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Abstract 

Designing a focused compound screening library of bioactive small molecules is a 
challenging task since many compounds modulate their effects through multiple 
protein targets with various degrees of potency and selectivity. We describe here 
several analytic procedures with adjustable cut-off parameters that enable one to 
design anticancer target-focused compound libraries optimized for library size, cellular 
activity, biological and chemical diversity and target selectivity. Even though our focus 
was on designing compound libraries to enable a comprehensive investigation of the 
target biology of glioblastoma (GBM), the compound collections cover a wide range of 
protein targets and biological pathways implicated in various types of cancers, making 
the libraries widely applicable in precision oncology studies. We published the final 
screening set library, called the Comprehensive anti-Cancer small-Compound Library, 
or C3L. We hope these general library design principles and the current, widely 
annotated small molecule libraries will prove useful for the community in various 
phenotypic screening experiments in GBM and other cancers. 

Introduction 
In the past ten years, there have been encouraging advances in the treatment and 
consequently, the survival rates, for many cancers. This progress has largely been 
driven by increased molecular understanding and classification of distinct cancer 
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subtypes, the development of novel therapeutics focussing on targets associated with 
specific disease subtypes, and advances in both the type and range of therapeutic 
molecules available to oncologists for the treatment of patients. When considering 
molecules that have been approved or advanced in clinical trials, there are successful 
examples of targeted chemotherapeutics [1], small interfering RNAs [2], monoclonal 
antibodies [3], micro-RNAs [4] and virotherapy [5], to name a few.  These 
developments are very encouraging considering the complexity of human cancers and 
the difficulty in developing effective treatments for the advanced disease. However, 
small compound chemotherapeutics still makeup the vast majority of approved drugs 
available to oncologists treating cancers [6-8]. For example, in the case of glioblastoma 
(GBM) brain tumours, small molecule chemotherapeutics are currently the only 
approved treatment modalities beyond surgery and radiation [9], and represent the 
most fertile ground for future innovation of new therapeutics which address the severe 
limitations inherent in treating brain-tumours. These limitations include (i) breaching 
the blood-brain barrier to effectively deliver therapeutics to the tumour, (ii) developing 
combinatorial treatments to systematically target multiple pathway redundancies and 
tumour vulnerabilities inherent in brain tumours which typically exhibit dynamic intra 
and inter tumour heterogeneity, and (iii) selectively targeting glioblastoma stem cells, 
which have been shown to be the main source for cancer recurrence in GBM [10]. 
 
Traditional drug development often employs high-throughput drug screening of very 
large collections of diverse small molecule libraries against a nominated therapeutic 
target to identify chemical starting points for further development. This process has 
been relatively successful at the industrial level, but it is generally less successful at 
the academic level due to the prohibitive infrastructural costs required to develop and 
produce larger screens, as well as the cost to develop a small compound hit into a 
clinical candidate drug. Instead, many academic target discovery and drug 
development facilities have focussed on developing more physiologically relevant 
phenotypic assays, which better recapitulate key areas of disease biology [11], and 
screening of smaller, more focussed libraries of small compounds, such as collections 
developed and curated for drug repurposing [12-14], probes for target discovery [6, 
15], or pharmacologically active small compound sets [7]. This focussed approach has 
the advantage of providing a better understanding of the molecular basis of the 
disease, while simultaneously providing the opportunity to exploit existing therapeutics 
and compounds with known safety profiles, along with probes that possess drug-like 
properties and compounds with known protein targets.  In complex diseases of unmet 
therapeutic need where target biology is poorly understood or where disease 
heterogeneity indicates multiple target pathways contribute to disease progression (as 
exemplified by GBM) phenotypic screening of target-annotated compound libraries in 
relevant patient-derived cell models provide a valuable strategy for empirical 
identification of drug targets or drug combinations which address such disease 
complexity. By circumventing major pitfalls and hurdles, such as poor selectivity, 
cellular activity and biological/target space diversity, these libraries have the potential 
to greatly accelerate the drug development process. 
 
Here, we describe the analytical steps for the construction of a new, comprehensive 
anti-cancer target-annotated compound library, designed to interrogate a wide range 
of potential cancer targets in phenotypic screening. The library design is approached 
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as a multi-objective optimization problem, where the aim is to maximize the cancer 
target coverage, while maintaining compound cellular potency and selectivity, and 
minimizing the number and cost of the compounds arrayed into the final screening 
library. To do this, we used two target-based approaches. First, we defined all of the 
proteins implicated in cancers and searched for small-molecules against the druggable 
cancer targets among approved and investigational compounds identified from the 
literature, existing oncology collections, and compounds identified through manually 
searching of clinical trials databases. Second, to expand the target-annotated 
compound library, we surveyed several pan-cancer studies to systematically identify 
anti-cancer compound-target pairs, and then expanded the chemical space around 
those novel targets by identifying additional bioactive compound probes through 
database queries. Importantly, cancer-mutated proteins, first neighbors and influencer 
targets were further investigated for potential small compound interactors, which then 
collectively generated a large in-silico probe set collection. Finally, we refined the probe 
set collection by applying several filters, including optimized activity and similarity 
thresholds, and removal of redundant structures and compounds that could not be 
readily sourced, to yield a sufficiently diverse, focused, and annotated compound 
library for phenotypic screening purposes. We have published both the approved and 
investigational compound collection as well as the final probe collection as datasheets, 
which together form the Comprehensive anti-Cancer small-Compound Library, or C3L. 

Results 

Defining and collating a comprehensive list of cancer associated protein targets 
Our first design objective was to define a comprehensive list of protein targets 
associated with the development and progression of cancers, which could then be 
employed to form the basis of the anti-cancer small-molecule library. Our target space 
was designed to span a wide range of protein families, cellular functions and cancer 
types, and covers all of the divisions of the ‘hallmarks of cancer’ [16]. We first defined 
a list of proteins known to be implicated in cancers using The Human Protein Atlas [17] 
and nominal targets of pan-cancer studies from the PharmacoDB [18], covering the 
target space of 946 oncoproteins (see Methods for details). 
 
Identifying and curating small-molecule inhibitors of cancer associated targets 
After defining the comprehensive list of cancer-associated protein targets, our next 
objective was to identify and curate a small-molecule collection of compounds 
targeting these proteins. Since the sources of the compounds and targets ranged from 
investigational and experimental probe compounds to the approved drugs, we took a 
systematic approach to defining each source, sorting the compounds targeting the 
cancer targets, ranking the compounds for activity, diversity and availability for sale, 
and finally, producing a sortable and searchable database defining the screening 
library consisting of two separate compound collections described below. 
 
Compound set 1 - Experimental probe compound (EPC) collection  
In the EPC collection, compound-target pairs were extracted manually from public 
databases. The experimental probe compound collection contains chemical probes 
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and investigational compounds from three nested subsets of decreasing sizes; (i) the 
theoretical set which is an in-silico set curated from established target-compound 
pairs for a broad target space (1655 proteins), (ii) the large-scale set is a large-scale 
screening collection of filtered compounds covering the same target space, and (iii) 
the screening set is the final set of most potent probes arrayed into the physical 
library. The screening set is also the smallest subset due to the limitations in compound 
availability for sale for screening purposes. A schematic diagram of the construction of 
these three compound sets is illustrated in Figure 1, and described in more detail in 
the following subsections (see Methods for the step-by-step procedures). 

Figure 1. Workflow of acquiring the three probe compounds sets (Theoretical, Large-
scale and Screening set). Four probe sets (PS) were defined:  The pan-cancer collection 
(PS1) includes compounds and their annotated nominal targets from various pan-cancer 
studies. The extended compound space (PS2) consists of compounds that have off-target 
activity against the annotated targets of the pan-cancer studies, while excluding compounds 
already in the PS1 set, retrieved from public drug/target repositories such as ChEMBL [19], 
Drug Target Commons (DTC) [20] and DrugBank [17]. The collection for the mutant target 
space (PS3) consists of compounds that have activity against the mutant variants of the 
annotated targets extracted by using the COSMIC database [21]. The extended target space 
collection (PS4) extends the targets space of cancer-related targets through the nearest 
neighbor approach [22]. See Methods for the details of the construction of the various probe 
collections. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.403329doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.403329


 

Theoretical set contains 336,758 unique compounds from four probe sets (PS): pan-
cancer collection, pan-cancer collection with extended compound space, mutant target 
collection, and mutant target collection with extended compound space (see Methods 
for details).  Large-scale set contains a subset of compounds from the Theoretical 
set, filtered to reduce the number of molecules in the library while covering the same 
target space (Figure 2), using both the activity and similarity filtering procedures with 
pre-defined cut-off values (note: the cut-off parameters are freely adjustable in other 
studies). The large-scale set was based on both the on- and off-target profiles of the 
small-molecule compounds (n=2282), which could be used in larger-scale screenings 
campaigns in academic or industrial projects (Table 1).  

Figure 2. The procedure for the design of the Large-scale probe compound set. The 
target-specific activity filtering is based on either biochemical or cell-based evidence that the 
compound has a potency against the particular target (less stringent filtering). Compounds that 
show sufficient similarity to other compounds based on two fingerprints out of the three were 
removed in the structural similarity filtering step (more stringent filtering). The thresholds used 
in the current design procedures are shown on the left.  See Methods for details of the filtering 
procedures. 

 

Experimental screening set contains a smaller number of 1211 compounds that can 
be used for screening applications, thus making the probe set suitable for routine 
exploration of oncology-associated biological target space in complex phenotypic 
assays and identification of potential candidates for further drug development. This 
probe subset was obtained by subjecting the Theoretical set to three filtering 
procedures to obtain a manageable library size for screening (see Figure 1). These 
procedures with freely adjustable parameters involve (i) global target-agnostic activity 
filtering to remove non-active probes, (ii) selecting the most potent compound for each 
target to reduce the compound space, and (iii) checking which compounds are 
available for sale (see Methods for details). Since two of the Theoretical sets are 
already small in size (PS1 and PS3), the global activity filtering was implemented on 
the two larger subsets only (PS2 and PS4). 
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Table 1. The compound and target spaces of the three probe compound collections. 
 

Probe collection Unique 
compounds 

Unique protein 
targets 

Unique 
interactions* 

Theoretical set 336758 1655 494320 

Large-scale set 2285 1655 8137 

Screening set 1211 1386 2699 

* Unique compound-target activities by considering various bioactivity types from multi-dose 
assays as repeated measurements of the same compound-target interaction. 
 

Compound set 2 - Approved and investigational compound (AIC) collection 
According to its design principles, the above-described probe compound set included 
mostly compounds that are currently in pre-clinical stages (Figure 3A). We therefore 
next searched for additional small-molecules that are currently either approved for 
chemotherapeutic or immunotherapeutic treatments, or anti-cancer compounds in 
clinical development stage. This compound collection was manually curated from 
several public resources (Table 2), and it partly overlapped with the probe set 
collection (Figure 3C). 
 
Table 2. Resources used to prepare the approved and investigational compound 
collection.  

Resource Number of 
compounds 

Approved kinase inhibitorsa 62 

FIMM oncology collectionb  460 

Glioblastoma therapeuticsc 25 
aFDA-approved kinase inhibitors retrieved manually from a recent review article [23]. 
bManual curation of small-molecules for their approval status in different countries; FIMM, 
Institute for Molecular Medicine Finland (FIMM). 
cApproved and and investigational compounds for GBM retrieved by manually searching 
Clinical Trials database (https://www.clinicaltrials.gov/) and SynergySeq platform [24]. 

 

The AIC collection was further subjected to removal of duplicates and similarity 
searches using the ECFP4, ECFP6 and MACCS fingerprints (see Methods), where a 
similarity threshold of ≥0.99 was used to identify and remove highly similar compounds 
(e.g. doxorubicin and epirubicin, with the first compound being removed from the final 
set). Following the above curation procedure, the final AIC collection consisted of 546 
unique compounds. The distribution across different clinical development phases is 
shown in Figure 3B. 
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Figure 3. Clinical development phase distribution of the compounds in the two 
collections. (A)  experimental probe compound (EPC) collection, and (B) approved and 
investigational compound (AIC) collection. The clinical development stage was extracted from 
ChEMBL [19]. Numbers in parentheses indicate the number of compounds in each category. 
(C) Overlap of the compounds between the EPC and AIC collections. The numbers in the Venn 
diagram indicate the numbers of unique and shared compounds in the two sets, respectively. 

 

Characterization of the compound and target spaces of the probe collections 

We next analyzed the compound and target spaces of the probe compound collections, 
designed using the above-described procedures and the selected parameter values 
for filtering. The target distributions of the three probe collections remained relatively 
similar, where the screening set shows reduced numbers of multi-target compounds 
(Figure 4A). However, the median number of targets per compound was one for each 
probe collection, indicating that the sets include relatively selective compounds. For 
most of the targets, the screening set contains only a single compound per target, 
whereas in the Theoretical and Large-scale sets the median number of compounds 
per target was 42 and 2, respectively (Figure 4B).  
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Figure 4. (A) The number of targets per compound, and (B) the number of compounds 
per target in the three compound collections. The dashed line indicates the median. The 
x-axis and y-axis are log10-scaled in each panel, while the numbers present the non-logged 
counts (note the different scales between the panels). The counts are based on the target 
activity threshold ≤1000nM (see Suppl. Fig. 1 for other activity thresholds). 

 

The target classes of the screening set represent well those of the larger probe 
collections covered in the Theoretical and Large-scale sets (Figure 5, Suppl. Fig. 2). 
As expected, inhibitors for kinases and other enzymes are the most frequent in the 
three probe collections, but there are also other well-covered target classes such as 
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membrane receptors, epigenetic regulators and ion channels. Among the kinase 
inhibitors, the screening probe set covers all the major kinase families, and only a few 
of the kinase targets present in the Theoretical/Large-scale sets are missed in the 
smaller Screening set (Figure 6). Importantly for anticancer applications, the 
compound collections cover many targets implicated in various types of cancers, with 
breast and lung cancers having largest numbers of targeted compounds followed by 
glioma (Figure 7).  

Figure 5. The distribution of target classes of compounds in the Screening set. For the 
Theoretical and Large-scale sets, see Suppl. Fig. 2. The target classification of proteins was 
extracted from ChEMBL [19]. 

 

 
Figure 7. The number of targets associated with cancer types in Theoretical/Large-scale 
and Screening sets. The numbers above the bars indicate the percentage of targets in the 
two collections of different sizes. The disease associations were extracted from OpenTargets 
[26], with overall association score >0.5 (https://www.opentargets.org/). 
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Figure 6. Kinase families covered by the targets of the Theoretical/Large Scale set and 
Screening set. The kinases colored in purple indicate the targets present only in the 
Theoretical/Large-scale sets, but not in the Screening set, while the light-green targets are 
covered by all the three collections. KinMap[25] web-tool was used for the creation of the 
illustration, reproduced courtesy of Cell Signalling Technology, Inc. (www.cellsignal.com). 
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Methods 

1. Approved and investigational compound (AIC) collection construction 

The selection and the curation of compounds  in the AIC Collection was carried out 
manually. The compounds’ IDs (from PubChem[27] and ChEMBL[19]) and their 
structural description (canonical SMILES) were retrieved using PostgreSQL [28]. One 
compound (TAK-530) was found to have neither a compound ID nor a canonical 
SMILES, and it was therefore removed. The search for approved compounds for GBM 
was carried out by manually searching the Clinical Trials database 
(https://www.clinicaltrials.gov/), wherein compounds currently approved or clinically 
investigated for GBM were found, and the availability of these compounds were later 
determined by crosschecking the compound in the SelleckChem 
(https://www.selleckchem.com/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/). 
The fingerprint descriptors of compounds were enumerated using the RDKit [2] 
chemoinformatics module in Python 3.7 [30]. A similarity threshold of ≥0.99 was used 
to identify and remove highly 2 similar compounds (doxorubicin and epirubicin, with 
the first compound being removed). The resulting AIC collection consisting of 546 
unique compounds is available in GitHub (https://github.com/PaschalisAthan/C3L).  

2. Experimental probe compound (EPC) collection construction 

In the EPC collection, compound-target pairs were extracted manually from pan-
cancer studies using public databases (PharmacoDB [18] and The Human Protein 
Atlas [31]). The wild type and mutant variants of the targets, along with the first 
neighbors and influencers of other cancer-related targets [22], were later used to 
search for additional compounds that demonstrated sufficient target activity using 
PostgreSQL [28] (see below subsections). 

Next, analytical compound filtering procedures were used to produce the three probe 
collections (the Theoretical, the Large Scale and the Screening set) using RDKit [29], 
where the procedures involved checking the structural similarity between the 
compounds, and Python scripts for additional processing, such as adding extra 
annotations for the targets or the compounds extracted. The full list of cancer 
associated protein targets and associated probe compounds can be found at 
https://github.com/PaschalisAthan/C3L.  

2.1. Pan-cancer probe collection - PS1  
This collection of probe compounds focuses on compounds and targets implicated in 
various types of cancers. To construct this collection, several comprehensive large-
scale pan-cancer studies were analyzed (see Table 2.1). A set of 946 unique targets 
and 1525 compounds were curated from pan-cancer studies using the nominal targets 
from the PharmacoDB database [18], and The Human Protein Atlas database [31]. 
After removing redundant compounds, a total of 851 unique compounds remained that 
cover the target space of 946 unique proteins. 
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Table 2.1. The datasets listing the intended targets implicated in pan-cancer studies. 

Dataset Number of Compounds Reference 

  GDSC 404 [32] 

CTRPV2 342 [33] 

CCLE 24 [34] 

FIMM 112 [35] 

GRAY 74 [36] 

The Human Protein Atlas 569 [31] 

All compounds 1525 
 

Unique compounds 851 
 

Unique targets 946 
 

 

Since the degree of the cellular activity of the compound-target interactions was 
needed in the activity filtering and extension of the target profiles to include also potent  
off-targets, the preferred name of the compounds was mapped to ChEMBL IDs, along 
with the targets Uniprot IDs to find the reported  compound-target interaction potencies 
either in ChEMBL [19], DrugTargetCommons [20] or DrugBank [17] databases. During 
this process, 285 additional interactions between 185 compounds and 130 targets 
were found in these databases using multi-dose assays (IC50, EC5 , Kd and Ki). 

2.2 Extending the compound space - PS2  

To further extend the compound space, the annotated primary targets from the pan-
cancer studies were queried across publicly available compound bioactivity 
repositories [17, 19, 20]. Using a relatively liberal activity threshold of <= 1000 nM 
and multi-dose activity types, such as IC50, EC50, Ki or Kd, the compounds having 
cellular activity against these targets were curated. In case of multiple entries 
corresponding to the same compound-target interaction, the median activity value was 
recorded [37]. This curation procedure resulted in 141,087 unique compounds (Table 
2.2). 
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Table 2.2. Number of compounds that show activity agents the pan-cancer targets. 

Repository Number of Compounds Reference 

ChEMBL 140 626 [19] 

DTC 99 565 [20] 

DrugBank 845 [17] 

All compounds 241 036   

Unique compounds 141 087 
 

 

2.3. Collection for the mutant target space - PS3  
In addition to investigating the wild type targets implicated in various cancers (Section 
2.2), their corresponding mutant variants were also analyzed. The mutation information 
of the annotated targets of Section 2.1 were retrieved from the COSMIC Database 
[21]. The various types of variants included in the current curation process are listed 
below:  

● Substitution - missense 
● Substitution - coding silent 
● Complex - compound substitution 
● Insertion - in frame 
● Complex - deletion in frame 
● Substitution - nonsense 
● Deletion - in frame 

These mutant targets were queried across the existing data repositories ChEMBL [19] 
and DTC [20], and the corresponding compounds were compiled using the criteria 
similar to those described in Section 2.2. The resulting collection consists of 944 
unique compounds targeting 293 unique mutant targets (Table 2.3). 

 
Table 2.3. The number of compounds that show activity against the mutant variants. 

Repository Number of 
Compounds 

Reference 

ChEMBL 944 [19] 

DTC 446 [20] 

Unique compounds 944  
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2.4. Extending the target space - PS4 
Finally, as an effort to extend the target space, we queried public repositories for 
cancer- related targets, their first neighbors and influencers in four cancer types with 
high mortality rate (colon, breast, hepatocellular, non-small cell lung cancer). Such 
extended “targets” are suggested to influence cancer pathogenesis and therefore to 
increase the drug target space for anticancer therapies [22]. A target was considered 
as a cancer-related gene, when the corresponding protein was either mutated or had 
a differential expression in cancer. A first neighbour of cancer-related protein was 
defined as a protein that is directly and physically interacting with a cancer-related 
protein in human interactome or signalling networks [22], according to the databases 
SignaLink 2 [38], Reactome [39], HPRD [40], DIP [41], IntAct [42], BioGrid [43], or in a 
cancer signalling network [44]. An influencer protein was defined as a protein that has 
a direct interaction to one of the first neighbours. After combining these three subsets, 
an overlap analysis with the cancer-related targets was performed. The non-
overlapping targets were queried in ChEMBL [19] and DTC [20] to find a total of 208 
653 potent compounds following the same procedure as in the previous sections 
(Table 2.4). 
 
Table 2.4. Number of compounds that show activity against the extended target space. 

Repository Number of 
Compounds 

Reference 

ChEMBL 206 944 [19] 

DTC 178 250 [20] 

Unique compounds 208 652  

 

3. Reducing the number of compounds 

To make the Theoretical screening set that consists currently of 336758 probes more 
feasible for academic screening projects, several filtering procedures were 
subsequently applied, each with freely adjustable cut-off parameters that determine 
the stringency of the filtering process, and hence the number of compounds that pass 
it.  

3.1. Target-specific activity filtering 
The first library filtering technique was to apply a target-specific activity threshold to 
reduce the number of compounds from the Theoretical set. More specifically, the 
procedure comprised of the following steps: 
 

1. All the activity values were log-transformed 
2. Repeat for each target: 

2.1. Target’s activity distribution was normalized to zero mean and unit 
variance 
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2.2. A threshold was selected such that 80% of the target’s activities (i.e 
80% percentile) remain within that threshold (see an example in Table 
3.1) 

2.3. Compounds with activities higher than the selected threshold for the 
target were removed (i.e. these show less potency toward the particular 
target) 

Table 3.1. An example of how the activity threshold was selected for the target CIT 
(Citron Rho-interacting kinase - O14578) based on Kd multi-dose bioactivity readouts.  

 

 

*Cells in green are the activities that are retained after applying the target-specific activity 
filtering. The bioactivities are arranged from most potent (small Kd) to less-potent (high Kd). 

 

3.2 Compound structural similarity filtering 
The next filtering step was to find the similarity threshold above which two compounds 
were considered sufficiently similar. This procedure was based on the assumption that 
similar compounds are expected to have similar activity distributions. The cut-off value 
for the similarity was identified with the Akaike Information Criterion, which is an 
estimator for the degree of information that is lost when using a candidate model, i.e., 
smaller values indicate low information loss that is better than high values indicating 
high information loss [45].  More specifically, the procedure for defining the similarity 
cut-off used the following steps: 
 

1. A portion (here, 10%) of the total number of compounds was chosen for the 
similarity cut-off estimation 

2. Each compound’s similarity (based on ECFP4, ECFP6 and MACCS 
fingerprints) was estimated with the rest of the compounds within the portion, 
hence leading to a compound similarity matrix 

3. A similarity threshold was varied, from 0.1 to 0.99 (with 0.01 step size), and for 
each threshold: 
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3.1. Compounds that had similarity value equal or greater than the threshold 
were identified 

3.2. The similarity distributions of those compounds were compared using 
the Kolmogorov-Smirnov (K-S) test and the test statistics were recorded 

3.3. The Akaike Information Criterion (AIC) value was calculated based on 
the K-S test statistic values 

4. The optimal similarity threshold was selected based on the smallest AIC value 
(see Figure 3.2) 

5. Steps 1-4 were repeated thrice using 3 different random seeds 

 
Figure 3.2. An example how the optimal similarity threshold was identified based on the 
Akaike Information Criterion. The optimal structural similarity threshold was defined for each 
structural fingerprint separately as the smallest value of the curve (thresholds ranging from 0 to 
1), indicating the lowest information loss. 

 
 
3.3. Global activity filtering 
The first step for reducing the size of the physical screening library was to apply an 
activity threshold similar to that explained in Section 3.1, but instead of being target-
specific as above, herein the same activity threshold was used across all the targets 
(i.e., target-agnostic, global filtering). More specifically, the procedure of applying a 
global activity filtering followed these steps: 
 

1. The profile of quantitative bioactivity values for each target were recorded when 
creating the theoretical set (see Section 2.1) 

2. The bioactivity values are log-transformed and normalized to zero mean 
3. The target with the highest activity standard deviation is identified 
4. An activity threshold is selected such that 95% of the bioactivities of the targets 

from step 3 are within the selected threshold (see Figure 3.3). 
5. The selected activity threshold is applied to all the targets to remove the 

compounds with bioactivities larger (i.e. less potent) that the selected threshold 
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Figure 3.3 Examples of protein targets with the highest standard deviation of compound 
bioactivities based on which the global activity threshold was selected for the 4 probe 
sets. (A) Activity threshold of 670nM (red dotted line) in the PS2, and (B) activity threshold of 
780nM (red dotted line) in the PS4. 
 
 
3.4. Reducing the compound space 
The second step for the screening library size reduction was to pick only a single 
compound for each target to have the smallest number of most potent compounds for 
covering the same target space. More specifically, the compound that had the lowest 
activity value among the multi-dose activity types (IC50, EC50, Ki, Kd) was selected for 
the particular target, since that compound is assumed to have the highest binding 
potency against the target. The different activity types were treated equally in this 
process. 

 
 
3.5. Compound availability filtering 
The final step for designing the screening library was to include only the compounds 
that are for sale from at least one vendor using availability information for ZINC15 [46]. 
More specifically, if a particular compound was not available for sale, then the next 
most potent compound that is available for sale replaced the original one in the 
screening library. Even though this step reduced the number of compounds in the final 
screening library to 52% of the original size, the targets’ coverage remained at 86% of 
the original space (Table 3.5). Furthermore, the potency distributions remained 
relatively unchanged (Suppl. Figure 3), where the differences originated mainly from 
the few of the most potent compounds.  
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Table 3.5. The compound and targets spaces of the screening set before and after 
replacing the unavailable compounds  

Probe set Unique 
Compounds 

Compounds for-
sale* 

Unique 
targets 

Unique 
interactions 

Screening set 
initial 

2331 635 1628 5315 

Screening set 
after compounds 

replaced 

1211 1211 1386 2699 

* The availability for sale information is extracted from ZINC15 [46]. 

 

Discussion 

In the field of precision oncology, there have been several efforts to systematically 
catalogue all of the genes implicated in cancer [47, 48]. Several commercial and 
governmental chemical genomics and approved drug libraries targeting many of the 
most heavily investigated genes are readily available [12, 13]. However, even though 
these commercial or in-house libraries have been well-utilized in many anticancer 
screens and drug repurposing studies [14,15, 49,50], there is a need for a 
comprehensive, target-annotated, anti-cancer library optimized for selectivity and 
diversity against all known oncology targets. There are well-annotated libraries for 
specific classes or applications, such as for kinase inhibitors [51] and drug repurposing 
[52], respectively, but what is lacking is a comprehensive probe library that provides a 
starting point for various anticancer screening applications. Despite the emergence of 
new treatment modalities, such as monoclonal antibodies, molecularly-targeted small 
compounds are, and will most likely remain, the most prolific anticancer therapeutics 
for the foreseeable future that are also applicable in advanced stages of the disease, 
for instance, after tumour has progressed towards metastatic disease and when the 
cancer has become chemo- or radio-therapy resistant [6-8]. The development and 
implementation of a well curated and comprehensive screening library will facilitate the 
identification of novel anticancer drug targets, drug combinations, synthetic-lethal 
interactions and novel targets to overcome cancer resistance. Subsequent application 
may include the identification of chemical starting points, new target-directed drug 
discovery programs and approval of new therapeutics in specific indications 

We formulated the compound library construction as a multi-objective optimization 
(MOP) problem, where the aim is to simultaneously maximize the anticancer target 
diversity and compound potency (or selectivity), while minimizing the number and cost 
of the compounds in the physical screening set.  This is important because a focused 
library enables a more thorough evaluation of the anticancer potential of these 
molecules, using advanced physiologically relevant cancer models, incorporating 
genetically distinct patient-derived cell panel and complex pathological conditions (i.e. 
- host tumour microenvironment and hypoxia). With such a focused library, 
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comprehensive screening paradigms including drug combinations, sequencing and 
scheduling can be incorporated into a primary phenotypic screening pipeline 
achievable by many academic screening facilities [53]. In the present work, we used 
fast, heuristic procedures to select the compounds with a predefined potency against 
the selected targets that presented with sufficient structural dissimilarity, as 
implemented in several filtering procedures. Even though our results show that the 
current heuristic approach leads to the desired results from the compound screening 
point of view, other approximate solutions to the MOP problem could further decrease 
the size of the screening set, while securing sufficient potency of the compounds 
against the targets.  

Designing an optimal compound library of small molecules is challenged by the 
compound promiscuity, that is, many compounds modulate their effects through 
multiple protein targets with various degrees of potency. For instance, kinase inhibitors 
are notorious for their target promiscuity and their polypharmacological effects across 
various target classes beyond kinase families only [54]. The broad target selectivity of 
many compounds remain still uncharted [55], and therefore the phenotype driving 
targets of many compounds are currently unknown. In addition to the potency, 
chemical similarity of the compounds is another important feature of library design, 
especially if the aim is to have a collection of not too similar small-molecules that 
selectively target the protein space of interest. In the ideal case, each compound would 
selectively target only a single protein with high potency, leading to a diagonal design 
matrix between the compounds and proteins. However, the currently available small-
molecule inhibitors remain quite far from this ideal scenario, hence requiring systematic 
design principles for library construction. Systematic study of cross-reactivity of the 
compounds will be needed to further investigate the target selectivity of the molecules 
in the current screening set across various target classes, beyond the rather limited 
data for target activity currently available for these compounds in public databases 
(Suppl. Fig. 1D). We are currently in the process of building and curating the C3L 
collection. Future applications in cell-based screening will provide important 
importation of the differential activity of the compounds in various cell-context, which 
can be used to further modify and tailor the library for more specific application cases.     

Other future directions for the library construction include the use of phenotypic assays 
for biological profiling of compounds as cell-based features in the library design and 
analysis, including clustering of compounds into communities of phenotypic activity to 
explore biological mechanism of action (MoA) [56]. Further biological and clinical 
characterization, for instance, as implemented in the ChemicalChecker [57], could aid 
several drug discovery tasks, including target identification, MoA classification and 
library characterization. Integrated analysis of chemical, molecular target, cell-based 
profiling and clinical information could also be used to provide a relevance ranking of 
the targets and compounds in a library, once the disease indication is defined, hence 
adding one further dimension to the MOP problem. Other filtering steps to aid the 
eventual screening applications include, for instance, removal of interference 
compounds and finding on-target compounds with diverse scaffold profiles. The 
eventual applications in phenotypic screening, either in established cell lines or patient-
derived cell models, will define the usefulness of any compound collections and 
libraries. We expect that the here-in presented comprehensive libraries with manually-
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curated target information will provide new opportunities for many exciting anticancer 
applications in GBM and other cancers, including target identification, drug 
repositioning and drug combination prediction and testing [58]. 
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Suppl. Figure 1. Number of compounds against targets using three activity thresholds. 
(A-C) Compounds in the three probe collections with different library sizes. Note the differences 
in the y-axis ranges. (D) Number of potent targets for the compounds in the Screening set using 
three activity thresholds. The right-hand y-axis depicts the total number of multi-dose bioactivity 
data for each compound-target pair available in Drug Target Commons, ChEMBL and 
DrugBank. Note the right-hand y-axis is log10-scaled while the numbers present the non-logged 
counts. 

Suppl. Figure 2. Target classes of the compounds in the Theoretical and Large-scale 
sets. The target classification of proteins was extracted from ChEMBL [19]. 

 

Suppl. Figure 3. Comparison of the distributions of compound-target activities before 
and after replacing the unavailable compounds in the screening set.  The x-axis and y-
axis are log10-scaled, while the numbers present the non-logged values. The activity 
distributions were generally similar (p>0.05; Kolmogorov-Smirnov test). 
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