Reconstitution of β -adrenergic regulation of Ca_V1.2: Rad-dependent and Rad-independent protein kinase A mechanisms.

Short title: Reconstitution of β -adrenergic regulation of Ca_V1.2

Moshe Katz¹, Suraj Subramaniam², Orna Chomsky-Hecht², Vladimir Tsemakhovich¹, Anouar Belkacemi⁴, Veit Flockerzi⁴, Enno Klussmann⁵, Joel A. Hirsch^{2,3}, Sharon Weiss¹, Nathan Dascal^{1,3}

¹Sackler School of Medicine, ²Faculty of Life Sciences, ³Sagol School of Neuroscience, Tel Aviv University, Israel; ⁴Experimentelle und Klinische Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421, Homburg, Germany; ⁵Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.

Correspondence to: Nathan Dascal, School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.

tel. (972) 3 6405743; fax. (972) 3 6409113; e-mail: dascaln@tauex.tau.ac.il

Abstract

Introduction

Cardiac L-type voltage-gated Ca_V1.2 channels are crucial in physiological regulation of cardiac excitation-contraction coupling. Adrenergic modulation of Ca_V1.2 starts with activation of β -adrenergic receptors (AR) and culminates in protein kinase A (PKA) - induced increase of calcium influx through Ca_V1.2 channels. To date, this cascade has never been fully reconstituted in heterologous systems; even partial reconstitution proved challenging and controversial. A recent study identified Rad, a calcium channel inhibitory protein, as an essential component of the adrenergic signaling cascade. We corroborated this finding, further characterized, and fully reconstituted, the complete β -AR Ca_V1.2 modulation cascade in a heterologous expression system.

Objective

Our primary goal was to heterologously reconstitute the complete β -adrenergic cascade, and to investigate the role of Rad and additional molecular determinants in adrenergic regulation of cardiac Ca_v1.2.

Methods and Results: We utilized the *Xenopus* oocyte heterologous expression system. We expressed Ca_V1.2 channel subunits, without or with Rad and β 1-AR or β 2-AR. To activate PKA, we injected cyclic AMP (cAMP) into the oocytes, or extracellularly applied isoproterenol (lso) to stimulate β -AR. Whole-cell Ba²⁺ currents served as readout. We find and distinguish between two distinct pathways of PKA modulation of Ca_V1.2: Rad-dependent (~80% of total) and Rad-independent. We separate the two mechanisms by showing distinct requirements for the cytosolic N- and distal C- termini of α_{1c} and for the Ca_V β subunit. Finally, for the first time, we reconstitute the complete pathway using agonist activation of either β 1-AR or β 2-AR. The reconstituted system reproduces the known features of β -AR regulation in cardiomyocytes, such as a >2-fold increase in Ca_V1.2 current, a hyperpolarizing shift in activation curve, and a high constitutive activity of β 2-AR.

Conclusions

The adrenergic modulation of $Ca_v 1.2$ is composed of two distinct pathways, Rad-independent and Rad-dependent. The latter contributes most of the β -AR-induced enhancement of $Ca_v 1.2$

activity, crucially depends on $Ca_V\beta$ subunit, and is differently regulated by β 1-AR and β 2-AR. The reconstitution of the full β -AR cascade provides the means to address central unresolved issues related to roles of auxiliary proteins in the cascade, Ca_V 1.2 isoforms, and will help to develop therapies for catecholamine-induced cardiac pathologies.

Introduction

Cardiac excitation-contraction coupling crucially depends on the L-type voltage dependent Ca^{2+} channel, $Ca_V 1.2$. Influx of extracellular Ca^{2+} via $Ca_V 1.2$ triggers Ca^{2+} release from the sarcoplasmic reticulum, via the Ca^{2+} release channel (ryanodine receptor 2)¹. Activation of the sympathetic nervous system increases heart rate, relaxation rate and contraction force. The latter is due largely to increased Ca^{2+} influx via $Ca_V 1.2^2$. Pathological prolonged sympathetic activation progressively impairs cardiac function, causing heart failure, partly due to misregulation of $Ca_V 1.2^3$.

Cardiac $Ca_V 1.2$ is a heterotrimer comprising the pore-forming subunit α_{1c} (~240 kDa), the intracellular $Ca_V\beta_2$ (~68 kDa) and the extracellularly located $\alpha 2\delta$ (~170 kDa)^{4, 5}. The N and C termini (NT, CT respectively) of α_{1c} are cytosolic and vary among $Ca_V 1.2$ isoforms (Fig. 1A). It is believed that most of the cardiac α_{1c} protein is post-translationally cleaved at the CT, around amino acid (a.a.) 1800, to produce the truncated ~210 kDa α_{1c} protein and the ~35 kDa cleaved distal CT (dCT); however, the full-length protein is also present⁶⁻⁹.

The sympathetic nervous system activates cardiac β -adrenergic receptors (β -AR), primarily β 1-AR (which mediates most of the β AR-enhancement of contraction and Ca_V1.2 activity) and β 2-AR¹⁰. β 1-AR is globally distributed in cardiomyocytes, couples to G_s and elevates cAMP levels within the whole cardiomyocyte¹⁰. In contrast, β 2-AR shows spatially restricted localization to the T-tubules (which changes in heart failure)¹¹ and couples to G_s and G_{i/o}¹², producing localized cAMP increases³.

The cascade of adrenergic modulation of $Ca_v 1.2$ comprises agonist binding to β -ARs, activation of G_s , adenylyl cyclase, elevated intracellular cAMP levels, and activation of protein kinase A (PKA). The PKA holoenzyme consists of two regulatory subunits (PKA-RS) bound to two catalytic subunits (PKA-CS). cAMP binds to PKA-RS and causes dissociation of PKA-CS and PKA-

CS. The latter enhances $Ca_V 1.2$ activity. However, the final step, how PKA-CS enhances $Ca_V 1.2$ activity, remained enigmatic. A long standing paradigm was a direct phosphorylation by PKA-CS of α_{1c} and/or $Ca_V\beta$ subunits². However, numerous studies critically challenged this theory. In particular, mutated $Ca_V 1.2$ channels in genetically engineered mice lacking putative PKA phosphorylation sites on α_{1c} and/or β_{2b} , were still upregulated by PKA^{7, 13-16} (reviewed in^{4, 17}).

One significant obstacle in deciphering the mechanism of PKA regulation of Ca_V1.2 was a recurrent failure to reconstitute the regulation in heterologous systems, which proved challenging and controversial¹⁸. Previous studies in heterologous cellular models, including *Xenopus* oocytes, demonstrated that cAMP failed to up-regulate Ca_V1.2 containing the full-length α_{1C} , Ca_V1.2- α_{1c}^{19-21} . However, robust β -AR – induced upregulation of Ca²⁺ currents was observed in oocytes injected with total heart RNA²², suggesting the necessity of an auxiliary protein, the "missing link"^{19, 20}. Interestingly, partial regulation was observed with dCT-truncated $\alpha_{1c}^{23, 24}$, which is considered the predominant form of α_{1c} in the heart². We have previously reported a modest (30-40%) upregulation of Ca_V1.2, containing a dCT-truncated α_{1c} , by intracellular injection of cAMP or PKA-CS in *Xenopus* oocytes²⁴. Additionally, this regulation required the presence of the initial segment of the long-NT of α_{1c} , but did not involve Ca_V β subunit. We proposed that this mechanism may account for part of the adrenergic regulation of Ca_V1.2 in the heart²⁴. Normally adrenergic stimulation in cardiomyocytes increases the Ca²⁺ current two to three fold, thus a major part of the regulation has remained unexplained.

Recently, Liu et al. identified Rad as the "missing link" in PKA regulation of $Ca_V 1.2^{15}$. Rad is a member of the Ras-related GTPase subfamily (RGK) that inhibits high voltage activated calcium channels $Ca_V 1$ and $Ca_V 2^{25}$. Rad tonically inhibits $Ca_V 1.2$, largely via an interaction with $Ca_V \beta^{26, 27}$. Ablation of Rad in murine heart was shown to increase basal $Ca_V 1.2$ activity but suppressed β -AR regulation²⁸. Liu et al. demonstrated that PKA phosphorylation of Rad relieves this tonic inhibition to increase $Ca_V 1.2$ activity¹⁵. They reconstituted a major part of the $Ca_V 1.2$ regulation cascade, initiated by forskolin-activated adenylyl cyclase and ultimately attaining a ~2-fold increase in Ca^{2+} current, in mammalian cells expressing α_{1c} , $\alpha 2\delta$, β_{2b} and Rad^{15} . The relation between this Rad-dependent regulation and the regulation reported in our previous

study²⁴ is not clear. Furthermore, the complete pathway of adrenergic modulation of Ca_V1.2, starting with β -AR activation, has not yet been heterologously reconstituted.

Here we utilized the *Xenopus* oocyte heterologous expression system and, for the first time, reconstituted the entire pathway. We find and distinguish between two distinct pathways of PKA modulation of Ca_V1.2: a Rad-dependent and a Rad-independent pathway. We characterize the involvement of the N- and C- termini of α_{1c} and of the β_{2b} subunit in this crucial physiological regulation, and compare and contrast the Ca_V1.2 regulation by β 1-AR or β 2-AR. Our findings reveal novel aspects of the roles of α_{1c} (particularly the N- and C-termini), β_{2b} and Rad in the adrenergic modulation of cardiac Ca_V1.2 channels. Reproducing the complete β -AR cascade in a heterologous expression system will promote the identification and characterization of intracellular proteins that regulate the cascade, eventually assisting efforts to develop therapies to treat heart failure and other catecholamine-induced cardiac pathologies.

Methods

Experimental animals and ethical approval

Oocytes were harvested from adult female *Xenopus laevis* frogs, as described²⁴. Ethical approval was granted by Tel Aviv University Institutional Animal Care and Use Committee (permits 01-16-104 and 01-20-083).

DNA constructs and RNA

In this work we expressed Ca_V1.2 in *Xenopus* oocytes, usually in full subunit composition $\alpha_{1c}+\alpha_2\delta+\beta_{2b}$, by injection of equal amounts, by weight, of RNAs of each subunit (except experiments of Fig. 2 that addressed the role of the Ca_V β subunit). We used the long-NT isoform of rabbit α_{1c} (except Fig. S1 where mouse α_{1c} was used) and various mutants, as detailed in the figures. RNAs of β 1-AR, β 2-AR, human Rad, or the α_{1c} dCT (as a separate protein) were expressed according to the design of the experiment. The Ca_V β subunit used here was rabbit β_{2b} (originally termed β_{2a}^{29}). We tested the full-length β_{2b} and β_{2b} -core, composed of a.a. 26-422 of Ca_V β with deletion of the linker sequence (a.a. 138-202) as previously described³⁰. The β_{2b} -core_{3DA} mutant³¹ was prepared based on the β_{2b} -core construct with three point mutations

(D244A/D320A/D322A) (see Fig. 2A). RNAs of all constructs were prepared and injected into oocytes as described²⁴.

Electrophysiology

Recordings were performed on defolliculated oocytes 3-4 days post RNA injection. Whole-cell Ba²⁺ currents via Ca_V1.2 (I_{Ba}) were recorded using two-electrode voltage clamp, routinely in a 40 mM Ba²⁺ solution (in mM: 40 Ba(OH)₂,50 NaOH, 2 KOH, and 5 Hepes, titrated to pH 7.5 with methanesulfonic acid). The membrane potential was -80 mV and I_{Ba} was elicited by steps to +20 mV for 20 ms every 10 s. To obtain the current-voltage (I–V) relationship, currents were elicited by 20 ms pulses starting at -70 mV up to +80 mV in 10 mV increments every 10 s. Currents measured in the presence of 200 μ M Cd²⁺ were subtracted from total I_{Ba} (Fig. 5A-C) to yield the net I_{Ba}. I-V curves were fitted using the Boltzmann equation³². The parameters obtained for G_{max} and V_{rev} were then used to calculate fractional conductance at each V_m and to construct the conductance-voltage (G-V) curve. CFTR currents were measured at –80 mV in ND96 solution (in mM: 96 NaCl, 2 KCl, 1 MgCl₂, 1 CaCl₂, 5 Hepes, pH 7.6).

cAMP, PKA or Iso were applied after verifying that I_{Ba} is stable for at least 2 min. cAMP or PKA-CS were introduced into oocytes by pressure microinjection to final concentrations within the oocyte of ~100 μ M (cAMP) or ~25 ng/oocyte (PKA-CS). Isoprenaline hydrochloride (isoproterenol, Iso) was perfused into the experimental chamber.

Statistical analysis

Results are presented as median and interquartile range (IQR) [Q1-Q3], or as mean \pm standard error for normally distributed continuous variables. For comparisons between groups, we used Student's t-test or Mann-Whitney test, as appropriate. The fold change in current caused by a treatment in a single oocyte was calculated as (I_{Ba} after treatment)/(I_{Ba} before treatment). The I_{Ba} amplitudes before and after treatment in a single cell were compared using paired t-test or Wilcoxon test, as appropriate. For multiple group comparisons, we performed a One-Way ANOVA or Kruskal Wallis ANOVA on ranks, as appropriate. A Bonferroni post hoc test was performed for normally distributed data (Shapiro-Wilk test) and Dunnett's post hoc test otherwise. Statistical analysis was performed with SigmaPlot 13 (Systat Software Inc., San Jose, CA, USA).

Results

Rad plays a significant role in PKA regulation of $Ca_v 1.2$

PKA regulation of heterologously expressed Ca_V1.2 was previously observed only with dCT-truncated, but not full-length $\alpha_{1c}^{23, 24}$. In *Xenopus* oocytes, Ba²⁺ currents (I_{Ba}) via Ca_V1.2 containing dCT-truncated α_{1c} (Ca_V1.2- $\alpha_{1c}\Delta$ 1821) were increased by 20-40% following intracellular injection of cAMP or PKA-CS²⁴. Therefore, we started the study of Rad's role in regulation of Ca_v1.2 using $\alpha_{1c}\Delta$ 1821.

We expressed Ca_V1.2 in full subunit composition, $\alpha_{1C}\Delta 1821$, β_{2b} and $\alpha 2\delta$, unless indicated otherwise, at a 1:1:1 RNA ratio (by weight), and tested the effect of increasing Rad concentrations by injecting varying amounts of Rad RNA. I_{Ba} was measured 3-5 days after RNA injection, by voltage steps from -80 to +20 mV (see Fig. 1C, inserts, for examples of I_{Ba} recordings). As expected^{26, 31}, basal I_{Ba} was reduced by expression of Rad, showing an inverse correlation with Rad RNA dose (Fig. 1B). Without Rad coexpression, I_{Ba} was increased by 19%±3 (n=32, p=0.002) following cAMP injection (Fig. 1C-E). Coexpression of Rad dramatically augmented the effect of cAMP (Fig. 1C, E). This effect of Rad became statistically significant at Rad: β_{2b} RNA ratios above 1:10, with a maximum increase of 127±10% at 1:2 ratio (Fig. 1F).

The role of $Ca_{\nu}\beta$ in Rad dependent regulation

Rad inhibits $Ca_V 1.2$ through $Ca_V\beta$ -dependent and $Ca_V\beta$ -independent mechanisms^{26, 31}. To test the role of $Ca_V\beta$ in PKA regulation of $Ca_V 1.2$, we compared the change in I_{Ba} following injection of cAMP into oocytes co-expressing $\alpha_{1c}\Delta 1821$, $\alpha 2\delta$, and β_{2b} -wt (wild-type), β_{2b} -core³⁰, β_{2b} -core_{3DA} or no β_{2b} , with or without Rad (Fig. 2A). β_{2b} -core_{3DA} was designed on the basis of β_{2b} core and contained the triple mutation D244A/D320A/D322A which abolishes $Ca_V\beta$ -Rad association^{31, 35}.

In oocytes that did not express Rad, cAMP induced the typical, mild but statistically significant, 20-30% increase in I_{Ba} (Fig. 2B-D). This regulation is termed hereafter "Rad-independent". The Rad-independent cAMP effect was similar in oocytes that did not express any Ca_V β or expressed β_{2b} , β_{2b} -core, or the β_{2b} -core_{3DA} mutant (Fig. 2B-D). Co-expression of Rad

resulted in a much larger, ~2.5-fold increase in peak currents, but only when β_{2b} -wt or β_{2b} -core were present (Fig. 2B, 2D). We refer to this regulation as "Rad-dependent".

Importantly, in Rad-expressing oocytes that did not express $Ca_V\beta$, or expressed the β_{2b} core_{3DA} mutant, cAMP caused only a mild increase in I_{Ba} that resembled the Rad-independent cAMP effect (Fig. 2B-D). Notably, basal I_{Ba} was significantly increased by coexpression of β_{2b} core_{3DA} (e.g. Fig. 2C) indicating robust protein expression and channel regulation. Evidently, abrogation of β_{2b} -Rad interaction eliminates the Rad-dependent PKA regulation of $Ca_V1.2$. Thus, Rad-dependent PKA regulation of $Ca_V1.2$ is $Ca_V\beta$ -dependent. β_{2b} -core is sufficient to mediate the regulation. In contrast, the Rad-independent mechanism does not require $Ca_V\beta$ (as shown before²⁴) and its contribution to cAMP-induced current increase is much smaller than that of the Rad-dependent one.

The N-terminus of α_{1c} is important for Rad-independent but not Rad-dependent regulation

We then set out to characterize the determinants of Rad-independent regulation. The predominant cardiac isoform is the long-NT α_{1C} , where the first 46 a.a., out of ~154, are encoded by the alternative exon $1a^{34}$. The initial segment (first 20 a.a.) of this α_{1c} isoform acts as an inhibitory module, tonically reducing the activity of $Ca_v 1.2$ by reducing the channel's open probability³². Within the NT initial segment, a.a. 6-20 show partial homology with the first 16 a.a. of the short NT isoform (these 16 a.a. are encoded by the alternative exon 1), found in smooth muscle and brain⁴ (Fig. S1A). Specifically, a.a. T_{10} , Y_{13} and P_{15} (TYP motif) are highly conserved and crucial for the inhibitory function of the NT module³². Importantly, the Radindependent PKA regulation of $Ca_v 1.2 - \alpha_{1c} \Delta 1821$ is greatly reduced or abolished by the removal of the first 5 or 20 a.a. of the long NT²⁴. We have further addressed the role of the NT initial segment by expressing Ca_V1.2 with mouse $\alpha_{1c}\Delta$ 1821 containing alanine substitutions of a.a. 2-5 $(\alpha_{1c}NT-4A\Delta 1821)$ or the TYP motif $(\alpha_{1c}NT-TYP\Delta 1821)$ (Fig. S1, B-D). PKA-CS injection into oocytes expressing $\alpha_{1c}\Delta 1821$ with intact NT increased $|_{Ba}$ by ~70% (p=0.004). In contrast, oocytes expressing α_{1c} NT-4A Δ 1821 or α_{1c} NT-TYP Δ 1821 did not respond to PKA-CS. Thus, as shown previously²⁴, the initial segment of the long-NT- α_{1C} , including the first 5 a.a. and the TYP motif, is essential for the Rad-independent PKA regulation of cardiac Ca_v1.2.

To further address the role of the NT of $\alpha_{1c}\Delta 1821$ in Rad-independent vs. Raddependent PKA regulation of Ca_V1.2, we used NT-truncated- $\alpha_{1c}\Delta 1821$ with deletion of the first 20 a.a. ($\alpha_{1c}\Delta 20\Delta 1821$) (see Fig. 1A). We verified that the Rad-independent increase in I_{Ba} of $\alpha_{1c}\Delta 1821$ (34.4±7.5%; n=10) was greatly diminished in $\alpha_{1c}\Delta 20\Delta 1821$ (5±2%, n=16; p<0.001 compared to $\alpha_{1c}\Delta 1821$) (Fig. 3A, B). In contrast, co-expression of Rad resulted in similar ~1.7-2 fold increases in I_{Ba} following cAMP injection when Ca_V1.2 contained either $\alpha_{1c}\Delta 1821$ or $\alpha_{1c}\Delta 20\Delta 1821$ (p=0.154). In both constructs, the fold increase in I_{Ba} was statistically significant in the presence of Rad, and significantly greater than without Rad (Fig. 3). Thus, Rad-dependent regulation does not require the presence of the NT inhibitory module.

The role of distal C-terminus of α_{1C} in PKA regulation

It has been proposed that the cleaved dCT is a potent autoinhibitory domain that reassociates with the truncated α_{1C} , forming a tight molecular complex⁸ that is essential for PKA regulation of $Ca_V 1.2^{2, 23}$. In addition, the cleaved dCT has been reported to traffic to the nucleus where it serves as a transcription regulator^{36, 37}. However, in *Xenopus* oocytes, the presence of dCT as a separate protein was not required for Rad-independent regulation of $Ca_V 1.2 - \Delta 1821^{24}$. Recently, forskolin-induced upregulation of $Ca_V 1.2$ was demonstrated in HEK293T cells coexpressing Rad and full-length $Ca_V 1.2$ channels¹⁵. All in all, the role of dCT and its truncation in Rad-dependent regulation remains incompletely understood, and it is unknown whether this PKA regulation equally affects full-length and truncated forms of α_{1c} .

To examine the role of dCT in Rad-dependent PKA regulation of Ca_V1.2, we compared the effect of cAMP on either full length (wt) α_{1c} or $\alpha_{1c}\Delta 1821$ channels, in the absence and presence of Rad. We also examined the effect of dCT when coexpressed as a separate protein. I_{Ba} is greatly increased by the truncation of dCT³⁸. Therefore, to maintain similar macroscopic currents, we injected different amounts of the channel's subunit RNAs: 1-1.5ng RNA for Ca_V1.2 containing $\alpha_{1c}\Delta 1821$, and 1.8-5 ng RNA for Ca_V1.2 containing wt- α_{1c} . The dCT: $\alpha_{1c}\Delta 1821$ RNA ratio was 5:1 and Rad: β_{2b} RNA ratios were in the range of 1:3 to 1:1 (which yielded similar increase in I_{Ba} when cAMP is injected; see Fig. 1E). As with $\alpha_{1c}\Delta 1821$, co-expression of Rad reduced basal currents of Ca_V1.2 containing wt- α_{1c} , with median I_{Ba} of 3.05 µA [IQR 2.46-4.73] without Rad and 0.62 µA [IQR 0.47-0.73] with Rad (p<0.001; Fig. 4B). Injecting cAMP into cells expressing wt- α_{1c} did not increase I_{Ba} (actually, a slight reduction of 4±1.5%, n=12, was observed: Fig. 4A, upper panel; Fig. 4B, C). In contrast, when Rad was coexpressed with wt- α_{1c} , cAMP injection resulted in statistically significant increase of 90±21% in I_{Ba} (n=11) (Fig. 4A, lower panel; Fig. 4B, C). Interestingly, in the same experiments, the Rad-dependent cAMP-induced increase in I_{Ba} appeared higher in oocytes co-expressing Rad with $\alpha_{1c}\Delta$ 1821: 128±23%, n=18. Pairwise comparison of fold increase in I_{Ba} for Ca_V1.2 with wt- α_{1c} vs. $\alpha_{1c}\Delta$ 1821 showed a mildly significant difference, p=0.04 (Mann-Whitney test, median 2.06 [IQR 1.77-2.63] for $\alpha_{1c}\Delta$ 1821 vs. median 1.54 [IQR 1.49-2.04] for wt- α_{1c}). When dCT was co-expressed as a separate protein with $\alpha_{1c}\Delta$ 1821, it did not affect regulation by cAMP even in the presence of Rad (p=0.48) (Fig. S2). Thus, unlike Rad-independent regulation, Rad-dependent PKA regulation does not require the cleavage of dCT. Furthermore, the clipped dCT does not appear to play a role in Rad-dependent PKA regulation of $\alpha_{1c}\Delta$ 1821. However, there appears to be a quantitative difference in the overall cAMP regulation of full-length versus truncated Ca_V1.2.

Full reconstitution of the 61 adrenergic receptor regulation of Ca_v1.2

Despite more than a 3-decade effort, it has not yet been possible to reconstitute the entire adrenergic regulation of cardiac Ca_V1.2 in a heterologous model. Here we report the reconstitution of the full cascade, starting with activation of β 1-AR. The initial experiments were conducted with Ca_V1.2 containing $\alpha_{1c}\Delta$ 1821, using a Rad: β_{2b} RNA ratio of 1:2. In the absence of Rad, isoproterenol (Iso; 50 μ M), a non-selective β -AR agonist³⁹, did not produce any significant increase in I_{Ba} (Fig. 5D, E; Fig. 6). However, co-expression of Rad resulted in a significant increase in I_{Ba} following Iso application. Fig. 5A-B shows traces of currents (Fig. 5A) and current-voltage relationship (Fig. 5B) in a representative oocyte. Fig. 5C shows a conductance-voltage curve drawn from 7 oocytes of the same day's experiment. Iso not only increased currents amplitudes, but also caused a ~5 mV hyperpolarization shift in the V_{1/2} for activation, without changing the slope factor (Fig. 5B, lower panel).

In cardiomyocytes, both full-length (wt) and truncated α_{1c} are present, but it is not known if both isoforms are equally regulated by β 1-AR. To study β 1-AR regulation of Ca_v1.2 containing wt- α_{1c} , we first titrated Rad: β_{2b} , in oocytes that coexpressed β 1-AR. As for $\alpha_{1c}\Delta$ 1821

(see Fig. 1B), we found an inverse correlation between Rad concentration and I_{Ba} (r=-0.85, p=0.002; Fig. S3). In addition, compared with $\alpha_{1c}\Delta 1821$, lower Rad: β_{2b} RNA ratios were sufficient to yield a significant increase in currents upon perfusion of Iso (Fig. 5D-E, compare with Fig. 1E). In contrast, in the absence of Rad, there was no increase in currents over time during Iso perfusion (Fig. 5D-E; Fig. 6). Based on the results of Rad titration of Fig. 5, we used Rad: β_{2b} RNA ratio of 1:3 to 1:2 thereafter for channels containing wt- α_{1c} .

We next systematically compared the effect of Iso on channels containing either wt- α_{1c} or $\alpha_{1c}\Delta 1821$, with or without coexpressed β 1-AR and Rad (Fig. 6). Without the coexpression of Rad, activation of β 1-AR did not produce any increase in I_{Ba} in either full-length or truncated channel. This result indicates that the Rad-independent pathway is not activated by β 1-AR under the conditions used. Moreover, it appears that oocytes do not contain endogenous Rad or similar RGK proteins that are available for the β 1-AR – Ca_V1.2 cascade. Interestingly, when oocytes expressed Rad without the receptor, Iso caused a small increase in I_{Ba}: ~15% in $\alpha_{1c}\Delta$ 1821 (which did not reach statistical significance, p=0.08 by paired t-test), and ~33% in wt- α_{1c} (p=0.016) (Fig. 6B, C). These results corroborate a previous report⁴⁰ suggesting that endogenous β -AR is present in some oocyte batches.

In oocytes that expressed β 1-AR, Rad and Ca_V1.2, Iso induced a robust increase in I_{Ba} (Fig. 6A, B; p<0.001 for both α_{1c} forms). However, comparison of Iso-induced increase in the two α_{1c} forms revealed a significantly greater effect on the truncated channel than on the full-length α_{1c} (147% vs. 87% increase in mean I_{Ba}, respectively; median fold increase 2.2 [IQR 1.72-2.91] versus 1.71 [IQR 1.53-2.07], p=0.002; Fig. 6C). These observations are in agreement with the greater effect of cAMP on the truncated channel (Fig. 4) and imply that the dCT does play a role in attenuating the PKA-induced augmentation of Ca_V1.2 currents, at least when it is not cleaved from α_{1c} .

Reconstitution of the β 2 adrenergic receptor regulation of Ca_v1.2

In healthy heart, the distribution of β 2-AR is limited to specific parts of the heart (atrium, apex) and mainly to T-tubules within cardiomyocytes, but becomes more widely distributed over the cardiomyocyte surface in failing heart^{11, 41, 42}. β 2-AR is also the major β -AR

form in the nervous system⁹. We began with titration of β 2-AR with Ca_v1.2 containing $\alpha_{1c}\Delta$ 1821. We expressed the receptors by injecting their RNAs at 50 and 200 pg RNA/oocyte. We also injected higher RNA doses, but above 1 ng/oocyte, cells showed low rate of survival during incubation, and surviving oocytes had high leak currents.

As shown before with cAMP injection (Fig. 1), in oocytes expressing Ca_V1.2- $\alpha_{1C}\Delta$ 1821, Rad and β 1-AR, a robust regulation of I_{Ba} by Iso was observed (Fig. 7A upper trace, Fig. 7 B, C). Surprisingly, in oocytes of the same batch expressing Ca_V1.2- $\alpha_{1c}\Delta$ 1821, β 2-AR and Rad, I_{Ba} did not respond to Iso (Fig. 7A lower panel, Fig. 7B-C). In some cases, we did observe an increase in I_{Ba} (e.g. Fig. 8G) but it was very small compared to β 1-induced Ca_V1.2 stimulation. To test if the expressed β 2-AR was functioning well, we used cystic fibrosis transmembrane conductance regulator (CFTR) channel as a control. PKA phosphorylation of CFTR, a chloride channel, activates the channel, leading to an increased outward chloride current⁴³. Moreover, CFTR is robustly activated by cAMP and PKA-CS injection in *Xenopus* oocytes⁴⁴.

Co-expressing CFTR with a range of β 2-AR doses (RNA range, 5-50 pg/oocyte) was associated with significantly higher basal chloride currents (I_{CFTR}) compared with cells expressing CFTR alone (p<0.001) (Fig. 8B). Iso perfusion did not cause an increase in I_{CFTR} at any of the β 2-AR doses (Fig. 8A upper panel, Fig. 8C, red circles). This observation implied that CFTR channels may have already been opened by agonist-independent constitutively active β 2-ARs, thus blunting any response to Iso. Reducing the basal activity of the receptor would result in lower chloride basal currents and may reinstate the activation of β 2-AR upon Iso perfusion. Propranolol is a non-selective β blocker and an inverse agonist, which is known to reduce the constitutive activity of β 2-AR⁴⁵. Therefore, we incubated the oocytes for 1-2 hours with 10 μ M propranolol before starting the recording. Just before the recording, the oocyte was placed in the experimental chamber, voltage clamp was established, and the cell was washed with propranolol-free solution for 2-4 minutes before application of Iso. With propranolol preincubation, we found that Iso induced a robust 1.5-3 fold increase in chloride currents in oocytes expressing CFTR and β 2-AR (Fig. 8A lower panel and Fig. 8C, purple circles).

The results of the CFTR experiment strongly supported the possibility that high constitutive activity of β 2-AR precluded further effect of Iso, also in the case of Ca_v1.2.

Therefore, we employed the propranolol preincubation protocol for $Ca_V 1.2 - \alpha_{1C} \Delta 1821$, coexpressed with β 2-AR and Rad. We measured I_{Ba} in oocytes not preincubated (black) or preincubated (purple) with propranolol (Fig. 8D). As predicted, preincubation with propranolol resulted in a statistically significant reduction of basal I_{Ba} (Fig. 8D). Application of Iso produced only a mild but significant increase in I_{Ba} without propranolol incubation, by 24±5%, in this experiment (Fig. 8E, G, H) compared to a significantly greater increase, 3-5 fold, with propranolol pre-incubation (Fig. 8F-H). We conclude that we successfully reconstituted adrenergic regulation of the $Ca_V 1.2$ channel current as mediated by the two canonical and physiologically-relevant adrenergic receptors.

Discussion

Numerous biological regulations of ion channels that have been fully reconstituted in heterologous systems accelerated the understanding of their mechanisms and structurefunction relationships. However, the classical adrenergic regulation of cardiac L-type Ca²⁺ channel remained an unmet challenge for several decades. The recent discovery of the crucial role of Rad¹⁵ was a turning point. Here we report, for the first time, the heterologous reconstitution of the full cascade of β -AR regulation of the cardiac L-type Ca²⁺ channel, Ca_V1.2, in *Xenopus* oocytes, starting with the receptor. Two major advantages of the *Xenopus* oocyte model are accurate titration of protein expression (by titrated RNA injection), and the ability to co-express a large number of proteins. We utilized the simplicity and robustness of the oocyte expression system to reconstitute the full β -AR cascade, to address the role of Rad, the relation between Rad-dependent and the previously reported Rad-independent PKA regulation²⁴, and to elaborate the role of Ca_V β and the distal parts of N- and C-termini of α_{1c} .

First, we confirmed the cAMP-induced upregulation of I_{Ba} in oocytes expressing Ca_V1.2- $\alpha_{1c}\Delta 1821$ without Rad²⁴ which, in this series of experiments, was ~20%. This is less than the previously reported 30-40%²⁴, probably because here we injected about half the amount of cAMP. Notably, a greater Rad-independent I_{Ba} potentiation was attained by injecting purified PKA-CS (Fig. S1).

Next, we scrutinized the role of Rad, initially using cAMP injection to activate the oocyte's endogenous PKA. Liu et al. reported a ~1.5-2-fold increase in maximal conductance

 (G_{max}) of Ca_V1.2 containing the full-length α_{1c} in HEK cells¹⁵. Here, with $\alpha_{1c}\Delta 1821$, titrated expression of Rad showed the expected^{26, 27} Rad-dose-dependent decrease in I_{Ba}, paralleled by a robust enhancement in cAMP-induced increase in I_{Ba}, up to ~2.2-fold (Fig. 1). These results confirm the importance of Rad in PKA regulation and, moreover, suggest that Rad-dependent regulation applies to both full-length and C-terminally-truncated α_{1c} . Importantly, the Radinduced enhancement by cAMP leveled off and occasionally seemed to diminish at higher Rad:Ca_V1.2 RNA ratios (we expressed all channel subunits in equal weights doses), suggesting that molar excess of Rad may override the PKA-induced abolition of tonic Rad inhibition. Thus, we used the optimal Rad: β_{2b} RNA ratio, 1:3 – 1:1, in all experiments.

We next inquired whether Rad-dependent and Rad-independent regulatory mechanisms are distinct, considering the possibility that the latter was actually the same as Rad-dependent regulation, possibly mediated by an endogenous RGK protein in the oocyte. Our results unequivocally demonstrate that the two modalities are carried out by distinct molecular mechanisms. First, Rad-dependent regulation was fully Ca_Vβ-dependent, as demonstrated¹⁵. Both Rad inhibition of the basal I_{Ba}, and the Rad-dependent enhancement of cAMP effect critically depended on the presence of coexpressed Ca_Vβ subunit (full-length or core), and both Rad actions were suppressed by a triple mutation that abolishes Rad-Ca_Vβ interaction (Fig. 2). In contrast, the Rad-independent cAMP effect was the same with all β_{2b} constructs used, or without coexpressed Ca_Vβ. Second, as shown before²⁴, the Rad-independent regulation crucially depended on two cytosolic elements of α_{1c} : the inhibitory module (initial segment) of the NT (Fig. 3, Fig. S1), and truncation of dCT of α_{1c} (Fig. 4). In contrast, in the presence of Rad, robust regulation of I_{Ba} by cAMP was consistently observed, both after the deletion of the initial NT segment, and in channels containing either full-length or dCT-truncated α_{1c} .

We then reconstituted the full β -AR cascade with coexpressed β 1-AR. Activation of β 1-AR by Iso caused a >2-fold increase in Ca_V1.2- $\alpha_{1c}\Delta$ 1821 current and the typical hyperpolarizing shift in voltage dependence of activation (Fig. 5, 6), resembling cardiomyocytes¹⁶. Coexpression of G_s and adenylyl cyclase was not necessary, suggesting sufficient levels of endogenous proteins. However, expression of Rad was essential; in its absence, no increase in I_{Ba} was observed. It is unclear why the Rad-independent regulation of Ca_V1.2- $\alpha_{1c}\Delta$ 1821 could not be

produced by activation of β 1-AR. We consider several possibilities, among them another missing factor needed for this regulation, or a stoichiometry predicament with either the receptor or a downstream protein of the cascade. Unfortunately, expressing high doses or β 1-AR, G α_s or adenylyl cyclase consistently resulted in high oocyte mortality. Whatever the reason, it appeared that, under the conditions of our experiments, β 1-AR regulated Ca_v1.2 only via the Rad-dependent mechanism.

Of particular importance is the observation that, once Rad was present, both dCTtruncated and full length channels were upregulated both by cAMP and by β 1-AR (Figs. 5, 6). This was never clear, and previously controversial¹⁸. The full-length α_{1c} is present in the heart and seems even more abundant in neurons⁹. Yet, the mechanism of regulation of neuronal Ca_v1.2 appears different from that of cardiac; the direct PKA phosphorylation of serine 1928 (located in the dCT) is highly important in neurons⁴⁶, but not in the heart^{13, 47}. However, in our system the β 1-AR activation of full-length α_{1c} -based channels (containing S1928) still required Rad. This indicates that phosphorylation of S1928 alone is not enough. Interestingly, a more detailed examination of the results reveals a potentially important difference: with cAMP, and even more so with β 1-AR, the overall regulation of the dCT-truncated channel is significantly stronger than of the full-length channel. A more straightforward interpretation would be the contribution of Rad-independent regulation; as discussed, β 1-AR does not appear to initiate the Radindependent pathway. We propose that the dCT exerts a regulatory control over the Raddependent β -AR regulation of the channel, via mechanisms that need to be explored.

Finally, we were also able to reconstitute the Ca_V1.2 enhancement by β 2-AR which, like β 1-AR, acted via the Rad-dependent pathway (Figs. 7, 8). However, there was a significant difference. As demonstrated with both CFTR and Ca_V1.2, β 2-AR constitutively activated the G_s-PKA pathway, rendering very high basal CFTR and Ca_V1.2 currents, as revealed by the inverse agonist, propranolol (Fig. 8). The basal Ca_V1.2 activation was so strong even with very low doses of β 2-AR RNA, that pretreatment with propranolol was required to observe upregulation by Iso. Whereas high basal constitutive activity of β 2-AR is well established^{45, 48, 49}, in the heart, agonist stimulation of β 2-AR normally increases Ca_V1.2 currents^{39, 42}. We assume that, in

cardiomyocytes, specific mechanisms such as restricted localization^{9, 41, 42} or additional auxiliary proteins may regulate the basal activity of β 2-AR.

In summary, we reconstituted the β 1-AR and β 2-AR regulation of Ca_v1.2 in the *Xenopus* oocyte model system. We demonstrate a robust (~2-fold) enhancement of Ca²⁺ channel currents, by cAMP and Iso, in a Rad-dependent manner, and confirm the existence of a less prominent, separate, Rad-independent PKA regulation of Ca_v1.2 (~30% increase in Ca_v1.2 current). Our reconstituted system replicates the known basic features of β -AR regulation of cardiac Ca_v1.2 and reveals novel molecular details, including the consequences of proteolytic processing of α_{1c} with respect to β -AR regulation, the differential roles of Ca_v β subunit and of the N- and C-termini of α_{1c} in the Rad-dependent and Rad-independent regulation, and the differences in channel regulation by β 1-AR and β 2-AR. The reconstitution of the basic cascade will enable further investigation of the mechanisms of Rad action and additional auxiliary proteins implicated in macromolecular complexes involved in β -AR regulation of Ca_v1.2, such as A-kinase anchoring proteins, phosphatases and phosphodiesterases, and others⁵⁰. It may also be instrumental in identifying potential targets for therapeutic modulation of β -adrenergic regulation in heart and other tissues.

References

Bers DM. Calcium cycling and signaling in cardiac myocytes. *Annu Rev Physiol*.
 2008;70:23-49. 10.1146/annurev.physiol.70.113006.100455

2. Catterall WA. Regulation of cardiac calcium channels in the fight-or-flight response. *Curr Mol Pharmacol.* 2015;8:12-21. 10.2174/1874467208666150507103417

 Best JM and Kamp TJ. Different subcellular populations of L-type Ca²⁺ channels exhibit unique regulation and functional roles in cardiomyocytes. *J Mol Cell Cardiol*. 2012;52:376-87.
 10.1016/j.yjmcc.2011.08.014

4. Hofmann F, Flockerzi V, Kahl S and Wegener JW. L-type Ca_v1.2 calcium channels: from in vitro findings to in vivo function. *Physiol Rev.* 2014;94:303-26. 10.1152/physrev.00016.2013

5. Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. *J Physiol*. 2016;594:5369-90. 10.1113/JP272262

6. Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD and Hosey MM. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. *J Biol Chem*. 1997;272:19401-7. 10.1074/jbc.272.31.19401

Katchman A, Yang L, Zakharov SI, Kushner J, Abrams J, Chen BX, Liu G, Pitt GS, Colecraft HM and Marx SO. Proteolytic cleavage and PKA phosphorylation of α1C subunit are not required for adrenergic regulation of Ca_v1.2 in the heart. *Proc Natl Acad Sci U S A*.
 2017;114:9194-9199. 10.1073/pnas.1706054114

Hulme JT, Yarov-Yarovoy V, Lin TW, Scheuer T and Catterall WA. Autoinhibitory control of the Ca_v1.2 channel by its proteolytically processed distal C-terminal domain. *J Physiol.* 2006;576:87-102. 10.1113/jphysiol.2006.111799

9. Dai S, Hall DD and Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. *Physiol Rev.* 2009;89:411-52. 10.1152/physrev.00029.2007

10. Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG and Cheng H. Subtype-specific βadrenoceptor signaling pathways in the heart and their potential clinical implications. *Trends Pharmacol Sci*. 2004;25:358-65. 10.1016/j.tips.2004.05.007

11. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE and Gorelik J. β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. *Science*. 2010;327:1653-7. 10.1126/science.1185988

12. Xiao RP, Ji X and Lakatta EG. Functional coupling of the β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. *Mol Pharmacol*. 1995;47:322-9.

13. Lemke T, Welling A, Christel CJ, Blaich A, Bernhard D, Lenhardt P, Hofmann F and Moosmang S. Unchanged β -adrenergic stimulation of cardiac L-type calcium channels in Ca_V1.2 phosphorylation site S1928A mutant mice. *J Biol Chem*. 2008;283:34738-44.

10.1074/jbc.M804981200

14. Yang L, Katchman A, Samad T, Morrow J, Weinberg R and Marx SO. β -adrenergic regulation of the L-type Ca²⁺ channel does not require phosphorylation of α_{1c} Ser1700. *Circ Res*. 2013;113:871-80. 10.1161/CIRCRESAHA.113.301926

15. Liu G, Papa A, Katchman AN, Zakharov SI, Roybal D, Hennessey JA, Kushner J, Yang L, Chen BX, Kushnir A, Dangas K, Gygi SP, Pitt GS, Colecraft HM, Ben-Johny M, Kalocsay M and

Marx SO. Mechanism of adrenergic $Ca_v 1.2$ stimulation revealed by proximity proteomics. Nature. 2020;577:695-700. 10.1038/s41586-020-1947-z

16. Miriyala J, Nguyen T, Yue DT and Colecraft HM. Role of $Ca_V\beta$ subunits, and lack of functional reserve, in protein kinase A modulation of cardiac $Ca_V1.2$ channels. *Circ Res*. 2008;102:e54-64. 10.1161/CIRCRESAHA.108.171736

17. Roybal D, Hennessey JA and Marx SO. The quest to identify the mechanism underlying adrenergic regulation of cardiac Ca²⁺ channels. *Channels (Austin)*. 2020;14:123-131.
10.1080/19336950.2020.1740502

18. Weiss S, Oz S, Benmocha A and Dascal N. Regulation of cardiac L-type Ca²⁺ channel Ca_v1.2 via the β -adrenergic-cAMP-protein kinase A pathway: old dogmas, advances, and new uncertainties. *Circ Res*. 2013;113:617-31. 10.1161/CIRCRESAHA.113.301781

19. Singer-Lahat D, Lotan I, Biel M, Flockerzi V, Hofmann F and Dascal N. Cardiac calcium channels expressed in Xenopus oocytes are modulated by dephosphorylation but not by cAMP-dependent phosphorylation. *Receptors Channels*. 1994;2:215-26.

20. Charnet P, Lory P, Bourinet E, Collin T and Nargeot J. cAMP-dependent phosphorylation of the cardiac L-type Ca channel: a missing link? *Biochimie*. 1995;77:957-62. 10.1016/0300-9084(95)80008-5

Perez-Reyes E, Yuan W, Wei X and Bers DM. Regulation of the cloned L-type cardiac calcium channel by cyclic-AMP-dependent protein kinase. *FEBS Lett.* 1994;342:119-23.
 10.1016/0014-5793(94)80484-2

22. Dascal N, Snutch TP, Lubbert H, Davidson N and Lester HA. Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes. *Science*.

1986;231:1147-50. 10.1126/science.2418503

Fuller MD, Emrick MA, Sadilek M, Scheuer T and Catterall WA. Molecular mechanism of calcium channel regulation in the fight-or-flight response. *Sci Signal*. 2010;3:ra70.
10.1126/scisignal.2001152

24. Oz S, Pankonien I, Belkacemi A, Flockerzi V, Klussmann E, Haase H and Dascal N. Protein kinase A regulates C-terminally truncated $Ca_v 1.2$ in *Xenopus* oocytes: roles of N- and C-termini of the α_{1c} subunit. *J Physiol*. 2017;595:3181-3202. 10.1113/JP274015

25. Correll RN, Pang C, Niedowicz DM, Finlin BS and Andres DA. The RGK family of GTPbinding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. *Cellular signalling*. 2008;20:292-300. 10.1016/j.cellsig.2007.10.028

26. Finlin BS, Crump SM, Satin J and Andres DA. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. *Proc Natl Acad Sci USA*. 2003;100:14469-74.

10.1073/pnas.2437756100

27. Yang T and Colecraft HM. Regulation of voltage-dependent calcium channels by RGK proteins. *Biochimica et biophysica acta*. 2013;1828:1644-54. 10.1016/j.bbamem.2012.10.005

28. Manning JR, Yin G, Kaminski CN, Magyar J, Feng HZ, Penn J, Sievert G, Thompson K, Jin JP, Andres DA and Satin J. Rad GTPase deletion increases L-type calcium channel current leading to increased cardiac contraction. *J Am Heart Assoc*. 2013;2:e000459. 10.1161/JAHA.113.000459

29. Hullin R, Singer-Lahat D, Freichel M, Biel M, Dascal N, Hofmann F and Flockerzi V. Calcium channel β subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. *EMBO J*. 1992;11:885-90.

30. Opatowsky Y, Chen CC, Campbell KP and Hirsch JA. Structural analysis of the voltagedependent calcium channel β subunit functional core and its complex with the α 1 interaction domain. *Neuron*. 2004;42:387-99. 10.1016/s0896-6273(04)00250-8

31. Yang T, Puckerin A and Colecraft HM. Distinct RGK GTPases differentially use $\alpha 1$ - and auxiliary β -binding-dependent mechanisms to inhibit Ca_V1.2/Ca_V2.2 channels. *PLoS One*. 2012;7:e37079. 10.1371/journal.pone.0037079

32. Kanevsky N and Dascal N. Regulation of maximal open probability is a separable function of $Ca_V\beta$ subunit in L-type Ca^{2+} channel, dependent on NH₂ terminus of α_{1C} ($Ca_V1.2\alpha$). *J Gen Physiol*. 2006;128:15-36. 10.1085/jgp.200609485

33. Sasson Y, Navon-Perry L, Huppert D and Hirsch JA. RGK family G-domain:GTP analog complex structures and nucleotide-binding properties. *Journal of molecular biology*. 2011;413:372-89. 10.1016/j.jmb.2011.08.017

34. Blumenstein Y, Kanevsky N, Sahar G, Barzilai R, Ivanina T and Dascal N. A novel long-Nterminus isoform of human L-type Ca²⁺ channel is up-regulated by protein kinase C. *J Biol Chem*. 2002;277:3419-3423. 35. Béguin P. RGK small GTP-binding proteins interact with the nucleotide kinase domain of Ca²⁺-channel β-subunits via an uncommon effector binding domain. *J Biol Chem*. 2007;282:11509-20. 10.1074/jbc.M606423200

36. Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L and Dolmetsch R. The C terminus of the L-type voltage-gated calcium channel Ca_v1.2 encodes a transcription factor. *Cell*. 2006;127:591-606. 10.1016/j.cell.2006.10.017

37. Schroder E, Byse M and Satin J. L-type calcium channel C terminus autoregulates transcription. *Circ Res*. 2009;104:1373-81. 10.1161/CIRCRESAHA.108.191387

38. Wei X, Neely A, Lacerda AE, Olcese R, Stefani E, Perez Reyes E and Birnbaumer L. Modification of Ca²⁺ channel activity by deletions at the carboxyl terminus of the cardiac α_1 subunit. *J Biol Chem*. 1994;269:1635-40.

39. Skeberdis VA, Jurevicius J and Fischmeister a R. β2 adrenergic activation of L-type Ca⁺⁺ current in cardiac myocytes. *J Pharmacol Exp Ther*. 1997;283:452-61.

40. Kusano K, Miledi R and Stinnakre J. Cholinergic and catecholaminergic receptors in the *Xenopus* oocyte membrane. *J Physiol*. 1982;328:143-70. 10.1113/jphysiol.1982.sp014257

41. Wright PT, Bhogal NK, Diakonov I, Pannell LMK, Perera RK, Bork NI, Schobesberger S, Lucarelli C, Faggian G, Alvarez-Laviada A, Zaccolo M, Kamp TJ, Balijepalli RC, Lyon AR, Harding SE, Nikolaev VO and Gorelik J. Cardiomyocyte membrane structure and cAMP compartmentation produce anatomical variation in β_2 AR-cAMP responsiveness in murine hearts. *Cell reports*. 2018;23:459-469. 10.1016/j.celrep.2018.03.053

42. Bryant SM, Kong CHT, Cannell MB, Orchard CH and James AF. Loss of caveolin-3dependent regulation of I_{Ca} in rat ventricular myocytes in heart failure. *Am J Physiol*. 2018;314:H521-h529. 10.1152/ajpheart.00458.2017

43. Welsh MJ, Anderson MP, Rich DP, Berger HA, Denning GM, Ostedgaard LS, Sheppard DN, Cheng SH, Gregory RJ and Smith AE. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. *Neuron*. 1992;8:821-9.

http://dx.doi.org/10.1016/0896-6273(92)90196-K

44. Bear CE, Duguay F, Naismith AL, Kartner N, Hanrahan JW and Riordan JR. Cl- channel activity in *Xenopus* oocytes expressing the cystic fibrosis gene. *J Biol Chem*. 1991;266:19142-5.

45. Chidiac P, Hebert TE, Valiquette M, Dennis M and Bouvier M. Inverse agonist activity of β-adrenergic antagonists. *Mol Pharmacol*. 1994;45:490-9.

46. Qian H, Patriarchi T, Price JL, Matt L, Lee B, Nieves-Cintron M, Buonarati OR, Chowdhury D, Nanou E, Nystoriak MA, Catterall WA, Poomvanicha M, Hofmann F, Navedo MF and Hell JW. Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca^{2+} channel $Ca_v 1.2$ by the $\beta 2$ -adrenergic receptor in neurons. *Sci Signal*. 2017;10. 10.1126/scisignal.aaf9659

47. Ganesan AN, Maack C, Johns DC, Sidor A and O'Rourke B. β-adrenergic stimulation of Ltype Ca2+ channels in cardiac myocytes requires the distal carboxyl terminus of α1C but not serine 1928. *Circ Res*. 2006;98:e11-8. 10.1161/01.RES.0000202692.23001.e2

48. Chakir K, Xiang Y, Yang D, Zhang SJ, Cheng H, Kobilka BK and Xiao RP. The third intracellular loop and the carboxyl terminus of β 2-adrenergic receptor confer spontaneous activity of the receptor. *Mol Pharmacol*. 2003;64:1048-58. 10.1124/mol.64.5.1048

49. Zhang SJ, Cheng H, Zhou YY, Wang DJ, Zhu W, Ziman B, Spurgoen H, Lefkowitz RJ, Lakatta EG, Koch WJ and Xiao RP. Inhibition of spontaneous β2-adrenergic activation rescues β1-adrenergic contractile response in cardiomyocytes overexpressing β2-adrenoceptor. *J Biol Chem*. 2000;275:21773-9. 10.1074/jbc.M909484199

50. Pallien T and Klussmann E. New aspects in cardiac L-type Ca²⁺ channel regulation. Biochem Soc Trans. 2020;48:39-49. 10.1042/bst20190229

Sources of Funding

This research was supported by the German-Israeli Science Foundation (GIF grant I-1452-203.13/2018) to N.D., E.K., V.F. and S.W., The Gessner Fund to M.K. and N.D., the Deutsche Forschungsgemeinschaft (German Research Foundation, DFG KL1415/7-1, to E.K.), the Deutsche Forschungsgemeinschaft grant to A.B. and V.F. (SFB 894, TP A3), the Israel Science Foundation grants 1519/12 and 1500/16 to J.H., and a Seymour-Fefer grant to M.K. M.K. was supported in part by a scholarship from Alrov Foundation. S.S. was supported in part by a scholarship from the Prajs-Drimmer Institute at Tel Aviv University.

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.403964; this version posted December 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Disclosures

All authors report no potential or existing conflict of interest to disclose.

Figure legends

Figure 1.

Figure 1. cAMP regulation of Cav1.2 is greatly enhanced by co-expression of Rad. A, The cardiac Ca_V1.2 and Rad. The α_{1c} and $\alpha 2\delta$ subunits are shown schematically, along with structures of β_{2b} (PDB:1T3S)³⁰ and Rad (PDB: 3Q72)³³. In α_{1C} , the four homologous transmembrane domains are numbered | to IV. The constructs used here were based on rabbit or mouse long-NT isoforms, containing the 46 a.a.-long initial segment encoded by exon 1a³⁴ and either full-length CT, or, in $\alpha_{1c}\Delta$ 1821, the α_{1c} was truncated at a.a. 1821, close to the naturally occurring truncation site (red cross mark) in cardiac α_{1C} , ~a.a. 1800⁷. β_{2b} binds to the cytosolic loop connecting domains I and II. When recruited to the plasma membrane, Rad interferes with the interaction between β and α_{1C} subunits. **B-F**, examples and summaries for $Ca_V 1, 2-\alpha_{1c}\Delta 1821$. **B**, Rad reduces the Ba²⁺ current of $Ca_V 1.2-\alpha_{1c}\Delta 1821$ in a dose-dependent manner. The channel was expressed in full subunit composition: $\alpha_{1c}\Delta 1821$, β_{2b} and $\alpha 2\delta$ (1.5 ng RNA of each subunit). I_{Ba} decreased with increasing doses of Rad RNA (Pearson correlation, r=-0.82, p=0.023). Each point represents mean±SEM from 7 to 10 oocytes (N=1 experiment). The linear regression line was drawn for non-zero doses of Rad. C, Rad enhances the cAMP-induced increase in IBa. Figures are diary plots showing the time course of change in IBa (normalized to initial I_{Ba}), before and after the intracellular injection of cAMP in a representative cell. Insets show current records at +20 mV before (black trace) and 10 min after cAMP injection (red trace), without Rad in the upper panel and with Rad in the lower panel. D, "before-after" plots of cAMP-induced changes in I_{Ba} in individual cells injected with increasing ratio of Rad: β_{2b} expression. Empty symbols - before cAMP; red-filled - after cAMP. RNA ratios (by weight, w/w) of Rad and β_{2b} were varied in 1:20 to 2:1 range. N=3 experiments; statistics: paired t-test. **E**, cAMP-induced increase in I_{Ba} depends on relative expression levels of Rad and $\beta_{2b}.$ Each symbol represents fold increase in I_{Ba} induced by cAMP injection in an individual cell, at different Rad: β_{2b} RNA ratios. Here and in the following figures, box plots show 25-75 percentiles, whiskers show the 5/95 percentiles, the black and the red horizontal lines within the boxes are the median and mean, respectively. At all Rad: β_{2b} RNA ratios except 1:20, the cAMP-induced

increase in I_{Ba} was significantly greater than without Rad (Kruskal-Wallis One-Way ANOVA on ranks). **F**, summary of the effect of cAMP in 10 experiments without Rad and with Rad at 1:2 and 1:1 Rad: β_{2b} RNA ratios (pooled). Number of cells is shown within the bars. Statistics: Mann-Whitney test.

Figure 2.

Figure 2. Separation of Rad-dependent and Rad-independent PKA regulation of α_{1c} : the role of Ca_Vβ. A, Schematic representation of Ca_Vβ subunit variants used in this study. The wild-type (β_{2b} -wt) protein is 632 a.a. long. β -core is truncated at a.a. 424; the linker amino acids 138-202 were removed³⁰. The β -core_{3DA} is the β -core with three aspartate-to-alanine mutations, D244A/D320A/D322A, that does not bind Rad.. B-D, the presence of the β subunit and its ability to bind Rad are crucial for Rad-dependent, but not for Rad-independent, cAMP regulation of Ca_V1.2. Rad: β_{2b} RNA ratio was 1:1. N=1 experiment. B, Diary plots of cAMP-induced changes in I_{Ba} following injection of cAMP in representative cells expressing $\alpha_{1c}\Delta$ 1821, α 2 δ , and the indicated variant of β_{2b} (or no β at all), with or without Rad. Insets show current records at +20 mV before (black trace) and 10 min after cAMP injection (red trace). C, "Before-after" plots of cAMP-induced changes in I_{Ba} in individual cells injected with various Ca_V β subunits co-expressed with and without Rad. N=1 experiment; statistics: paired t-test. D, Fold change in I_{Ba} after cAMP injection. Data show the fold increase with Rad co-expression (inverted triangles) and without Rad (circles). Mann-Whitney Rank Sum test was used to compare groups with and without Rad (except the groups with β -core_{3DA} where normality was satisfied, and t-test was used).

Figure 3.

Figure 3. Separation of Rad-dependent and Rad-independent PKA regulation of α_{1c} : the role of N-terminal initial segment of α_{1c} . A, "before-after" plots of cAMP-induced changes in I_{Ba} in individual cells expressing Ca_V1.2 containing $\alpha_{1c}\Delta 1821$ (black) and $\alpha_{1c}\Delta 20\Delta 1821$ (red) lacking the first 20 a.a. of the N-terminus. $\alpha 2\delta$ and β_{2b} were co-expressed in all cases, without or with Rad (circles and inverted triangles, respectively). N=3 experiments; statistics: paired t-test. **B**, Fold change in I_{Ba} after cAMP injection (summary of experiments shown in A). The black and the

red horizontal lines within the boxes are the median and mean, respectively. Pairwise comparison with and without Rad was done using the Mann-Whitney Rank Sum test.

Figure 4.

Figure 4. Separation of Rad-dependent and Rad-independent PKA regulation of α_{1C} : the role of the distal C-terminus of α_{1C} . A, Diary plots of cAMP-induced changes in $|_{Ba}$ in representative cells expressing the full length α_{1C} (α_{1C} WT), $\alpha_2\delta$ and β_{2b} , without Rad (upper panel) or with Rad (lower panel). B, "before-after" plots of cAMP-induced changes in $|_{Ba}$ in individual cells expressing wt- α_{1c} with or without Rad co-expression, or $\alpha_{1C}\Delta_{1821}$ and Rad. $\alpha_2\delta$ and β_{2b} were present in all cases. Rad: β_{2b} RNA ratio was 1:2 or 1:1. Statistics: paired t-test. N=3 experiments. n=12, 11 and 18 oocytes, from left to right. C, Fold change in $|_{Ba}$ at +20 mV after cAMP injection (summary of data shown in A, B). The black and the red horizontal lines within the boxes are the median and mean, respectively. Statistics: Kruskal-Wallis One-Way ANOVA on ranks.

Figure 5.

Figure 5. Full reconstitution of the β1-AR regulation of α₁c. A-C, β1-AR regulation of Ca_v1.2. Oocytes were injected with RNA of $\alpha_{1c}\Delta 1821$, $\alpha 2\delta$, β_{2b} , Rad and β1-AR. **A**, Ba²⁺ currents (upper panels) before (left) and after (right) perfusion of 50 µM isoproterenol (Iso) in a representative cell. The voltage protocol is illustrated in the lower panel; I_{Ba} was elicited by 20-ms voltage steps given every 10 s from a holding potential of -80 mV in 10 mV increments. The currents shown are net I_{Ba} derived by subtraction of the residual currents recorded with the same protocols after applying 200 µM Cd²⁺ (not shown). Since full capacity compensation in oocytes was not achievable, the currents during the first ~2 ms (the duration of capacity transient) were blanked out. **B**, Top, representative I-V curve before (black) and after (red) addition of Iso. Bottom, parameters of Boltzmann fit of I-V curves in 7 oocytes, before and after Iso. **C**, Conductance-voltage (G-V) curves of Ca_v1.2- $\alpha_{1c}\Delta 1821$ co-expressed with Rad and β1-AR averaged from oocytes of a representative batch (n=7 oocytes, N=1 experiment) before and after Iso. The curves were drawn using the Boltzmann equation using average V_{1/2} and K_a obtained from the fits of I-V curves in individual oocytes (see Methods). Parameters used were: V_{1/2}=8.7 mV, $K_a=6.8 \text{ mV}$ before Iso; $V_{1/2}=3.8 \text{ mV}$, $K_a=6.6 \text{ mV}$ after Iso. **D-E**, β 1-AR regulation of $Ca_V 1.2$ containing the wt- α_{1c} in the presence of increasing doses of Rad. Oocytes were injected with RNAs of wt- α_{1c} , $\alpha 2\delta$, β_{2b} , β 1AR, and the indicated doses of Rad RNA. **D**, "before-after" plots of Iso-induced changes in I_{Ba} in individual cells injected with increasing doses of Rad RNA. N=1 experiment; statistics: paired t-test. **E**, Fold change increase in I_{Ba} caused by Iso as a function of Rad: β_{2b} RNA ratio. N=1 experiment. Statistics: One Way ANOVA.

Figure 6.

Figure 6. β1-AR regulation of full-length and truncated α₁*c***. A**, Representative diary plots of I_{Ba} in oocytes expressing wt (full-length) α₁*c* (Ca_V1.2-α₁*c*) or Ca_V1.2-α₁*c*Δ1821 channels (lower and upper panels, respectively) with or without Rad and β1-AR, and the response to 50 µM Iso. β₂*b* and α2δ were coexpressed in all cases. **B**, "Before-after" plots of Iso-induced changes in I_{Ba} in individual cells. The Rad:β2b ratio in oocytes expressing wt Ca_V1.2 (blue symbols) or Ca_V1.2Δ1821 (black symbols) was 1:3 and 1:2, respectively. Lower ratio was used in cells expressing wt-α₁*c* to allow higher basal currents. N=3; statistics: paired t-test. **C**, Rad is essential for the Iso-induced increase in I_{Ba}. N=3 experiments. Statistical analysis was performed separately for wt Ca_V1.2-α₁*c* and Ca_V1.2-α₁*c*Δ1821 with ANOVA on ranks (p<0.001). In addition, Mann-Whitney Rank Sum test was used to compare the last two groups, wt Ca_V1.2 vs. Ca_V1.2Δ1821 with Rad and β1-AR (p=0.002). For wt Ca_V1.2 with Rad and β1-AR, there was no significant difference from the group without β1-AR but with Rad (p=0.076, One-Way ANOVA on ranks, Dunnett's test).

Figure 7.

Figure 7. Comparison of β 1 and β 2 adrenergic regulation of Ca_v1.2. A, Representative diary plots of I_{Ba} showing the effect of Iso on Ca_v1.2- $\alpha_{1c}\Delta$ 1821 in oocytes co-expressing β 1-AR (upper panel) or β 2-AR (lower panel). Insets show I_{Ba} at +20 mV before and 9-10 min after the addition of Iso. RNAs of both receptors were made on the template of cDNAs inserted into the pGEM-HJ vector. **B**, "Before-after" plots of Iso-induced changes in I_{Ba} in individual cells co-expressing Ca_v1.2- $\alpha_{1c}\Delta$ 1821 and Rad, without any receptor or with either β 1-AR or β 2-AR. Data are shown for receptors RNAs concentrations of 0, 50 and 200 pg RNA/oocyte. Rad: β_{2b} RNA ratio was 1:2. N=1 experiment; statistics: paired t-test. **C**, Fold change in I_{Ba} induced by Iso (summary of data shown in A and B). Statistics: One Way ANOVA followed by Dunnett's test.

Figure 8.

Figure 8. Reconstitution of the $\beta 2$ adrenergic receptor regulation of CFTR and α_{1C} A,

Preincubation with propranolol is needed to reinstate the adrenergic regulation of CFTR by β2-AR. Oocytes expressed CFTR and β 2-AR (1 and 0.005-0.05 ng/oocyte, respectively). CFTR chloride currents were recorded in gap free mode at -80 mV. 50 µm Iso was applied after stabilization of the current (about 2 min after start of record). Upper panel shows a representative record without propranolol incubation. The lower panel shows a representative oocyte preincubated in 10 μ M propranolol for 60-120 min, then transferred to the experimental chamber, voltage clamped (start of record) and perfused with propranolol-free solution for about 2 min prior to the addition of Iso. **B**, Basal chloride currents in oocytes coexpressing CFTR channel (1 ng RNA/oocyte) and β 2-AR (increasing doses of RNA). Oocytes expressing CFTR alone had statistically significant lower basal currents than oocytes coexpressing β 2-AR (N=1 experiment; statistics: p<0.001, Kruskal-Wallis One Way ANOVA on Ranks) C, Fold change in chloride current by lso. The plot compares the effects of 50 μ M lso in oocytes injected with the indicated doses of β 2-AR RNA, without (red symbols) or with (purple symbols) propranolol preincubation. N=1 experiment. Statistics: Mann-Whitney Rank Sum Test. **D**, Comparison of basal $|_{Ba}$ in oocytes co-expressing Ca_V1.2- $\alpha_{1c}\Delta$ 1821, Rad and β 2-AR, which were incubated without propranolol (black) or with 10 μ M propranolol (blue). I_{Ba} was recorded at peak current of +20 mV. Oocytes were preincubated with 10 μ M propranolol for 60-120 min, then transferred to the experimental chamber, voltage clamped to +20 mV and perfused with propranolol-free 40 mM Ba²⁺ solution until stabilization of the current for 2 min. Propranolol washout lasted approximately 1-2 minutes. Oocytes co-expressed $\alpha_{1c}\Delta 1821$, β_{2b} , $\alpha 2\delta$, Rad (Rad:β2_b RNA ratio was 0.5). N=1; statistics: t-test. **E-F**, Representative diary plots of oocytes coexpressing $\alpha_{1c}\Delta 1821$, Rad and $\beta 2$ -AR without (left) and with (right) preincubation with propranolol. G, "Before-after" plots of Iso-induced changes in I_{Ba} in individual cells. Blue

symbols represent data form oocytes preincubated with propranolol, black – without preincubation. N=1; statistics: paired t-test. **H**, Fold increase in I_{Ba} induced by Iso (summary of data shown in G). Oocytes preincubated with propranolol (blue) had statistically significant higher fold increase. N=1; statistics: Kruskal-Wallis One Way ANOVA on Ranks followed by Dunnett's test.

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.30.403964; this version posted December 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

D

A

α_{1C}Δ1821

lso

