MD-AD predictions 319 

tended to increase with age for cognitively normal individuals, while they were consistently significantly 320 

higher for MCI and AD individuals compared to controls for individuals under 80 years old (Figure 7b, 321 

Supplementary Figure 10b). Importantly, we noted that a linear model failed to make meaningful 322 

predictions (Figure 7a and Supplementary Figure 10a), suggesting that complex models like MD-AD 323 

have better performance in extracting the true underlying signal transferrable between tissues than linear 324 

models. 325 

Next, we evaluated whether the patterns captured by the MD-AD model were consistent across training 326 

brain gene expression samples and blood. To this end, we again visualized MD-AD’s learned embedding 327 

using the t-SNE algorithm (Figure 7c). We noted a clear difference in expression patterns between blood 328 

and brain samples (as seen by the clustering of blood samples in Figure 7c); however, MD-AD 329 

nevertheless produced an embedding for blood data that stratified blood samples along predicted 330 

neuropathological phenotypes in a manner highly consistent with the blood donor’s cognitive status 331 

(Figure 7c; Supplementary Figure 10c). Together, these analyses indicate that jointly learning the 332 
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relationship among brain gene expression and several neuropathological phenotypes may allow for 333 

learned representations that span tissues. This in turn can open up new avenues for early identification of 334 

individuals at risk, and provide new clues into tissue-agnostic molecular mechanisms underlying AD 335 

dementia.  336 

 337 

DISCUSSION 338 

We introduce MD-AD, a deep neural network approach for jointly modeling the relationship between 339 

brain gene expression data and multiple sparsely labeled neuropathological phenotypes in a multi-cohort 340 

setting. By exploiting the synergy between deep learning and a multi-cohort, multi-task setting, we 341 

demonstrated that MD-AD can capture complex, non-linear feature representations that are not learned 342 

using conventional expression data analysis methods. Specifically, we observed that multi-task learning 343 

improves prediction performance over singly trained models. Adding data from different cohorts 344 

improves performance for various phenotypes, even those that lacked labels. When we extended our 345 

method to other datasets, it captured AD-related biological signals, showing that MD-AD can transfer 346 

effectively to out-of-sample, out-of-species (mouse), and even out-of-tissue (blood) datasets.  347 

As a neural network framework, MD-AD’s last shared layer embedding reveals high-level features of 348 

gene expression that are predictive of neuropathology according to the intermediate components of the 349 

model. As expected, due to multi-task supervision, our embedding nodes tend to relate to AD-associated 350 

neuropathology far more effectively than do standard unsupervised approaches and earlier reported 351 

(unsupervised) module-based approaches.  Compared to singly task-supervised neural networks, the joint 352 

training MD-AD performs consistently provided a more stable and coherent AD-related embedding. By 353 

exploring the molecular pathways relevant to each node, we identified relevant gene sets contributing to 354 

these high-level AD-related features of gene expression.  355 

Finally, we leveraged the complex relationships learned by MD-AD to refine our understanding of the 356 

molecular drivers of AD neuropathology. By interpreting genes relevant to our model’s predictions, we 357 

uncovered that MD-AD relied on many genes not found in earlier linear-based methods, including several 358 

immune system genes. These findings expand the general narrative established by human genetic studies 359 

of AD and now a proteomic study of AD32; in particular, we see enrichment for complement pathway 360 

genes (Figure 4) which likely connect with the role of the complement receptor 1 (CR1) gene which 361 

harbors an AD susceptibility variant whose functional consequences remain poorly understood but do 362 

include an influence on the accumulation of neuritic plaque pathology33–36. Thus, MD-AD results 363 

converge with human genetic results to emphasize the role of complement in AD; interestingly 364 

complement protein C4B emerges as one of the top pathology-related genes that display a strong 365 

interaction with sex, with men showing a much stronger association than women (Figure 5c). This is 366 

similar to the behavior of TREM2, another well-validated AD susceptibility gene (Figure 5c); however, 367 

its relation to amyloid pathology in ROSMAP data was previously reported as being modest27. MD-AD 368 

was able to uncover its more prominent role in transcriptional data, which is obscured by its sex-369 

dependent nature. Likewise, women reported to have higher expression of a signature of aged microglia 370 

in these data26, and two modules of co-expressed cortical genes enriched for microglial genes and 371 

associated with amyloid (module m114) or tau (module m5) pathology are also influenced by sex37. 372 

However, the role of neither group of genes is explained by sex; this indicates that the role of sex in the 373 

impact of the immune system in AD is complex. MD-AD was able to uncover this complexity more 374 
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effectively, as is illustrated in Figure 5c where some genes have greater effects in men and other in 375 

women. Thus, it is not the case that role of the immune system is polarized in one of the two sexes; rather, 376 

some pathways and perhaps certain cell subsets may have a larger role in women while others are 377 

dysfunctional in men. This could explain why the role of immune genes is more prominent in our 378 

analyses: reports from simpler linear models often included immune pathways6 but other pathways 379 

usually figured more prominently in these earlier RNA-based network models. A meta-analysis of RNA 380 

studies (which include the ROSMAP data) highlighted the larger number of sex-influenced genes among 381 

the AD-associated gene modules and noted that microglial cells appear to be enriched for both male and 382 

female-specific expression effects. With our list of results and our careful evaluation of sex effects we 383 

now have an important new road map with which to guide our exploration of the role of microglia in AD 384 

in a sex-informed manner. This perspective will be critical not only for mechanistic studies whose results 385 

could be obscured by sex effects but also, more importantly, by guiding the study design of clinical trials 386 

as highly targeted therapeutic agents emerge to modulate the immune system in AD.  387 

This is but one of the narratives that has emerged from our initial deployment of the MD-AD approach in 388 

the aging brain. As new cohorts are characterized, sample sizes expand and new data such as single 389 

nucleus RNA sequencing profiles emerge, our approach will help to facilitate data integration and to 390 

uncover insights that would not otherwise emerge. Beyond enabling good predictions, our report may 391 

actually highlight a more important contribution of MD-AD in resolving key elements of the data 392 

structure in the nodes that we defined: these are more than simple aggregates of factors with predictive 393 

power. They are beginning to uncover complex interactions, such as the impact of sex which is involved 394 

in both men and women, but in different ways, making it difficult to appreciate the role of certain immune 395 

pathways in simpler statistical models. 396 

 397 

  398 
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FIGURE LEGENDS  399 

Figure 1. Overview of the MD-AD method and analyses. (a) Overview of the MD-AD framework: MD-400 

AD is trained to predict six neuropathology phenotypes simultaneously from brain gene expression 401 

samples. During model training, samples do not need to have all available phenotypes; they influence 402 

only the layers for which they have labels (including shared layers). (b) Illustrates out-of-sample datasets 403 

we used to validate MD-AD’s predictions (c) Illustrates analyses used to validate the last shared layer of 404 

MD-AD.  (d) By using model interpretability methods, we highlight genes relevant to MD-AD’s 405 

predictions. Further analyses reveal non-linear effects among genes and their relationship with AD 406 

severity prediction.  407 

Figure 2. MD-AD prediction performance for within-sample and out-of-sample data. (a) Average test set 408 

mean squared error (MSE) for phenotype predictions across 5 test splits. MLP: Multiple Layer 409 

Perceptron. Linear: linear model using L2 regularization. (b) Average MSE for ROSMAP test set samples 410 

when training on subsets of the available data sets in the training set. (c)  For samples from three external 411 

validation data sets, we obtain neuropathology scores for each sample by averaging the percentiles of 412 

predictions across all six neuropathology variables. Left: t-test statistics measuring the difference between 413 

each model’s predicted neuropathology scores for AD-diagnosed vs. control individuals. All tests results 414 

were statistically significant (p<.001). Right: Box plots displaying the distribution of MD-AD’s predicted 415 

neuropathology scores split by age group and diagnosis (see Supplementary Figure 3b for sample sizes 416 

and significance of pair-wise differences). (d) Left: t-test statistics measuring the difference between each 417 

model’s predicted neuropathology score for heterozygous TASTPM vs. wild type mice. Middle: t-test 418 

statistics measuring the difference between each model’s predicted neuropathology score for homozygous 419 

TASTPM vs. wild type mice (*: p<.05, **: p<.01, ***:p<.001). Right: Box plots displaying the 420 

distribution of MD-AD’s predicted neuropathology scores for mice split by age and strain (See 421 

Supplementary Figure 3c for sample sizes and significance of pair-wise differences). 422 

Figure 3. Comparing MD-AD’s supervised embedding to other embedding methods. (a) For each colored 423 

box, Left: 2-dimensional t-SNE embedding of MD-AD’s last shared layer colored by neuropathological 424 

phenotype indicated in the title of the box, Right: -log10(p-value) of correlations between “best” node 425 

from each embedding method and the neuropathological phenotype across 5 test folds. The “best” node 426 

was identified as the most significantly correlated in the training set, but the figure reports correlation -427 

log10(p-value)’s in their corresponding test sets. Bar graph columns (left to right): two unsupervised 428 

embeddings (green; K-Means and PCA), three module-based embeddings (orange; Modules #1 7 and 429 

Modules #2 6, and Modules #39), six singly-trained MLPs (blue), and MD-AD (red). (b) Highest 430 

correlation -log10(p-values) (averaged across 5 training folds) found between each embedding method and 431 

high-level AD phenotypes: dementia (diagnosis prior to death), dementia duration (approximate time 432 

between dementia diagnosis and death; available for ACT and ROSMAP), and last available cognition 433 

score (controlling for age, sex and education; available for ROSMAP only).  All p-values listed are shown 434 

after FDR correction over the nodes within each method. (c) 2-dimensional t-SNE embedding of 435 

alternative embedding methods (described in a). (d) 2-dimensional t-SNE embeddings of MD-AD 436 

embeddings for training and external data sets. Each point represents a sample colored by dataset (Left), 437 

AD status for external samples (Middle) and MD-AD’s predicted neuropathology score (Right). (e) 2-438 

dimensional t-SNE embeddings of MD-AD embeddings for external human and mouse samples.  439 

Figure 4. Top predictive genes for the consensus MD-AD model. (a) Top 50 MD-AD genes and whether 440 

they are negatively (-) or positively (+) associated with high neuropathology.  Colored squares indicate 441 
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that the gene belongs at least one pathway in the column-labeled REACTOME category. (b) Gene set 442 

enrichment -log10(p-value) across the final MD-AD gene ranking for REACTOME pathways. Bars are 443 

colored by the pathway’s REACTOME category. We show all pathways with significant enrichment 444 

(p<.01).  REACTOME pathways with long names are indicated by their REACTOME stable IDs. (c) 445 

Comparison of top genes from MD-AD vs a linear correlation-based approach. For each ranking method, 446 

we identify the top 1% of all genes and check their membership in REACTOME categories. For each 447 

REACTOME category with at least 15 genes in the top 1% of MD-AD and/or correlation rankings, we 448 

generate the following plot: each line represents a gene, with left endpoint at the percentile rank for MD-449 

AD and right endpoint at percentile rank for correlations. For clarity, we color the line purple if the gene 450 

falls in the top 1% of both MD-AD and correlations, red if it is only in the top 1% of MD-AD, and blue if 451 

it is only in the top 1% of correlations. Finally, the title indicates the ratio of MD-AD to correlation-based 452 

top genes for the given REACTOME category.  453 

Figure 5. MD-AD’s top genes and their interactions with sex. (a) For the top 100 MD-AD genes, we 454 

compute the significance of the interaction between expression and sex for its MD-AD score. The bars 455 

indicate the gene’s –log10(p-value) of the interaction term with sex (after FDR correction), and pathway 456 

categories each gene belongs to are indicated below. A filled square indicates that the gene significantly 457 

interacts with sex (p<.05 after FDR correction), and an “x” marker indicates that it does not. (b) For 458 

genes with significant sex interactions, we compute the significance of the overlap between REACTOME 459 

category genes and sex-differential genes among:  Left:  all genes, and Right: the top 100 MD-AD genes 460 

only.  (c) For the top 100 MD-AD genes, we identify the genes with the most significant sex interaction 461 

for MD-AD scores. We show the significance of the interaction (Top) and the interaction coefficients 462 

(Bottom) for the top 6 most sex-differential genes. Each gene’s MD-AD rank is indicated in their x-axis 463 

labels (d) For the top 6 most-sex differential top 100 MD-AD genes, we display scatter plots of 464 

expression by MD-AD score, coloring each sample by sex of the donor. 465 

Figure 6. MD-AD’s reliance on microglial cluster genes and gene set signatures. (a) Bars indicate the 466 

gene’s –log10(p-value) of the interaction term with sex (after FDR correction), and gene membership in 467 

microglial cluster gene sets from Olah et al.30 is indicated below. A filled square indicates that the gene 468 

significantly interacts with sex (p<.05 after FDR correction),  and an “x” marker indicates that it does not. 469 

(b) For genes with significant sex interactions, we compute the significance of the overlap between 470 

microglial cluster genes and sex-differential genes among:  Left:  all genes, and Right: the top 100 MD-471 

AD genes only. (c) Gene set enrichment -log10(p-value) across the final MD-AD gene ranking for cell 472 

type signatures.8  473 

Figure 7. MD-AD’s transfer performance for blood gene expression data sets. (a) Shows t-test statistics 474 

comparing average predicted neuropathology between individuals with mild cognitive impairment (MCI; 475 

Left) and Alzheimer’s dementia (AD; Right) vs. cognitively normal (CTL) individuals. (b) Box plots 476 

show the differences in predicted neuropathology for blood samples from individuals stratified by age 477 

group and cognitive status. Significant differences are shown in Supplementary Figure 10b. (c) t-SNE 478 

embedding of last shared layer from MD-AD models trained for Blood1 and Blood2 datasets. Samples are 479 

colored by their dataset (Left), cognitive status (while brain samples are shown in grey; Middle), and 480 

predicted neuropathology score (Right).  481 

  482 
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SUPPLEMENTARY METHODS 483 

1. DATA PROCESSING 484 

For developing the MD-AD model, we used data from the following RNA-Seq and neuropathology 485 

datasets available through the AMP-AD Knowledge Portal: (1)  Adult  Changes  in  Thought  (ACT) 15,  486 

(2) Mount Sinai Brain Bank (MSBB) 16, and (3) Religious Orders Study/Memory and Aging Project 487 

(ROSMAP)6,13,14.  Details of sample collection and sequencing methods are described in previously 488 

published work 6,13–16. We pooled together brain gene expression data from the temporal cortex, parietal 489 

cortex, hippocampus, and forebrain white matter from ACT, Brodmann areas 10, 22, 36, and 40 from 490 

MSBB, and the dorsolateral prefrontal cortex from ROSMAP. To avoid confounding conditions, we 491 

excluded samples from individuals who had neuropathological diagnoses other than AD.  Taken together, 492 

the studies provide 1,758 gene expression samples. 493 

In order to compile gene expression samples across the three cohorts, we retain expression levels for 494 

genes which are present in all datasets. Within each dataset, we exclude genes with null values for over 495 

two-thirds of samples. Before combining datasets, we log-transformed the expression values and then 496 

normalized them for each gene to vary between 0 and 1.  We then combined the gene expression datasets 497 

and performed batch effect correction with ComBat17 to reduce systematic differences across studies 498 

(Supplementary Figure 1b-c)17. The resulting dataset contains 1,758 gene expression samples, each with 499 

14,591 genes measured.  500 

Next, for each gene expression sample, we incorporated the available corresponding neuropathology 501 

labels: (1) Aβ IHC: amyloid-β protein density via immunohistochemistry, (2) plaques: neuritic amyloid 502 

plaque counts from stained slides, and (3) CERAD score: a semi-quantitative measure of neuritic plaque 503 

severity38,  (4) τ IHC: abnormally phosphorylated τ protein density via immunohistochemistry, (5) 504 

tangles: neurofibrillary tangle counts from silver stained slides, and (6) Braak stage: a semi-quantitative 505 

measure of neurofibrillary tangle pathology 19. Detailed descriptions for each phenotype within each 506 

dataset are provided in Supplementary Table 1. Because Braak stage and CERAD score are global 507 

measurements of neuropathological damage, if an individual had multiple available gene expression 508 

measurements from different regions, they each sample was labeled with the same Braak and CERAD 509 

values. However, Aβ-IHC and τ-IHC were provided for several brain regions for both ROSMAP and 510 

ACT studies. Therefore, each expression sample was labeled with the Aβ-IHC and τ-IHC measurements 511 

for the same or nearest region. Because the available plaques label provided by MSBB was averaged over 512 

several brain regions, we similarly used ROSMAP’s average plaques and tangles labels (aggregated from 513 

several regions) for consistency with MSBB’s metrics (see Supplementary Table 1). Finally, for 514 

consistency across datasets, we first normalized all neuropathological variables to vary between 0 and 1 515 

before combing datasets.  516 

 517 

2. COMPUTATIONAL METHODS 518 

A. Review of previous approaches 519 

Post-mortem transcriptomic studies have investigated molecular phenotypic and neuropathological 520 

outcomes in AD. Early work in this domain examined simple correlations among gene expression and 521 

AD symptoms10 or compared gene expression levels across AD-patients versus controls11. More recently, 522 

more systematic network-based analyses have contributed to the understanding of AD biology. In 523 
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particular, Zhang et al. 7 constructed molecular networks based on bulk gene expression data separately 524 

for individuals with and without AD, and identified modules with remodeling effects in the AD network. 525 

More recently, Mostafavi et al. 6 used co-expressed genes in the aging human frontal cortex to build a 526 

single molecular network and identified modules related to AD neuropathological and cognitive 527 

endophenotypes. Using single-cell RNA sequencing data, Mathys et al. 8 clustered cells within brain cell-528 

types to identify and characterize AD-related cellular sub-populations. Each of these approaches have 529 

been applied to single cohorts. Until recently, a unified and robust modeling of AD neuropathology based 530 

on brain gene expression has been hindered by relative scarcity and regional heterogeneity of brain gene 531 

expression datasets. One possible solution is to combine multiple data sets to gain statistical power. The 532 

collection of postmortem brain RNA-sequencing datasets, assembled by the AMP-AD (Accelerating 533 

Medicines Partnership Alzheimer's Disease) consortium, provides new opportunities to combine multiple 534 

data sets. However, such heterogeneous datasets pose challenges to many methods, which must account 535 

for inter-study differences. In a recent attempt, Logsdon et al.9 used a meta-analysis approach to identify 536 

co-expressed modules separately for 7 brain regions across 3 datasets, then subsequently applied 537 

consensus methods to identify modules that were conserved across multiple regions and studies. As of 538 

now, we’re not aware of any methods that directly model all data in a unified way.  539 

B. The MD-AD Model 540 

MD-AD (Multi-task Deep learning for Alzheimer’s Disease neuropathology), is a unified framework for 541 

analyzing heterogeneous AD datasets to improve our understanding of expression basis for AD 542 

neuropathology (Figure 1). Unlike previous approaches, MD-AD learns a single neural network by 543 

jointly modeling multiple neuropathological measures of AD severity phenotypes, and hence can 544 

incorporate data collected from multiple datasets. This unified framework has key advantages over 545 

separately trained models. First, MD-AD allows sparsely labeled data, which is a natural characteristic of 546 

datasets aggregated through consortium efforts (Figure 1e). Even if different phenotypes only partially 547 

overlap in the measured samples, each sample contributes to the training of both phenotype-specific and 548 

shared layers. Predicting multiple phenotypes at once biases shared network layers to capture relevant 549 

features of these AD phenotypes at the same time. This is of critical importance: each phenotype 550 

represents a different type of noisy measurement of the same underlying true biological process, and as 551 

we demonstrate by joint training MD-AD is able to average out the noise to extract the true hidden signal. 552 

Additionally, the increased sample size enables MD-AD to capture complex non-linear interactions 553 

between genes and phenotypes. In contrast, Multi-layer perceptrons (MLPs) offer another powerful 554 

approach for directly capturing complex relations between gene expression and a phenotype. However, 555 

training separate MLPs for each phenotype (Supplementary Figure 1a) has limited scope: it can utilize 556 

only the samples measured for a specific phenotype, and it cannot share information across related 557 

phenotypes. We demonstrate that these advantages improve MD-AD prediction accuracy, enabling it 558 

predictions to generalize across species and tissue types (Figure 1b). As illustrated in Figure 1a, the MD-559 

AD network jointly predicts six neuropathological phenotypes from gene expression input data via shared 560 

hidden layers followed by task-specific hidden layers.  561 

 562 

3. TRAINING & EVALUATING MD-AD  563 

As described above, we build the MD-AD model in Python using the TensorFlow and Keras packages. In 564 

order to have efficient and robust training and to reduce overfitting, we apply a principal component 565 
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analysis (PCA) transformation to the data and use resulting top 500 principal components – a 500-566 

dimensional representation of our 14,591 gene expression values – as the input to the MD-AD and all 567 

baseline models. For comparison to MD-AD, we generate six analogous MLP networks with un-shared 568 

representations, and six linear models containing no hidden layers, to serve as baseline models (see 569 

Supplementary Figure 1a).   570 

In order to robustly evaluate the performance of the models, we segment the dataset into five parts, and 571 

each part is treated as a test set once. Within each of the five training and test split splits, each model 572 

architecture was trained and hyperparameter-tuned using five-fold cross validation within the training set. 573 

We then train each model with the best hyperparamters found by cross validation using the full training 574 

set before performance was evaluated on the corresponding test set (see Supplementary Figure 1d). 575 

Thus, prediction performance reported in the results section are the average of these five test performance 576 

values. For training the models, we use a mean squared error (MSE) loss function applied to each 577 

phenotype prediction. For the MLP and linear baselines, parameters of the networks are updated via back-578 

propagation for 200 epochs from the mean-squared error (MSE) of the network’s prediction on the given 579 

variable’s label among training batches. Similarly, MD-AD’s parameters are also updated via back-580 

propagation, with the loss function calculated as the sum over MSEs across all six prediction tasks 581 

(masking losses for missing phenotypes). For MD-AD, we explored several different options for 582 

architectures with different amounts of shared and task-specific layers (Supplementary Figure 2b-c). 583 

We selected the final architecture (shown in Figure 1a) because we wanted to have multiple hidden 584 

layers in both the shared portion and task-specific portion of the network to allow for non-linear 585 

interactions to be learned in both the shared representation and in the task-specific branches, and 586 

Supplementary Figure 2b-c shows that alternatives to this approach tended to perform similarly or 587 

worse.  588 

A. Internal test-set validation  589 

As described above, for each training and test split, we use five-fold cross-validation to make modeling 590 

choices for the MD-AD model and baselines before training each model with the full training set and 591 

reporting and reporting test MSEs (averaged over all five test splits).  We evaluate model performance in 592 

two ways: (1) standard train and test sets, and (2) ROSMAP test performance for different subsets of the 593 

available datasets.  594 

First, separately for each of our five cross validation training sets, we calculate the final test MSE on the 595 

corresponding hold-out set. To test whether these effects are significant, for each baseline method, we 596 

performed one-sided paired t-tests to determine whether there is a significant difference between the 597 

baseline method’s error and MD-AD’s across the five test folds (Figure 2a). Next, in order to evaluate 598 

the contributions of each dataset to prediction performance, we performed the above procedure with 599 

different subsets of available datasets. Because ROSMAP is the only dataset with all available 600 

phenotypes, we evaluate performance specifically on ROSMAP. In Figure 2b, we show ROSMAP test 601 

samples’ MSE performance when trained on all subsets of ACT, MSBB, and ROSMAP training samples 602 

(following the same cross-validation procedure described above). 603 

B.  External dataset validation (Human) 604 

In order to evaluate MD-AD’s ability to generalize to out of sample data, we assessed performance on 605 

three datasets: Mount Sinai Brain Bank Microarray (MSBB-M; N=1,053), Harvard Brain Tissue 606 
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Resource Center (HBTRC; N=460), and Mayo Clinic Brain Bank (N=323). These datasets were collected 607 

from AMP-AD, but were left out of the original MD-AD training because they were microarray samples 608 

or lacked many neuropathology labels.  609 

After normalizing gene expression samples from external data sets in the same way as described for the 610 

ACT, MSBB RNA Seq, and ROSMAP datasets, we then adjust the expression values to have similar 611 

distributions to our batch corrected training data sets. We evaluated the MD-AD model on our new 612 

processed data to obtain predictions for all six phenotypes. Because these three external datasets provide a 613 

sparse set of neuropathological labels, we do not have access to labels for many of the six MD-AD labels. 614 

Instead, we evaluated whether MD-AD’s predictions were consistent with the (binary) neuropathological 615 

diagnosis of AD, by aggregating MD-AD’s various neuropathology predictions into one “neuropathology 616 

score”. The “neuropathology score” was produced by first calculating percentiles across samples (within 617 

each dataset) for each neuropathological phenotype, then averaging over the six phenotypes.  618 

Figure 2c shows that MD-AD provides the largest differences in neuropathology scores between 619 

individuals with and without neuropathological diagnoses of AD. We further compared neuropathology 620 

scores between AD and non-AD individuals split by age group (significance between groups shown in 621 

Supplementary Figure 3b)  622 

C. Cross-species validation (Mouse) 623 

To evaluate how well expression patterns predictive of neuropathology learned by MD-AD recapitulates 624 

neuropathology in mouse models. To that end, we obtained gene expression data from Matarin et al. 20   625 

for 30 TASTPM mice which harbor double transgenic mutation in APP and PSEN1, as well as 76 wild 626 

type mice. Data were quantile-normalized and log transformed. For this experiment, we mapped mouse to 627 

human genes (via gene symbols) for a total of 7,057 intersecting genes between our training dataset and 628 

the mouse expression data, which were again normalized to follow the same distributions as our MD-AD 629 

training data. We retrained our MD-AD model on only these 7057 genes for all MD-AD samples and then 630 

generated “neuropathology scores” for the mouse samples exactly as described in the previous section. As 631 

with out-of-sample experiments described above, we compare MD-AD to MLPs and linear models in 632 

separating neuropathology scores between TASTPM and wild type mice (Figure 2E). We also show 633 

differences in neuropathology scores between different age groups (Figure 2d, Supplementary Figure 634 

3c).  635 

D. Supervised embedding validation 636 

The output of an intermediate layer of a neural network can be viewed as lower dimensional embedding 637 

of the input features. In this paper, we focus on the last shared layer of the MD-AD network because it is 638 

a supervised embedding of gene expression data which is influenced by all six training phenotypes. We 639 

evaluate the embedding compared with those generated by both singly-trained MLPs as well as 640 

unsupervised methods (i.e., K-Means and principal components analysis (PCA)) in two ways: (1) high 641 

level visualization with t-SNE, and (2) evaluating the correspondence between individual nodes and AD-642 

related features.  643 

Visualizations with t-SNE: For each of the MD-AD, MLP, and unsupervised models, we train the models 644 

on the full combined dataset. For the deep learning models, we then generate “supervised” embeddings by 645 

obtaining the output of the last shared layer (or analogous layer of the MLP model). For the unsupervised 646 
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methods, K-Means and PCA, we generate an embedding of 100 dimensions to be consistent with the MD-647 

AD and MLP models. After generating these embeddings for all samples, we then compress them to 2 648 

dimensions via the t-SNE algorithm 21. T-SNE Visualizations of MD-AD’s supervised embedding are 649 

shown in Figure 3a (left side for each phenotype), and the figure is replicated with six times, with each 650 

plot showing samples colored by neuropathological phenotype severity for each of the six phenotypes. 651 

For comparison, t-SNE visualizations for the singly-trained MLPs and unsupervised methods are shown 652 

in Figure 3c (colored by CERAD Score only) and colored by other phenotypes and covariates of interest 653 

in Supplementary Figure 5.   654 

Node-phenotype correlations: To test whether MD-AD’s embedding generalizes more to AD phenotypes 655 

than the alternative methods, we compare the nodes that best capture each phenotype among MD-AD, 656 

MLPs, and unsupervised methods. We perform the following analysis with the same five training and test 657 

splits described earlier: for each of the six phenotypes used in MD-AD’s training, we identify the node in 658 

MD-AD’s last shared layer whose output is most significantly correlated with that phenotype in the 659 

training set. We then report the –log10(p-value) (after FDR correction over nodes) for the correlation 660 

between that node’s output and the training phenotype in the test set, averaged across the train/test splits. 661 

(Figure 3a, right side for each phenotype). 662 

We also perform a similar analysis with higher-level AD phenotypes not used during model training: 663 

dementia diagnosis (binary variable available in all datasets), last available cognition score (controlling 664 

for age, sex, and education; only available for the ROSMAP dataset), and AD duration (i.e., time between 665 

dementia diagnosis and death; available for the ACT and ROSMAP datasets). For this analysis, we report 666 

the highest –log10(p-value) after FDR correction between nodes and the high-level phenotypes, average 667 

over the five test sets (Figure 3b). 668 

  669 

4. MODEL INTERPRETATION 670 

A.  Constructing and annotating MD-AD consensus nodes (Figure S7) 671 

Because deep neural networks have non-convex loss functions, randomness in our training procedure 672 

produces networks with different weights from run to run. In order to capture robust nodes and highly 673 

relevant genes, we repeat our training procedure 100 times, in order to simulate a “consensus network”. 674 

As shown in Supplementary Figure 6a, we construct “MD-AD consensus nodes” by clustering nodes 675 

from many runs: (1) we train 100 MD-AD networks, (2) we obtain last shared layer node outputs for all 676 

samples and normalize them (0-mean, unit variance), (3) we combine all nodes across all runs and then 677 

cluster them using k-means (where the dimensions used to calculate similarity are samples) with k=50, 678 

(4) we summarize each cluster of nodes by their medoid. Thus, for each sample, the MD-AD consensus 679 

embedding is made up of 50 nodes which are medoids of clusters generated from 100 re-trainings. 680 

In Supplementary Figure 4b, we provide a visual overview of the MD-AD consensus embedding 681 

generated as described above. To provide a simple view of clusters, we select a subset of samples for 682 

which we have clear high or low pathology, excluding ambiguous cases. We include (1) individuals with 683 

Braak stage of at least 5 and CERAD scores at least 3 (i.e., “moderate”), or (2) individuals with Braak 684 

stage of 3 or lower and a CERAD score of 1 (i.e., “absent”) who are at least 85 years old and have no 685 

dementia. Case 1 captures all individuals with pathologic AD diagnoses (with and without dementia), 686 

whereas case 2 captures all individuals considered “resistant” to AD due to their old age but lack of 687 
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cognitive or neurological decline (consistent with previous literature, e.g. Latimer et al. (2019)).   To 688 

annotate each node in the consensus embedding, we display their correlations with various phenotypes 689 

and covariates, as well as their enrichment for REACTOME pathways.  690 

Correlations: For each variable (neuropathological phenotypes, high-level AD phenotypes, and 691 

covariates), we compute the correlation –log10(p-value) between the variable and each consensus node 692 

output. In Supplementary Figure 4c, a high –log10(p-value) indicates that a node captures (or is highly 693 

linearly related to) a variable. 694 

Pathway enrichment: Beyond relationships between nodes and phenotypes, we annotated nodes with 695 

which gene sets are relevant to their outputs.  For each of the fully trained MD-AD model, we use 696 

integrated gradients (IG) 12 to obtain sample-level gene importances for each consensus node. Note that 697 

each consensus node (as medoid within a cluster) is some node in one of the 100 re-training runs of MD-698 

AD, thus we perform integrated gradients for the specific node in that network. By generating sample-699 

level gene attributions for each sample, we are able to aggregate the absolute IG values across samples to 700 

obtain average gene attributions for each gene on each node. For each MD-AD consensus node, this 701 

method therefore provides us with a ranking over all genes by their importance. We then test for 702 

enrichment of REACTOME pathways 40 in these gene rankings via gene set enrichment analysis (GSEA) 703 
22,23 to identify whether certain pathways seem to be involved in the activation these nodes. Enriched 704 

pathways for the MD-AD consensus nodes are shown in Supplementary Figure 4d. Supplementary 705 

Table 2 provides detailed annotations for each node.  706 

B.  Identifying MD-AD’s top genes  707 

In order to identify genes that drive MD-AD predictions, we used integrated gradients (IG) 12 to provide 708 

importance estimates of each gene on the predicted outcomes. Again, in order to improve model stability, 709 

we calculate gene rankings based on 100 re-trainings. After each run of training, we take our trained 710 

model and apply IG for each sample to get the importance of each gene on each phenotype prediction. We 711 

then calculate a weighted average by sample (weighted by relative pathology) to compute a global 712 

importance value for each gene on each phenotype, where positive values indicate that high expression of 713 

the gene relates to more severe AD phenotypes. Finally, by averaging over all phenotypes, we obtain our 714 

final “IG score” the given round of MD-AD training. By averaging these score across 100 re-trainings, we 715 

arrive at our “consensus IG score” for MD-AD. Negative scores imply that higher expression is 716 

associated with less pathology, while positive scores imply that higher expression is associated with more 717 

pathology, according to MD-AD.  We note that 100 re-trainings are more than enough to converge to a 718 

stable gene ranking (Supplementary Figure 6c). The top genes for MD-AD are shown in Figure 4a, and 719 

enriched REACTOME pathways in the top ranked MD-AD genes (via GSEA) are shown in Figure 4b. 720 

The full gene ranking, generated separately for each phenotype, is provided in Supplementary Table 4. 721 

For comparison with a linear gene ranking method, we also calculate the correlations between each gene 722 

with each neuropathological phenotype (across all samples in our dataset), and then rank the genes by 723 

their average correlation coefficients across all six phenotypes. Comparisons between REACTOME 724 

categories represented in the top MD-AD vs correlation-based rankings are shown in Figure 4c. 725 

C.  Calculating nonlinear effects for MD-AD genes  726 
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As a deep learning method MD-AD has the capacity to identify non-linear relationships among genes’ 727 

expression levels and neuropathological phenotypes. These non-linear relationships may reveal an 728 

implicit capture of interaction effects with other covariates observable from expression data. Thus, we 729 

sought to investigate the presence of interactions between sample-level covariates and specific genes in 730 

their contributions to the MD-AD predictions. To monitor the presence of these interaction effects, we 731 

modeled the consensus IG scores as a linear combination of a gene’s expression level, a covariate of 732 

interest, and the interaction of the two. Specifically,  𝑠𝑐𝑜𝑟𝑒𝒈,𝒊 = 𝒂 𝑒𝑥𝑝𝑟𝒈,𝒊 + 𝒃 𝑓𝑒𝑎𝑡𝒊 + 𝒄 𝑒𝑥𝑝𝑟𝒈,𝒊 𝑓𝑒𝑎𝑡𝒊 +733 

𝒅, where scoreg,i is the consensus IG value for gene g and sample i, exprg,i  is the sample i’s expression 734 

level for gene g, and feati is sample i’s value for the covariate.  Based on this representation, we consider 735 

there to be an interaction effect between a gene and feature on its importance in the MD-AD model if the 736 

learned c coefficient is statistically significant (p<.05, after FDR correction over all genes). We primarily 737 

focus on identifying an interaction effects with sex (feati = 1 if sample i comes from a male), and rank 738 

interactions between genes and sex for MD-AD based on the –log10(p-value) of the interaction term.  739 

Gene set enrichment: We evaluated whether sex-differential genes were enriched for the following gene 740 

sets: (1) REACTOME pathways40 and (2) microglial cluster gene signatures from a recent single cell 741 

RNA Seq analysis of microglial cells from autopsied aging brains30. To evaluate whether the list of sex-742 

differential MD-AD genes are enriched for gene sets of interest, we use Fisher’s exact tests to evaluate the 743 

significance of overlap between all sex-differential genes and members of each gene set. Next, to evaluate 744 

whether the top MD-AD sex-differential genes are enriched for the same gene sets, we perform Fisher’s 745 

exact tests again, but this time only consider the top 100 MD-AD genes in the calculations.  746 

5. BLOOD GENE EXPRESSION VALIDATION  747 

To evaluate the ability of MD-AD to transfer to blood gene expression data, we downloaded publically 748 

available AddNeuroMed cohort data from GEO (GSE63060 and GSE63061, which we refer to as Blood1 749 

and Blood2, respectively). Details about the AddNeuroMed samples are provided in Supplementary 750 

Table 3. As with the other validation datasets, each blood dataset was normalized such that each gene’s 751 

expression values have the same mean and variance as the processed MD-AD expression data. Because 752 

each blood dataset had a different set of available genes, for each dataset, we re-trained MD-AD 753 

consensus models for brain samples with only the genes available between them and blood samples 754 

(12,104 and 11,392 genes for Blood1 and Blood2 respectively). Because these blood samples came from 755 

living participants, we do not have access to the many neuropathology variables available across the brain 756 

samples. Instead, we assess whether MD-AD’s predictions align with individuals’ cognitive diagnosis of 757 

cognitively normal (CTL), mild cognitive impairment (MCI), or dementia.  758 

We evaluate the effectiveness of the MD-AD model by comparing predicted MD-AD pathology scores 759 

between CTL and MCI individuals, and between CTL individuals and individuals with dementia via two-760 

sided t-tests (together, and split by age). To evaluate the MD-AD embedding for blood samples, 761 

separately for each blood dataset, we obtain the last shared layer embeddings of both the MD-AD brain 762 

expression samples and blood samples from the first round of training.  763 

  764 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


20 
 

REFERENCES 765 

1. De Jager, P. L., Yang, H. S. & Bennett, D. A. Deconstructing and targeting the genomic 766 
architecture of human neurodegeneration. Nat. Neurosci. 21, 1310–1317 (2018). 767 

2. Gaiteri, C., Mostafavi, S., Honey, C. J., De Jager, P. L. & Bennett, D. A. Genetic variants 768 
in Alzheimer disease-molecular and brain network approaches. Nat. Rev. Neurol. 12, 413–769 
427 (2016). 770 

3. Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 771 

8, 0–6 (2018). 772 

4. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional 773 
pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019). 774 

5. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies 775 

new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–776 
430 (2019). 777 

6. Mostafavi, S. et al. A molecular network of the aging human brain provides insights into 778 
the pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 21, 811–819 779 

(2018). 780 

7. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-781 
onset Alzheimer’s disease. Cell 153, 707–720 (2013). 782 

8. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer ’ s disease. Nature 570, 783 
332–337 (2019). 784 

9. Logsdon, B. A. et al. Meta-analysis of the human brain transcriptome identifies 785 

heterogeneity across human AD coexpression modules robust to sample collection and 786 

methodological approach. (2019). doi:10.7303/syn17114455 787 

10. Blalock, E. M. et al. Incipient Alzheimer’s disease: Microarray correlation analyses reveal 788 
major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. U. S. A. 101, 789 

2173–2178 (2004). 790 

11. Katsel, P., Li, C. & Haroutunian, V. Gene expression alterations in the sphingolipid 791 
metabolism pathways during progression of dementia and Alzheimer’s disease: A shift 792 

toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? 793 
Neurochem. Res. 32, 845–856 (2007). 794 

12. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. 34th Int. 795 
Conf. Mach. Learn. ICML 2017 7, 5109–5118 (2017). 796 

13. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and findings 797 
from the religious orders study. Curr. Alzheimer Res. 9, (2012). 798 

14. Bennett, D. A. et al. Overview and Findings from the Rush Memory and Aging Project. 799 

Curr. Alzheimer Res. 9, 646–663 (2012). 800 

15. Miller, J. A. et al. Neuropathological and transcriptomic characteristics of the aged brain. 801 
Elife 6, 1–26 (2017). 802 

16. Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and 803 
proteomic data in Alzheimer’s disease. Sci. Data 5, 1–16 (2018). 804 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


21 
 

17. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression 805 
data using empirical Bayes methods. Biostatistics 8, 118–127 (2007). 806 

18. Mirra, S. S. et al. The consortium to establish a registry for Alzheimer’s disease 807 
(CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s 808 
disease. Neurology 41, 479–486 (1991). 809 

19. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta 810 
Neuropathol. 82, 239–259 (1991). 811 

20. Matarin, M. et al. A Genome-wide gene-expression analysis and database in transgenic 812 
mice during development of amyloid or tau pathology. Cell Rep. 10, 633–644 (2015). 813 

21. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9, 814 
2579–2605 (2008). 815 

22. Daly, M. J. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are 816 
coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003). 817 

23. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for 818 
interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–819 

15550 (2005). 820 

24. Qiu, Y.-Q. KEGG Pathway Database. in Encyclopedia of Systems Biology (eds. Dubitzky, 821 
W., Wolkenhauer, O., Cho, K.-H. & Yokota, H.) 1068–1069 (Springer New York, 2013). 822 
doi:10.1007/978-1-4419-9863-7_472 823 

25. Trabzuni, D. et al. Widespread sex differences in gene expression and splicing in the adult 824 
human brain. Nat. Commun. 4, (2013). 825 

26. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 1–8 826 
(2018). 827 

27. Chan, G. et al. CD33 modulates TREM2: Convergence of Alzheimer loci. Nat. Neurosci. 828 
18, 1556–1558 (2015). 829 

28. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s 830 

disease model. Cell 160, 1061–1071 (2015). 831 

29. Mathys, H. et al. Temporal Tracking of Microglia Activation in Neurodegeneration at 832 

Single-Cell Resolution. Cell Rep. 21, 366–380 (2017). 833 

30. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset that is 834 
associated with Alzheimer’s disease. (2020). 835 

31. Lovestone, S. et al. AddNeuroMed - The european collaboration for the discovery of 836 

novel biomarkers for alzheimer’s disease. Ann. N. Y. Acad. Sci. 1180, 36–46 (2009). 837 

32. Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and 838 
cerebrospinal fluid reveals early changes in energy metabolism associated with microglia 839 

and astrocyte activation. Nat. Med. 26, 769–780 (2020). 840 

33. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 841 
associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099 (2009). 842 

34. Farfel, J. M. et al. Relation of genomic variants for Alzheimer disease dementia to 843 

common neuropathologies. Neurology 87, 489–496 (2016). 844 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


22 
 

35. Chibnik, L. B. et al. CR1 is associated with amyloid plaque burden and age-related 845 
cognitive decline. 69, 560–569 (2011). 846 

36. Thambisetty, M. et al. Effect of complement CR1 on brain amyloid burden during aging 847 
and its modification by APOE genotype. Biol. Psychiatry 73, 422–428 (2013). 848 

37. Patrick, E. et al. A cortical immune network map identifies distinct microglial 849 

transcriptional programs associated with beta-amyloid and Tau pathologies. Press 850 

38. Mirra, S. S. et al. The Consortium to Establish a Registry for Alzheimer’s Disease 851 
(CERAD): Part II. Standardization of the neuropathologic assessment of Alzheimer’s 852 
disease. Neurology 41, (1991). 853 

39. Latimer, C. S. et al. Resistance and resilience to Alzheimer’s disease pathology are 854 
associated with reduced cortical pTau and absence of limbic-predominant age-related 855 

TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol. Commun. 7, 9 856 
(2019). 857 

40. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–858 

D503 (2020). 859 

 860 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


a

S
a
m

p
le

-l
e
v
e
l

G
lo

b
a
l

Identify relevant genes 

and pathways across 

pathologies

Gene Attributions C P A B τT

………………

…
…

d

MD-AD

CERAD

NPs

Aβ IHC

Braak

τ IHC

Tangles

Gene Exp.

C
P
A
B

τ
T

………

ACT MSBB ROSMAP

Phenotypes

…

Supervised 

Embedding

5
0
 n

o
d
e
s

High level 

representation

Node-level 

assessment

c

Transfer across 

species

Phenotype 

Predictions Evaluation on 

test set

Out-of-sample 

imputation

C

P

A

B

τ

T

b

Transfer to blood 

samples

CERAD NPs Aβ IHC Braak τ IHCTangles

ACT

MSBB

ROSMAP

# Expression 
Samples

337

879

524

e

Figure 1
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


Samples with 
phenotype label

Samples without 
phenotype label 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

a

τ IHC

1.0

0.8

0.6

0.4

Tangles
1.5

1.2

0.9

0.6

Braak

0.7

0.6

0.5

0.4

Aβ IHC

1.2

1.0

0.8

0.6

0.4

NPs

0.7

0.6

0.5

0.4

CERAD

0.7

0.6

0.5

0.4

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

b

CERAD

NPs

Aβ IHC

Braak

Tangles

τ IHC

400     800   1200   1600

1.2

1.1

1.0

0.9

0.8

0.7

0.6

1.2

1.1

1.0

0.9

0.8

0.7

0.6

A R M

A
+

R

A
+

M

M
+

R

A
+

M
+

R

R
O

S
M

A
P

 M
S

E
R

O
S

M
A

P
 M

S
E

Data set size

Trained with 

ROSMAP data?

Yes 

No

Datasets Included:

A = ACT, M = MSBB

R = ROSMAP

t-
te

s
t 
s
ta

ti
s
ti
c

c
Human external 

validation samples

<75 75-85 >85

20

15

10

5

0

TASTPM vs wild type Mice: 
d

4

2

0

-2

Homozygous

2 188

Split by age (years) Split by age (months)

1

.8

.6

.4

.2

0

4M
D

-A
D

 N
e
u
ro

p
a
th

. 
S

c
o
re

t-
te

s
t 
s
ta

ti
s
ti
c

M
D

-A
D

 N
e
u
ro

p
a
th

. 
S

c
o
re

1

.8

.6

.4

.2

0

TASTPM Strain:
Wild type         Het.            Ho.

Heterozygous

Control          AD

Figure 2
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


Low                             High = Missing

CERAD BraakNPs TanglesAβ IHC τ IHCPCA K-Means

MLP baselinesUnsupervisedc Modules

#1 #2

Low                  HighExternal         

MD-AD

Control

AD
Low                  HighMouse         

Human

Any strain: ≤4
TASTPM Ho.: ≥8
TASTPM Het.: ≥8 
Wild Type: ≥8

MD-AD embeddings for external human brain samples

Dataset
Pathological 

diagnosis
MD-AD 

neuropath. score 

d e

Dataset
Strain: Age 

(Months)

MD-AD embeddings for mouse brain samples

MD-AD 
neuropath. score 

#3

b

24

16

8

0

24

16

8

0

24

16

8

0

15

10

5

0

4

2

0

12

8

4

0

4

2

0

4

2

0

a Dementia

Dementia Duration

Cognition 
(controlled for age, sex, edu)

Braak

Tangles

τ IHC

CERAD

Neuritic Plaques

Aβ IHC

-l
o

g
1

0
(p

) 
-l

o
g

1
0
(p

) 
-l

o
g

1
0
(p

) 

-l
o

g
1

0
(p

) 
-l

o
g

1
0
(p

) 
-l

o
g

1
0
(p

) 

-l
o

g
1

0
(p

) 
-l

o
g

1
0
(p

) 
-l

o
g

1
0
(p

) 

6

4

2

0

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

C P A B T τ

MLPsModules

1 2 3

Figure 3
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


M
e
ta

b
o
lis

m
 o

f 
R

N
A

M
e
ta

b
o
lis

m

Im
m

u
n
e
 S

y
s
te

m

C
e
ll-

C
e
ll 

c
o
m

m
u

n
ic

a
ti
o

n

C
e
ll 

re
s
p
o
n
s
e
: 

e
x
te

rn
a
l 
s
ti
m

u
li

M
e
ta

b
o
lis

m
 o

f 
p
ro

te
in

s

S
ig

n
a
l 
T

ra
n
s
d
u
c
ti
o

n

T
ra

n
s
p
o
rt

 o
f 

s
m

a
ll 

m
o
le

c
u
le

s

H
e
m

o
s
ta

s
is

T
ra

n
s
c
ri
p

ti
o

n

D
e
v
e
lo

p
m

e
n
ta

l 
b
io

lo
g
y

D
is

e
a
s
e

M
u
s
c
le

 c
o
n
tr

a
c
ti
o

n

C
h
ro

m
a
ti
n
 o

rg
a
n
iz

a
ti
o
n

A
u
to

p
h
a
g
y

C
e
ll 

C
y
c
le

D
N

A
 R

e
p
a
ir

E
x
tr

a
c
e
llu

la
r 

m
a
tr

ix
 o

rg
.

N
e
u
ro

n
a
l 
s
y
s
te

m

O
rg

a
n
e
lle

 b
io

g
e
n
./

m
a
in

t.
 

R
e
p
ro

d
u
c
ti
o

n

V
e
s
ic

le
-m

e
d
ia

te
d
 t
ra

n
s
p
o
rt

LTF +

GFAP +

PLCE1 +

FPR3 +

C4B +

KRT86  -

DCHS2  -

ZNF98 +

NPNT +

SLC28A2 +

RERG  -

ALDH2  -

EFHB +

KNSTRN +

ICAM3  -

IZUMO4  -

RB1CC1  -

HIST1H3D +

SLC22A1 +

TREM2 +

KATNAL2  -

MSR1 +

SPX +

SLC29A4  -

PRSS35  -

KLRC2  -

CAPG +

RAC2  -

NLRP2 +

HRASLS5 +

ARSE +

PAXIP1 +

MMP25  -

GDPD2 +

APOC1 +

THNSL2  -

MTMR8  -

SLC34A3 +

SLC37A2 +

STK32B  -

SIGLEC1 +

HAS2  -

SERPINA3 +

PADI2 +

LRAT  -

EPHA8 +

ACSM5 +

SPATA20  -

TUBB4A  -

MS4A7 +

Enrichment: -log10(p-value) 

0 1 2 3 4 >4

Metabolism

31 genes; Ratio: 2.20

Immune System

33 genes; Ratio: 1.57

Hemostasis

18 genes;  Ratio: 1.25

Signal Transduction

39 genes;  Ratio: 1.22

Developmental biology

17 genes;  Ratio: 1.12

Transport of small molecules

17 genes;  Ratio: 1.00

Metabolism of proteins

24 genes;  Ratio: 0.79

Gene expression (Transcription)

15 genes;  Ratio: 0.36

.9
.75

.5

0

1

.9
.75

.5

0

1
.9
.75

.5

0

1

.9
.75

.5

0

1

a b

c

G
e
n
e
’s

 r
a
n
k
 

(p
e
rc

e
n
ti
le

)

G
e
n
e
’s

 r
a
n
k
 

(p
e
rc

e
n
ti
le

)

MD-AD Corrs MD-AD Corrs MD-AD Corrs MD-AD Corrs

mRNA decay by 5' to 3' exoribonuclease

Nonsense-Mediated Decay (NMD)

NMD independent of the Exon Junction Complex

rRNA processing in the nucleus and cytosol

rRNA processing

Respiratory electron transport

R-HSA-163200

Complex I biogenesis

Selenoamino acid metabolism

Branched-chain amino acid catabolism

Abacavir metabolism

Phosphate bond hydrolysis by NUDT proteins

R-HSA-198933

Activation of C3 and C5

PD-1 signaling

Complement cascade

Calcineurin activates NFAT

Cell junction organization

Cell-cell communication

Cell-cell junction organization

Cell-extracellular matrix interactions

Attenuation phase

Metallothioneins bind metals

Receptor-mediated mitophagy

Eukaryotic Translation Initiation

R-HSA-1799339

R-HSA-72662

Class A/1 (Rhodopsin-like receptors)

GPCR ligand binding

Signaling by GPCR

Peptide ligand-bindingreceptors

Signaling by Rho GTPases

G alpha (i) signalling events

Na+/Cl- dependent neurotransmitter transporters

Nitric oxide stimulates guanylate cyclase

cGMP effects

R-HSA-8936459

R-HSA-8939243

Developmental biology

Regulation of expression of SLITs and ROBOs

Signaling by ROBO receptors

Influenza Infection

Muscle contraction

HDACs deacetylate histones

Metabolism of RNA

Metabolism

Immune System

Cell-Cell communication

Cell responses: external stimuli

Metabolism of proteins

Signal Transduction

Transport of small molecules

Hemostasis

Transcription

Developmental bio.

Disease

Muscle contraction

Chromatin organization

Figure 4
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


Metabolism of RNA
Metabolism
Immune System
Cell-Cell communication
Cell responses: external stimuli
Metabolism of proteins
Signal Transduction
Transport of small molecules
Hemostasis

Transcription
Developmental bio.
Disease
Muscle contraction
Chromatin organization
Neuronal system
Cell cycle 
Autophagy
Reproduction

Top 100 MD-AD Genes

In
te

ra
c
ti
o
n
 w

/ 
S

e
x
: 

-l
o
g
1
0
(p

-v
a
lu

e
)

6

4

2

0

P
a
th

w
a
y

M
e
m

b
e
rs

h
ip

K
N

S
T

R
N

 (
1
4
)

C
4
B

 (
5
)

C
M

T
M

4
 (

6
5
)

T
R

E
M

2
 (

2
0
)

P
2
R

Y
1
1
 (

7
0
)

S
E

R
P

IN
A

3
 (

4
3
)

KNSTRN (14) C4B (5) CMTM4 (65)

TREM2 (20) P2RY11 (70) SERPINA3 (43)

All genes

Enrichment for sex-interacting pathway genes in MD-AD

MD-AD’s top 

100 genes

6

4

2

0

2e-5

0

-2e-5

Female               Male 

high expression  higher 

pathology especially in:

M

F

Significance of interaction: 

sex and gene importance

-l
o
g
1
0
(p

-v
a
lu

e
)

In
te

ra
c
ti
o
n
 

c
o
e
ff

ic
ie

n
t 

b

a

c d

0               25          50                  75                   100

Expression Expression Expression

0  .2  .4  .6  .8  1.0

0  .2   .4   .6   .8  1.0 0 .2  .4  .6  .8  1.0 0  .2   .4  .6  .8  1.0

0  .2 .4  .6 .8 1.0 0  .2  .4  .6  .8  1.0

2

1.5

1

.5

0

M
D

-A
D

 s
c
o
re

 (
x
 1

0
-4

)
M

D
-A

D
 s

c
o
re

 (
x
 1

0
-4

)

3
2.5

2
1.5

1
.5
0

1.5

1

.5

0

2

1.5

1

.5

0

3
2.5

2
1.5

1
.5
0

3

2.5

2

1.5

1

.5

0

Gene (MD-AD rank)

REACTOME Pathway Category

4

3

2

1

0

3

2

1

0In
te

ra
c
ti
o
n
 -

lo
g
1
0
(p

-v
a
lu

e
)

Figure 5
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


In
te

ra
c
ti
o
n
 w

/ 
S

e
x
: 

-l
o
g
1
0
(p

-v
a
lu

e
)

6

4

2

0

C
lu

s
te

r

M
e
m

b
e
rs

0               25          50                  75                   100

Enrichment for sex-interacting microglial genes in MD-ADb

a

All genes MD-AD’s top 

100 genes4

3

2

1

0

In
te

ra
c
ti
o
n
 -

lo
g
1
0
(p

-v
a
lu

e
)

3

2

1

0

Cluster 1: Homeostasis 
Cluster 2: Homeostasis
Cluster 3: Distressed cells
Cluster 4: Interferon response
Cluster 5: Cytokine signaling
Cluster 6: Cytokine signaling
Cluster 7: Antigen presentation
Cluster 8: Transcription factors
Cluster 9: Proliferating

0 1 2 3

Mic1
Mic3
Ast3

In9

c MD-AD: Enrichment for cell-type signatures  

Single Cell Microglial Cluster

Microglia
Astrocytes
Inhibitory Neurons

Enrichment -log10(p-value) 

Figure 6
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087


Dataset
Cognitive  

Status

c

Avg. predicted 

pathology

B
lo

o
d
1

B
lo

o
d
2

<74            [74,80)           80+       

AD vs CTLMCI vs CTL

8

6

4

2

0

1

.8

.6

.4

.2

0

Split by age (years)

a
t-

te
s
t 
s
ta

ti
s
ti
c

M
D

-A
D

 N
e
u
ro

p
a
th

. 
S

c
o
re

Low                  HighBlood         

Brain
CTL

MCI/AD

CTL            MCI              AD

MD-AD embeddings for blood samples

b

Figure 7
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.404087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.404087

